
EE364a: Convex Optimization I S. Boyd
March 14–15, 15–16, or 16–17, 2019

Final Exam Solutions

1. Fitting a periodic Poisson distribution to data. We model the (random) number of
times that some type of event occurs in each hour of the day as independent Poisson
variables, with

Prob(k events occur) = e−λt
λkt
k!
, k = 0, 1, . . . ,

with parameter λt ≥ 0, t = 1, . . . , 24. (For λt = 0, k = 0 events occur with probability
one.) Here t denotes the hour, with t = 1 corresponding to the hour from midnight to
1AM, and t = 24 the hour between 11PM and midnight. (This is the periodic Poisson
distribution in the title.) The parameter λt is the expected value of the number of
events that occur in hour t; it can be thought of as the rate of occurence of the events
in hour t.

Over one day we observe the numbers of events N1, . . . , N24.

(a) Maximum likelihood estimate of parameters. What is the maximum likelihood es-
timate of the parameters λ1, . . . , λ24? Hint. There is a simple analytical solution.
You should consider the cases Nt > 0 and Nt = 0 separately.

(b) Regularized maximum likelihood estimate of parameters. In many applications it
is reasonable to assume that λt varies smoothly over the day; for example, the
rate of occurence of events for 3PM–4PM is not too different from the rate of
occurence for 4PM–5PM. To obtain a smooth estimate of λt we maximize the log
likelihood minus the regularization term

ρ

(
23∑
t=1

(λt+1 − λt)2 + (λ1 − λ24)2
)
,

where ρ ≥ 0. Explain how to find the values λ1, . . . , λ24 using convex optimization.
If you change variables, explain.

(c) What happens as ρ → ∞? You can give a very short answer, with an informal
argument. Hint. As in part (a), there is a simple analytical solution.

(d) Numerical example. Over one day, we observe

N = (0, 4, 2, 2, 3, 0, 4, 5, 6, 6, 4, 1, 4, 4, 0, 1, 3, 4, 2, 0, 3, 2, 0, 1).

Find the regularized maximum likelihood parameters for ρ ∈ {0.1, 1, 10, 100} using
CVX*, and plot λt versus t for each value of ρ.

1

(e) Choosing the hyper-parameter value by out-of-sample test. One way to choose the
value of ρ is to see which of the models found in part (d) has the highest log
likelihood on a test set, i.e., another day’s data, that was not used to create the
model. For each of the 4 values of the parameters you estimated in part (d),
evaluate the log likelihood of another day’s number of events,

N test = (0, 1, 3, 2, 3, 1, 4, 5, 3, 1, 4, 3, 5, 5, 2, 1, 1, 1, 2, 0, 1, 2, 1, 0).

Which hyper-parameter value ρ would you choose?

Solution.

(a) The log-likelihood of observing Nt events is −λt +Nt log λt − logNt!. Since these
events are independent, we add these to get the log-likelihood of the collection of
observed events, so the negative log-likelihood of the collection of observed events
is

24∑
t=1

(λt −Nt log λt + logNt!) .

The maximum likelihood estimate of λt minimizes the negative log-likelihood of
observing N1, . . . , N24, which can be found by solving the optimization problem

minimize
∑24

t=1 (λt −Nt log λt + logNt!)
subject to λ � 0,

with variables λ1, . . . , λ24. Note that when Nt > 0, the log λt term imposes an
implicit constraint that λt > 0; we need the explicit inequality λ � 0 to cover
the case when Nt = 0. (We did not penalize those who omitted the explicit
inequality.)

This problem is separable in t, so we can separately minimize over each λt. Let’s
first assume that Nt > 0. Then the minimizer satisfies 1−Nt/λt = 0, so λt = Nt.
For Nt = 0, we minimize λt, subject to λt ≥ 0. This gives λt = 0. So in all cases
the ML estimate is λt = Nt. This is very natural: If you observe Nt events, you
guess that this is the mean of the number of events that occur.

(b) We solve the convex optimization problem

minimize
∑24

t=1 (λt −Nt log λt) + ρ
(∑23

t=1(λt+1 − λt)2 + (λ1 − λ24)2
)

subject to λ � 0,

with variable λ ∈ R24. (We drop the constant term that does not depend on λt.)

(c) As ρ→∞, the λt all become equal, so we have λ = λ̃1, resulting in the problem

minimize 24λ̃− (
∑24

t=1Nt) log λ̃

subject to λ̃ ≥ 0.

The solution is the constant Poisson model with λt = λ̃ = N =
∑

τ Nτ/24, the
average rate of hourly occurence of the events over the whole day.

2

(d) The estimated rates are shown below. As expected, the larger ρ is, the smoother
λ is.

0 5 10 15 20

0

1

2

3

4

5 rho=0.1
rho=1.0
rho=10.0
rho=100.0

(e) We get the following log likelihood values on the test set: (−83.44,−37.75,−41.71,−43.76).
We would choose ρ = 1, since it gets the highest log-likelihood on the test set.

