EE 364a: Convex Optimization I January 24, 2019

Midterm Quiz Solutions

- 1. Convexity of some sets. Determine if each set below is convex.
 - (a) $\{(x, y) \in \mathbf{R}^2_{++} \mid x/y \le 1\}$
 - (b) $\{(x,y) \in \mathbf{R}^2_{++} \mid x/y \ge 1\}$
 - (c) $\{(x, y) \in \mathbf{R}^2_+ \mid xy \le 1\}$
 - (d) $\{(x, y) \in \mathbf{R}^2_+ \mid xy \ge 1\}$

Solution.

- (a) Convex. The given set is $\{(x, y) \in \mathbf{R}^2_{++} \mid x y \leq 0\}$, which is the intersection of the positive orthant with a halfspace, thus convex.
- (b) Convex. The given set is $\{(x, y) \in \mathbf{R}^2_{++} \mid x y \ge 0\}$, which is the intersection of the positive orthant with a halfspace, thus convex.
- (c) Not convex. The points (1/2, 2) and (2, 1/2) are in the given set, but their average, (5/4, 5/4), is not.
- (d) Convex. The given set is $\{(x, y) \in \mathbf{R}^2_+ \mid \sqrt{xy} \ge 1\}$, which is the 1-superlevel set of the geometric mean, a concave function.
- 2. Curvature of some functions. Determine the curvature of the functions below.
 - (a) $f(x) = \min\{2, x, \sqrt{x}\}, \text{ with } \mathbf{dom} \ f = \mathbf{R}_+$
 - (b) $f(x) = x^3$, with **dom** $f = \mathbf{R}$
 - (c) $f(x,y) = \sqrt{x \min\{y,2\}}$, with **dom** $f = \mathbf{R}_{+}^{2}$
 - (d) $f(x,y) = (\sqrt{x} + \sqrt{y})^2$, with **dom** $f = \mathbf{R}^2_+$

Solution.

- (a) Concave. The minimum of concave functions is concave.
- (b) Neither convex nor concave. The second derivative is f''(x) = 6x. Since f''(1) > 0 and f''(-1) < 0, f is neither convex nor concave.
- (c) Concave. The geometric mean \sqrt{uv} is (jointly) concave on \mathbf{R}^2_{++} . Since h is increasing in both arguments, x is linear, and $\min\{y, 2\}$ is positive and concave, $\sqrt{x \min\{y, 2\}}$ is concave by the composition rules.
- (d) Concave. By expanding the square, $f(x, y) = x + y + 2\sqrt{xy}$, which is the sum of concave functions (on \mathbf{R}^2_{++}), thus concave.

- 3. Correlation matrices. Determine if the following subsets of \mathbf{S}^n are convex.
 - (a) the set of correlation matrices, $C^n = \{C \in \mathbf{S}^n_+ \mid C_{ii} = 1, i = 1, \dots, n\}$
 - (b) the set of nonnegative correlation matrices, $\{C \in \mathcal{C}^n \mid C_{ij} \ge 0, i, j = 1, \dots, n\}$
 - (c) the set of volume-constrained correlation matrices, $\{C \in \mathcal{C}^n \mid \det C \ge (1/2)^n\}$
 - (d) the set of highly correlated correlation matrices, $\{C \in \mathcal{C}^n \mid C_{ij} \ge 0.8, i, j = 1, \dots, n\}$

Solution.

- (a) Convex. The constraints $C_{ii} = 1$ are linear, so the set is the intersection of \mathbf{S}^n_+ with n hyperplanes.
- (b) Convex. The constraints $C_{ij} \ge 0$ are linear, so the set is the intersection of \mathcal{C}^n with n^2 halfspaces.
- (c) Convex. The constraint det $C \ge (1/2)^n$ is equivalent to $-\log \det C \le n \log 2$. Also, note that det $C \ge (1/2)^n$ implies $C \in \mathbf{S}_{++}^n$. Thus, the given set is the $(n \log 2)$ -sublevel set of the convex function $-\log \det C$ (on \mathbf{S}_{++}^n), intersected with \mathcal{C}^n .
- (d) Convex. The constraints $C_{ij} \ge 0.8$ are linear, so the given set is the intersection of C^n with n^2 halfspaces.
- 4. DCP rules. The function $f(x, y) = \sqrt{1 + x^4/y}$, with **dom** $f = \mathbf{R} \times \mathbf{R}_{++}$, is convex. Express f using disciplined convex programming (DCP), limited to the following atoms,

inv_pos(u), which is 1/u, with domain \mathbf{R}_{++} square(u), which is u^2 , with domain \mathbf{R} sqrt(u), which is \sqrt{u} , with domain \mathbf{R}_+ geo_mean(u,v), which is \sqrt{uv} , with domain \mathbf{R}_+^2 quad_over_lin(u,v), which is u^2/v , with domain $\mathbf{R} \times \mathbf{R}_{++}$ norm2(u,v), which is $\sqrt{u^2 + v^2}$, with domain \mathbf{R}^2 .

You may also use addition, subtraction, scalar multiplication, and any constant functions. Assume that DCP is sign-sensitive, *e.g.*, square(u) increasing in u when $u \ge 0$. Please only write down your composition. No justification is required.

Solution.

Since $f(x,y) = ||(1,x^2/\sqrt{y})||_2$, we can write the function as

```
norm2(1, quad_over_lin(x, sqrt(y))).
```

The atom quad_over_lin is jointly convex on its domain, and since sqrt(y) is concave and positive, the composition quad_over_lin(x, sqrt(y)) is DCP convex and positive on $\mathbf{R} \times \mathbf{R}_{++}$. Since norm2 is convex and increasing in both arguments on \mathbf{R}_{+}^2 , the full composition is DCP convex.