Python solution for all parts:

import numpy as np

import cvxpy as cvx

import matplotlib.pyplot as plt

T = 24

N = np.array([0, 4, 2, 2, 3, 0, 4, 5, 6, 6, 4, 1,

4, 4, 0, 1, 3, 4, 2, 0, 3, 2, 0, 1])

lambd = cvx.Variable(T, nonneg=True)

rho = cvx.Parameter(nonneg=True)

objective = cvx.sum(lambd) - N@cvx.log(lambd) +\

rho * (lambd[0] - lambd[-1])**2 +\

rho * cvx.sum_squares(cvx.diff(lambd))

problem = cvx.Problem(cvx.Minimize(objective))

lambdas, rhovalues = [], [0.1, 1, 10, 100]

for rhovalue in rhovalues:

rho.value = rhovalue

problem.solve()

plt.plot(np.arange(T), lambd.value, label="rho=%.1f" % rhovalue)

lambdas.append(lambd.value)

plt.legend()

3

plt.savefig("../figures/time_varying_poisson.pdf")

from scipy.special import factorial

Ntest = np.array([0, 1, 3, 2, 3, 1, 4, 5, 3, 1, 4, 3,

5, 5, 2, 1, 1, 1, 2, 0, 1, 2, 1, 0])

for rhovalue, lambd in zip(rhovalues, lambdas):

test_logprob = np.sum(np.log(

np.exp(-lambd) * lambd**Ntest / factorial(Ntest)

))

print(f"rho = {rhovalue}, log likelihood = {test_logprob}")

Julia solution for all parts:

using Convex, ECOS, PSPlot

problem data

T = 24

N = [0, 4, 2, 2, 3, 0, 4, 5, 6, 6, 4, 1,

4, 4, 0, 1, 3, 4, 2, 0, 3, 2, 0, 1]

N_test = [0, 1, 3, 2, 3, 1, 4, 5, 3, 1, 4, 3,

5, 5, 2, 1, 1, 1, 2, 0, 1, 2, 1, 0]

circular difference

circdiff(x) = x - [x[2:end]; x[1]]

solve problems

lambd = Variable(T)

lambds, rhos = [], [0.1, 1, 10, 100]

for rho in rhos

ll = sum(lambd - N .* log(lambd))

reg = rho * sumsquares(circdiff(lambd))

prob = minimize(ll + reg)

solve!(prob, ECOSSolver(eps=1e-8))

plot(1:T, lambd.value, label="rho = $(rho)")

push!(lambds, lambd.value)

end

legend()

printfig("time_varying_poisson.eps")

compute log likelihoods

log_fact(n) = sum(log.(1:n))

for (rho, lambd) in zip(rhos, lambds)

ll = sum(-lambd + N_test .* log.(lambd) - log_fact.(N_test))

4

println("rho = $(rho), log likelihood = $(ll)")

end

Matlab solution for all parts:

T = 24;

N = [0,4,2,2,3,0,4,5,6,6,4,1,4,4,0,1,3,4,2,0,3,2,0,1];

hold on

lambds = [];

rhos = [0.1,1,10,100];

for rho = rhos

cvx_begin

variable lambd(T)

minimize(sum(lambd)-N*log(lambd) +

rho*(lambd(1)-lambd(T))^2+ rho*sum((lambd(1:T-1)-lambd(2:T)).^2))

subject to

lambd >= 0

cvx_end

plot(lambd)

lambds = [lambds lambd];

end

legend(["rho=0.1","rho=1","rho=10","rho=100"])

saveas(gcf,’time_varying_poisson.eps’,’epsc’)

Ntest = [0,1,3,2,3,1,4,5,3,1,4,3,5,5,2,1,1,1,2,0,1,2,1,0]’;

for i = 1:4

lam =lambds(:,i);

test_logprob = sum(log(exp(-lam).*lam.^Ntest./factorial(Ntest)))

rhos(i)

end

5

2. Currency exchange. An entity (such as a multinational corporation) holds n = 10
currencies, with ciniti ≥ 0 denoting the number of units of currency i. The currencies
are, in order, USD, EUR, GBP, CAD, JPY, CNY, RUB, MXN, INR, and BRL. Our
goal is to exchange currencies on a market so that, after the exchanges, we hold at
least creqi units of each currency i.

The exchange rates are given by F ∈ Rn×n, where Fij is the units of currency j it costs
to buy one unit of currency i. We call 1/Fij the bid price for currency j in terms of
currency i, and Fji the ask price for currency j in terms of currency i.

For example, suppose that F12 = 0.88 and F21 = 1.18. This means that it takes 0.88
EUR to buy one USD, and it takes 1.18 USD to buy one EUR; the bid and ask prices
for EUR in USD are 1.1364 USD and 1.1800 USD, respectively.

We will value a set of currency holdings in USD, by valuing each unit of currency j
at the geometric mean of the bid and ask price in USD,

√
Fj1/F1j. In our example

above, we would value one EUR as
√

1.1364 · 1.1800 = 1.1580 USD.

We let X ∈ Rn×n
+ denote the currency exchanges that we carry out, with Xij ≥ 0 the

amount of currency j we exchange on the market for currency i, for which we obtain
Xij/Fij of currency i. (You can assume that Xii = 0.) The total of each currency j
that we exchange into other currencies cannot exceed our initial holdings, cinitj . After
the currency exchange, we must end up with at least creqi of currency i. (The post-
exchange amount we hold of currency i is our original holding ciniti , minus the total
we exchange into other currencies, plus the total amount we obtain from exchanging
other currencies into currency i.)

The cost of the exchanges is the decrease in value between the currency holdings before
and after the exchanges, in USD. The cost can be interpreted as the transaction costs
incurred by crossing the bid-ask spread (i.e., if the bid and the ask were the same,
there would be no cost.)

Find the currency exchanges X? that minimize the currency exchange cost for the
data in currency_exchange_data.*. (These data are based on real exchange rates,
but with artificially large spreads, to make sure that you don’t encounter any numerical
issues.) Explain your method, and give the optimal value, i.e., the cost obtained.

Solution.

We exchange Xij of currency j into currency i, so the total we exchange of currency j
is
∑

iXij. So the vector of totals of currencies we exchange is XT1.

For the exchange of Xij of currency j, we receive Xij/Fij of currency i. The total we
receive of currency i is

∑
j Xij/Fij. The vector of proceeds from our exchanges is given

by (X/F)1, where F/X is meant elementwise. The post-exchange currency holdings
z ∈ Rn

+ are given by
z = (X/F)1−XT1 + cinit.

6

The cost of the exchanges is the decrease in value after the exchanges, which is given
by

n∑
j=1

(cinit − z)j

√
Fj1/F1j.

We can now assemble the problem, which turns out to be an LP,

minimize
∑n

j=1(c
init − z)j

√
Fj1/F1j

subject to Xij ≥ 0, diag(X) = 0,
z = (X/F)1−XT1 + cinit,
XT1 � cinit,
z � creq,

(1)

where X and z are the optimization variables.

For the given data, the minimum currency exchange cost is 7.7 USD. The optimal X
is

X? =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 545 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 727 0 0 0
0 0 0 0 0 0 0 369 0 0
16 0 0 0 182 0 0 0 0 182
19 0 0 0 0 0 0 0 0 0
510 0 0 0 0 0 0 0 0 0


The initial value cinit is (1818, 1636, 1455, 1273, 1091, 909, 727, 545, 364, 182). The total
of each currency that we exchange are X?T1 = (561, 0, 0, 545, 182, 0, 727, 369, 0, 182).
This means that we don’t exchange any of our EUR, GBP, CNY, or INR. The optimal
final value z is (1257, 1636, 1772, 727, 909, 1091, 1273, 1455, 1636, 1818).

The following Python code implements the solution:

import numpy as np

import cvxpy as cp

from currency_exchange_data import *

X = cp.Variable((n,n))

z = (X/F)@np.ones(n) - X.T@np.ones(n) + c_init

cost = (c_init - z)@np.sqrt(F[:,0]/F[0,:])

prob = cp.Problem(cp.Minimize(cost),

[X >= 0,

cp.diag(X) == 0,

7

X.T@np.ones(n) <= c_init,

z >= c_req])

result = prob.solve()

print("The minimum cost is ", result, " USD")

The following MATLAB code implements the solution:

currency_exchange_data;

cvx_begin

variable X(n,n);

z = (X./F)*ones(n, 1) - X.’*ones(n, 1) + c_init;

cost = sqrt(F(:, 1).’./F(1, :))*(c_init - z);

minimize (cost);

X >= 0;

diag(X) == 0;

X.’*ones(n, 1) <= c_init;

z >= c_req;

cvx_end

fprintf("The minimum cost is %d USD\n", cvx_optval)

The following Julia code implements the solution:

using Convex;

using SCS;

using LinearAlgebra;

include("currency_exchange_data.jl")

X = Convex.Variable((n, n));

z = (X ./ F) * ones(n) - X’ * ones(n) + c_init;

cost = Convex.dot((c_init - z), sqrt.(F[1:end, 1] ./ F[1, 1:end]));

constraints = [

X >= 0,

Convex.diag(X) == 0,

X’ * ones(n) <= c_init,

z >= c_req

];

problem = Convex.minimize(cost, constraints);

8

solve!(problem, SCSSolver());

print("The minimum cost is ", problem.optval, " USD");

9

3. Optimal operation of a microgrid. We consider a small electrical microgrid that consists
of a photo-voltaic (PV) array, a storage device (battery), a load, and a connection to
an external grid. We will optimize the operation of the microgrid over one day, in 15
minute increments, so all powers, and the battery charge, are represented as vectors in
R96. The load power is pld, which is nonnegative and known. The power that we take
from the external grid is pgrid; pgridi ≥ 0 means we are consuming power from the grid,
and pgridi < 0 means we are sending power back into the grid, in time period i. The PV
array output, which is nonnegative and known, is denoted as ppv. The battery power
is pbatt, with pbatti ≥ 0 meaning the battery is discharging, and pbatti < 0 meaning the
battery is charging. These powers must balance in all periods, i.e., we have

pld = pgrid + pbatt + ppv.

(This is called the power balance constraint. The lefthand side is the load power, and
the righthand side is the sum of the power coming from the grid, the battery, and the
PV array.) All powers are given in kW.

The battery state of charge is given by q ∈ R96. It must satisfy 0 ≤ qi ≤ Q for all i,
where Q is the battery capacity (in kWh). The battery dynamics are

qi+1 = qi − (1/4)pbatti , i = 1, . . . , 95, q1 = q96 − (1/4)pbatt96 .

(The last equation means that we seek a periodic operation of the microgrid.) The
battery power must satisfy −C ≤ pbatti ≤ D for all i, where C and D are (positive)
known maximum charge and maximum discharge rates.

When we buy power (i.e., pgridi ≥ 0) we pay for it at the rate of Rbuy
i (in $/kWh).

When we sell power to the grid (i.e., pgridi < 0) we are paid for it at the rate of Rsell
i .

These (positive) prices vary with time period, and are known. The total cost of the
grid power (in $) is

(1/4)
(
Rbuy

)T (
pgrid

)
+
− (1/4)

(
Rsell

)T (
pgrid

)
− ,

where (pgrid)+ = max{pgrid, 0} and (pgrid)− = max{−pgrid, 0} (elementwise). You can
assume that Rbuy

i > Rsell
i > 0, i.e., in every period, you pay at a higher rate to consume

power from the grid than you are paid when you send power back into the grid.

The data for the problem are

pld, ppv, Q, C, D, Rbuy, Rsell.

(a) Explain how to find the powers and battery state of charge that minimize the
total cost of the grid power. Carry out your method using the data given in
microgrid_data.*. Report the optimal cost of the grid power. Plot pgrid,
pload, ppv, pbatt, and q versus i. Note. For CVXPY, you might need to spec-
ify solver=cvx.ECOS when you call the solve() method.

10

(b) Price and payments. Let ν ∈ R96 denote the optimal dual variable associated
with the power balance constraint. The vector 4ν can be interpreted as the
(time-varying) price of electricity at the microgrid, and is called the locational
marginal price (LMP). The LMP is in $/kWh, and is generally positive; the
factor 4 converts between 15 minute power intervals and per kWh prices. Find
and plot the LMP, along with the grid buy and sell prices, versus i. Make a
very brief comment comparing the LMP prices with the buy and sell grid prices.
Hint. Depending on how you express the power balance constraint, your software
might return −ν instead of ν. Feel free to use −4ν instead of ν, or to switch the
left-hand and righ-hand sides of your power balance constraint.

(c) The LMPs can be used as a system for payments among the load, the PV array,
the battery, and the grid. The load pays νTpld; the PV array is paid νTppv; the
battery is paid νTpbatt; and the grid is paid νTpgrid. Note carefully the directions
of these payments. Also note that the battery and grid, whose powers can have
either sign, can be paid in some time intervals and pay in others.

Use this pricing scheme to calculate the LMP payments made by the load, and
to the PV array, the battery, and the grid. If all goes well, these payments will
balance, i.e., the load will pay an amount equal to the sum of the others.

When you execute the script that contains the data, it will create plots showing the
various powers and prices versus time. Your are welcome to use these as templates for
plotting your results. You are very welcome to look inside the script to see how the
data is generated.

Remark. (Not needed to solve the problem.) The given data is approximately consis-
tent with a group of ten houses, a common or pooled PV array of around 100 panels,
and two Tesla Powerwall batteries.

Solution.

(a) With the objective and constraints directly as they are written in the problem
statement, we get the problem

minimize (1/4)
(
Rbuy

)T
max{pgrid, 0} − (1/4)

(
Rsell

)T
max{−pgrid, 0}.

subject to pld = pgrid + pbatt + ppv

0 � q � Q1
qi+1 = qi − (1/4)pbatti i = 1, . . . , 95
q1 = q96 − (1/4)pbatt96

−C1 � pbatt � D1,

with variables pgrid, pbatt, and q.

All of the constraints are convex. The objective is also convex, but it’s not in
DCP form, since the second term (including the minus sign) is concave. To see

11

that the total objective is convex, we note that it’s a sum of functions of pgridi ,

fi(p
grid
i) =

{
(1/4)Rsellpgridi pgridi ≤ 0

(1/4)Rbuypgridi pgridi ≥ 0.

This piecewise affine function ‘kinks upward’ at the kink point 0, so it’s convex.
(This depends on the inequality Rbuy

i ≥ Rsell
i .)

So the problem is convex as stated, but it’s not in DCP form. There are two ways
to get around this. The first is to express the functions fi as

fi(u) = Rbuy
i ui + (Rbuy

i −Rsell
i) max{−ui, 0},

which is DCP. Note the interpretation: Power, bought or sold, is charged at the
(cheaper) rate Rbuy

i ; but you also pay an additional amount if you are selling
power back to the grid.

The second method is to break up the grid power into two components, which we
call pbuy and psell, and then constrain both variables to be nonnegative, and set
pgrid = pbuy − psell. Our problem then becomes:

minimize (1/4)
(
Rbuy

)T
pbuy − (1/4)

(
Rsell

)T
psell

subject to pld = pgrid + pbatt + ppv

0 � q � Q1
qi+1 = qi − (1/4)pbatti i = 1, . . . , 95
q1 = q96 − (1/4)pbatt96

−C1 � pbatt � D1
pgrid = pbuy − psell
pbuy � 0
psell � 0

With variables pgrid, pbuy, psell, pbatt, and q.

This problem is convex, in fact an LP, and we can recover our desired variables,
pgrid, pbatt, and q, directly from the result. Depending on which programming
language and which solver used, the optimal value (minimum cost paid to the
grid) ranged between $33.10 and $33.16, due to numerical roundoff errors and
small differences in the way the problem is transformed to an LP by the different
systems.

12

(b) To get the LMP, as the problem explains, we simply get the value of the dual
variable associated with the power balance equality constraint, multiplied by 4 to
convert the prices back into $/kWh (rather than per 15 minute interval).

(c) Depending on what language and solver is used, the total costs here could vary by
around $0.05. One particular set of values we get is load cost = $107.98, battery
cost = $-8.37, PV cost = $-66.45, and the effective grid cost is $33.16. If you take
the effective grid cost minus the sum of the other three values, it equals 0, which
is what we expect.

Note also that the LMP is fixed to the buy price of the current period when we’re
buying power and the sell price of the current period if we’re selling power.

The following Python code solves the problem.

First, run imports.

import cvxpy as cvx

import numpy as np

import matplotlib.pyplot as plt

from microgrid_data import *

13

###

part (a) - Solving the optimization problem

###

p_batt = cvx.Variable(N) # battery charge and discharge (pos is charging, neg is discharge)

p_buy = cvx.Variable(N) # non-negative vector of power bought from grid

p_sell = cvx.Variable(N) # non-negative vector of power sold to grid

p_grid = p_buy - p_sell # net power from grid pos is buying, neg is selling)

q = cvx.Variable(N) # Energy in battery (in KWh)

payments = (.25)*p_buy.T * R_buy

income = (.25)*p_sell.T * R_sell

obj = cvx.Minimize(payments - income) # minimize net cost

constraints = []

Power balance constraint

constraints += [p_ld == p_grid + p_batt + p_pv]

Constrain p_buy and p_sell to be non-negative

constraints += [p_buy >= 0,

p_sell >= 0]

Battery Constraints

constraints += [q <= Q,

q >= 0,

p_batt <= D,

p_batt >= -C]

constraints += [q[0] == q[N-1] - (.25)*p_batt[N-1]]

for i in range(1, N):

constraints += [q[i] == q[i-1] - (.25)*p_batt[i-1]]

prob = cvx.Problem(obj, constraints)

prob.solve(solver=cvx.ECOS)

print(’Minimum Cost: ’, obj.value)

###

Plotting the variables

14

###

q = q.value

p_grid = p_grid.value

p_batt = p_batt.value

Plot boundaries indicating the intervals at which prices change, and the limits

for each value, to make graphs more interpretable

Plotting p_grid:

plt.figure(figsize=fig_size)

plt.plot(p_grid)

plt.ylabel(’Power (kW)’)

plt.title(’p_grid (kW)’, fontsize=19)

plt.xticks(xtick_vals, xtick_labels)

plt.axvline(partial_peak_start, linestyle=’--’, color=’black’)

plt.axvline(peak_start, linestyle=’--’, color=’black’)

plt.axvline(peak_end, linestyle=’--’, color=’black’)

plt.axvline(partial_peak_end, linestyle=’--’, color=’black’)

plt.axhline(0, color=’black’)

plt.show()

Plotting p_batt:

plt.figure(figsize=fig_size)

plt.plot(p_batt)

plt.ylabel(’Power (kW)’)

plt.title(’p_batt (kW)’, fontsize=19)

plt.xticks(xtick_vals, xtick_labels)

plt.axvline(partial_peak_start, linestyle=’--’, color=’black’)

plt.axvline(peak_start, linestyle=’--’, color=’black’)

plt.axvline(peak_end, linestyle=’--’, color=’black’)

plt.axvline(partial_peak_end, linestyle=’--’, color=’black’)

plt.axhline(D, linestyle=’--’, color=’black’)

plt.axhline(-C, linestyle=’--’, color=’black’)

plt.axhline(0, color=’black’)

plt.show()

Plotting q:

plt.figure(figsize=fig_size)

plt.plot(q)

plt.ylabel(’Energy (kWh)’)

plt.title(’Battery Charge (kWh)’, fontsize=19)

15

plt.xticks(xtick_vals, xtick_labels)

plt.axvline(partial_peak_start, linestyle=’--’, color=’black’)

plt.axvline(peak_start, linestyle=’--’, color=’black’)

plt.axvline(peak_end, linestyle=’--’, color=’black’)

plt.axvline(partial_peak_end, linestyle=’--’, color=’black’)

plt.axhline(Q, linestyle=’--’, color=’black’)

plt.ylim(bottom=0)

plt.show()

###

part (b) - Plotting LMP

###

Get the dual variable values

dual_vals = -constraints[0].dual_value

We multiply by negative 1 because the sign was flipped

If we wrote the equality constraint in a different way,

we wouldn’t have had to use the negative sign (i.e. the

sign flip was an artifact of how we wrote the constraint)

LMP = 4*dual_vals

Plot the price over time

plt.figure(figsize=(19,5))

plt.plot(R_buy, ’--’, label=’Buy Price’, linewidth=2)

plt.plot(R_sell, ’--’, label=’Sell Price’, linewidth=2)

plt.plot(LMP, linewidth=2, label=’LMP’)

plt.xlabel(’Time’)

plt.ylabel(’Price ($/kWh)’)

plt.title(’Locational Marginal Price’, fontsize=18)

plt.legend()

plt.xticks(xtick_vals, xtick_labels)

plt.show()

###

part (c) - Calculating Payments

###

Confirm that the prices balance when using the LMP

Expecting load to have paid, battery and PV to have been paid

load_cost = p_ld @ dual_vals

batt_cost = -p_batt @ dual_vals

PV_cost = -p_pv @ dual_vals

grid_costs = p_grid @ dual_vals

16

print(’Load cost: %.2f’ % (load_cost))

print(’Battery cost: %.2f’ % (batt_cost))

print(’PV cost: %.2f’ % (PV_cost))

print(’Effective grid cost: %.2f’ % (grid_costs))

print()

net_cost = -load_cost - batt_cost - PV_cost + grid_costs

print(’Grid costs minus other three: %.2f’ % (net_cost))

The following Julia code solves the problem.

First, run the data script

include("./microgrid_data.jl");

using Convex

using PyPlot

###

part (a) - Solving the optimization problem

###

p_batt = Variable(N) # battery charge and discharge (pos is charging, neg is discharge)

p_buy = Variable(N) # non-negative vector of power bought from grid

p_sell = Variable(N) # non-negative vector of power sold to grid

p_grid = p_buy - p_sell # net power from grid pos is buying, neg is selling)

q = Variable(N) # Energy in battery (in KWh)

payments = (.25)*p_buy’ * R_buy

income = (.25)*p_sell’ * R_sell

prob = minimize(payments - income) # minimize net cost

Power balance constraint

prob.constraints += [p_ld == p_grid + p_batt + p_pv]

Constrain p_buy and p_sell to be non-negative

prob.constraints += [p_buy >= 0,

p_sell >= 0]

Battery Constraints

prob.constraints += [q <= Q,

q >= 0,

p_batt <= D,

p_batt >= -C]

17

prob.constraints += [q[1] == q[N] - (.25)*p_batt[N]]

for i = 2:N

prob.constraints += [q[i] == q[i-1] - (.25)*p_batt[i-1]]

end

solve!(prob, SCSSolver(verbose=0))

println("Minimum Cost: ", prob.optval)

q = q.value;

p_grid = p_buy.value - p_sell.value;

p_batt = p_batt.value;

###

Plotting the variables

###

Plot boundaries indicating the intervals at which prices change, and the limits

for each value, to make graphs more interpretable

Plotting p_grid:

figure(figsize=fig_size)

plot(p_grid)

ylabel("Power (kW)")

title("p_grid (kW)", fontsize=19)

xticks(xtick_vals, xtick_labels)

axvline(partial_peak_start, linestyle="--", color="black")

axvline(peak_start, linestyle="--", color="black")

axvline(peak_end, linestyle="--", color="black")

axvline(partial_peak_end, linestyle="--", color="black")

axhline(0, color="black")

Plotting p_batt:

figure(figsize=fig_size)

plot(p_batt)

ylabel("Power (kW)")

title("p_batt (kW)", fontsize=19)

xticks(xtick_vals, xtick_labels)

axvline(partial_peak_start, linestyle="--", color="black")

axvline(peak_start, linestyle="--", color="black")

axvline(peak_end, linestyle="--", color="black")

axvline(partial_peak_end, linestyle="--", color="black")

18

axhline(D, linestyle="--", color="black")

axhline(-C, linestyle="--", color="black")

axhline(0, color="black")

Plotting q:

figure(figsize=fig_size)

plot(q)

ylabel("Energy (kWh)")

title("Battery Charge (kWh)", fontsize=19)

xticks(xtick_vals, xtick_labels)

axvline(partial_peak_start, linestyle="--", color="black")

axvline(peak_start, linestyle="--", color="black")

axvline(peak_end, linestyle="--", color="black")

axvline(partial_peak_end, linestyle="--", color="black")

axhline(Q, linestyle="--", color="black")

ylim(bottom=0);

###

part (b) - Plotting LMP

###

Get the dual variable values

dual_vals = -prob.constraints[1].dual

We multiply by negative 1 because the sign was flipped

If we wrote the equality constraint in a different way,

we wouldn’t have had to use the negative sign (i.e. the

sign flip was an artifact of how we wrote the constraint)

LMP = 4*dual_vals

Plot the price over time

figure(figsize=(19,5))

plot(R_buy, "--", label="Buy Price", linewidth=2)

plot(R_sell, "--", label="Sell Price", linewidth=2)

plot(LMP, linewidth=2, label="LMP")

xlabel("Time")

ylabel("Price (\$/kWh)")

title("Locational Marginal Price", fontsize=18)

legend()

xticks(xtick_vals, xtick_labels);

19

###

part (c) - Calculating Payments

###

Confirm that the prices balance when using the LMP

Expecting load to have paid, battery and PV to have been paid

load_cost = p_ld’ * dual_vals

batt_cost = -p_batt’ * dual_vals

PV_cost = -p_pv’ * dual_vals

grid_costs = p_grid’ * dual_vals

println("Load cost: " , load_cost)

println("Battery cost: " , batt_cost)

println("PV cost: " , PV_cost)

println("Effective grid cost: " , grid_costs)

net_cost = -load_cost - batt_cost - PV_cost + grid_costs

println("Grid costs minus other three: ", net_cost)

The following Matlab code solves the problem.

clc; clear; close all;

% Get the data

run(’micro_grid_data.m’)

%% Part (a) - Solving Optimization

cvx_begin quiet

variables p_batt(N) p_buy(N) p_sell(N) p_grid(N) q(N)

variables payments income

dual variable v

minimize(payments - income)

subject to

% Grid constraints

payments == (.25)*p_buy’ * R_buy

income == (.25)*p_sell’ * R_sell

p_grid == p_buy - p_sell

v : p_ld == p_grid + p_batt + p_pv % associate the dual variable

p_buy >= 0

p_sell >= 0

% Battery constraints

q >= 0

q <= Q

p_batt <= D

p_batt >= -C

q(1) == q(N) - (.25)*p_batt(N)

20

for i=2:N

q(i) == q(i-1) - (.25)*p_batt(i-1)

end

cvx_end

fprintf(’Optimal Value: $%.2f\n’, cvx_optval);

%% Plot things

pp_start = 34;

p_start = 48;

p_end = 72;

pp_end = 86;

% Plot vertical lines where prices change and horizontal lines

% where the limits of each value are, for interpretability

figure()

plot(p_grid)

title(’Grid Power (kW)’);

title(’Power (kW)’);

xlabel(’Interval’);

line([pp_start, pp_start], [-35, 35], ’Color’, ’black’, ’LineStyle’, ’--’);

line([p_start, p_start], [-35, 35], ’Color’, ’black’, ’LineStyle’, ’--’);

line([p_end, p_end], [-35, 35], ’Color’, ’black’, ’LineStyle’, ’--’);

line([pp_end, pp_end], [-35, 35], ’Color’, ’black’, ’LineStyle’, ’--’);

line([1,N], [0, 0], ’color’, ’black’);

ylim([-35, 35])

figure()

plot(p_batt)

title(’Battery Power (kW)’);

ylabel(’Power (kW)’);

xlabel(’Interval’);

line([pp_start, pp_start], [-C, D], ’Color’, ’black’, ’LineStyle’, ’--’);

line([p_start, p_start], [-C, D], ’Color’, ’black’, ’LineStyle’, ’--’);

line([p_end, p_end], [-C, D], ’Color’, ’black’, ’LineStyle’, ’--’);

line([pp_end, pp_end], [-C, D], ’Color’, ’black’, ’LineStyle’, ’--’);

line([1,N], [D, D], ’color’, ’black’, ’linestyle’, ’--’);

line([1,N], [-C, -C], ’color’, ’black’, ’linestyle’, ’--’);

line([1,N], [0, 0], ’color’, ’black’);

ylim([-C-2, D+2])

figure()

21

plot(q)

title(’Battery Charge (kWh)’);

title(’Energy (kWh)’);

xlabel(’Interval’);

line([pp_start, pp_start], [0, Q], ’Color’, ’black’, ’LineStyle’, ’--’);

line([p_start, p_start], [0, Q], ’Color’, ’black’, ’LineStyle’, ’--’);

line([p_end, p_end], [0, Q], ’Color’, ’black’, ’LineStyle’, ’--’);

line([pp_end, pp_end], [0, Q], ’Color’, ’black’, ’LineStyle’, ’--’);

line([1,N], [Q, Q], ’color’, ’black’, ’linestyle’, ’--’);

line([1,N], [0, 0], ’color’, ’black’);

ylim([0, Q+2])

%% Part (b) - Getting LMP

if v(1) < 0

v = -v;

end

LMP = 4*v;

% We multiply by negative 1 because the sign was flipped

% If we wrote the equality constraint in a different way,

% we wouldn’t have had to use the negative sign (i.e. the

% sign flip was an artifact of how we wrote the constraint)

figure()

hold(’on’)

plot(R_buy, ’linestyle’, ’--’)

plot(R_sell, ’linestyle’, ’--’)

plot(LMP)

legend(’Buy Price’, ’Sell Price’, ’LMP’);

title(’LMP vs Nominal Prices’);

xlabel(’Interval’);

ylabel(’Price ($/kWh)’);

%% Part (c) - Calculating Payments

load_cost = p_ld’ * v

batt_cost = -p_batt’ * v

PV_cost = -p_pv’ * v

grid_costs = p_grid’ * v

net_cost = -load_cost - batt_cost - PV_cost + grid_costs

22

4. Curvature of some order statistics. For x ∈ Rn, with n > 1, x[k] denotes the kth
largest entry of x, for k = 1, . . . , n, so, for example, x[1] = maxi=1,...,n xi and x[n] =
mini=1,...,n xi. Functions that depend on these sorted values are called order statistics
or order functions. Determine the curvature of the order statistics below, from the
choices convex, concave, or neither. For each function, explain why the function has the
curvature you claim. If you say it is neither convex nor concave, give a counterexample
showing it is not convex, and a counterexample showing it is not concave. All functions
below have domain Rn.

(a) median(x) = x[(n+1)/2]. (You can assume that n is odd.)

(b) The range of values, x[1] − x[n].
(c) The midpoint of the range, (x[1] + x[n])/2.

(d) Interquartile range, defined as x[n/4] − x[3n/4]. (You can assume that n/4 is an
integer.)

(e) Symmetric trimmed mean, defined as

x[n/10] + x[n/10+1] + · · ·+ x[9n/10]
0.8n+ 1

,

the mean of the values between the 10th and 90th percentiles. (You can assume
that n/10 is an integer.)

(f) Lower trimmed mean, defined as

x[1] + x[2] + · · ·+ x[9n/10]
0.9n+ 1

,

the mean of the entries, excluding the bottom decile. (You can assume that n/10
is an integer.)

Remark. For the functions defined in (d)–(f), you might find slightly different defini-
tions in the literature. Please use the formulas above to answer each question.

Solution.

(a) Neither convex nor concave. The medians of (0, 2, 0) and (2, 0, 0) are both 0, but
the median of their average (1, 1, 0) is 1, which violates convexity. The medians of
(0,−2, 0) and (−2, 0, 0) are both 0, but the median of their average, (−1,−1, 0)
is −1, which violates concavity.

(b) Convex. The function x[n] is concave for x ∈ Rn, so the given function is the sum
of two convex functions.

(c) Neither. The midpoints of the ranges of (0, 2, 2) and (2, 2, 0) are 1, but the
midpoint of the range of their average, (1, 2, 1), is 3/2, which violates convexity.
On the other hand, the midpoints of the ranges of (2, 0, 0) and (0, 2, 0) are 1,
but the midpoint of the range of their average, (1, 1, 0), is 1/2, which violates
concavity.

23

(d) Neither. Suppose that n = 7, so the interquartile range of z ∈ R7 is z[2] − z[6]. If
x = 2e1− 2e7 and y = 2e2− 2e6, then the interquartile ranges of both x and y are
0, but their average, (x+ y)/2 = (e1 + e2)− (e6 + e7) has an interquartile range of
2, which violates convexity. Similarly, if u = 2(e1 + e2)− 2(e6 + e7) and v = −u,
then the interquartile ranges of u and v are 2, but their average, (u + v)/2 = 0
has an interquartile range of 0, which violates concavity.

(e) Neither. (This counterexample assumes a shift by one in the indexing, correct
if necessary.) For n = 20, if x = e1 + e2 and y = e3 + e4, their symmetric
trimmed mean is exactly zero. However, the symmetric mean of their average,
z = (e1+e2+e3+e4)/2, will be 1/16, which violates convexity. On the other hand,
if x = 1−e1−e2 and y = 1−e3−e4, their symmetric trimmed mean will be exactly
one. However, the symmetric mean of their average, z = 1− (e1 + e2 + e3 + e4)/2,
will be 15/16, which violates concavity.

(f) Convex. It’s 10/9n times the sum of the 9n/10 largest elements of x, which is a
convex function for x ∈ Rn.

24

5. Control with various objectives. We consider a standard optimal control problem,
with dynamics xt+1 = Axt + But, t = 0, 1, . . . , T − 1. Here xt ∈ Rn is the state,
and ut ∈ Rm is the control or input, at time period t, A ∈ Rn×n is the dynamics
matrix, and B ∈ Rn×m is the input matrix. We are given the initial state, x0 = xinit,
and we require that the final state be zero, xT = 0. (In applications, the state 0
corresponds to some desirable state.) Your job is to choose the sequence of inputs
u0, . . . , uT−1 that minimize an objective. Values for xinit, A, B, and T are given in
various_obj_regulator_data.*.

We consider various objectives, all of which measure the size of the inputs (or, in
control dialect, the control effort).

(a) Sum of squares of 2-norms.
∑T−1

t=0 ‖ut‖22. This is the traditional objective.

(b) Sum of 2-norms.
∑T−1

t=0 ‖ut‖2.
(c) Max of 2-norms. maxt=0,...,T−1 ‖ut‖2.
(d) Sum of 1-norms.

∑T−1
t=0 ‖ut‖1. In some applications this is an approximation of

the fuel use.

For each objective, plot (the components of) optimal input, as well as ‖ut‖2, versus t.
Make a very brief comment on each plot of optimal control inputs, explaining why you
might expect what happened.

Solution. The following plot shows controller inputs from python

0 20 40 60 80 100
t

−0.10
−0.05

0.00
0.05
0.10
0.15

u t

a) ∑||ut||22

0 20 40 60 80 100
t

0.00

0.05

0.10

0.15

||u
t||

0 20 40 60 80 100
t

−2
−1

0
1
2
3

b) ∑||ut||2

0 20 40 60 80 100
t

0

1

2

3

4

0 20 40 60 80 100
t

−0.10

−0.05

0.00

0.05

0.10

c) max||ut||2

0 20 40 60 80 100
t

0.00
0.02
0.04
0.06
0.08
0.10
0.12

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5

d) ∑||ut||1

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5

(a) The control inputs are small, but not sparse. This is what we expect with least
squares.

(b) The control input is sparse; and when the control is nonzero, both components
are nonzero.

(c) The `2 norm of the control input is constant; the direction of the control input
changes over time.

(d) The control input is sparse; the different components are nonzero in different
times.

25

The following Python code solves the problem.

import numpy as np

import cvxpy as cp

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

from various_obj_regulator_data import *

u_ = cp.Variable((m,T))

x_ = cp.Variable((n,T+1))

objs = [

(cp.Minimize(cp.sum_squares(u_)) , "a) $\\sum||u_t||_2^2$"),

(cp.Minimize(cp.sum(cp.norm(u_,2,axis=0))) , "b) $\\sum||u_t||_2$"),

(cp.Minimize(cp.max(cp.norm(u_,axis=0))) , "c) $\\max||u_t||_2$"),

(cp.Minimize(cp.sum(cp.norm(u_,1,axis=0))) , "d) $\\sum||u_t||_1$")

]

plt.figure(figsize=(15,5))

for i,obj in enumerate(objs):

const = [x_[:,-1] == np.zeros(n)]

const.append(x_[:,0] == x_init)

for t in range(1,T+1):

const.append(x_[:,t] == A@x_[:,t-1] + B@u_[:,t-1])

prob = cp.Problem(obj[0],const)

prob.solve()

plt.subplot(2,4,i+1)

plt.plot(u_.value.T)

if i == 0:

plt.ylabel("u_t")

plt.title(obj[1])

plt.grid()

plt.xlabel("t")

plt.subplot(2,4,i+5)

plt.xlabel("t")

plt.plot(np.linalg.norm(u_.value,axis=0),c="black",label="$||u||_2$")

if i == 2:

plt.ylim(ymax = .12,ymin=0)

if i == 0:

plt.ylabel("$||u_t||$")

plt.grid()

plt.tight_layout()

plt.savefig(’../figures/various_obj_regulator.eps’,bbox_inches=’tight’)

#plt.show()

The following Matlab code solves the problem.

26

n = 4;

m = 2;

A = [

0.95, 0.16, 0.12, 0.01;

-0.12, 0.98, -0.11, -0.03;

-0.16, 0.02, 0.98, 0.03;

-0. , 0.02, -0.04, 1.03;

];

B = [

0.8 , 0. ;

0.1 , 0.2;

0. , 0.8;

-0.2 , 0.1;

];

x_init = ones(n,1);

T = 100;

cvx_begin

variable u(m,T)

variable x(n,T+1)

minimize(sum(sum(u.^2)));

subject to

x(:,end) == zeros(n,1)

x(:,1) == x_init

for t = 2:(T+1)

subject to

x(:,t) == A*x(:,t-1) + B*u(:,t-1)

end

cvx_end

subplot(2,4,1)

plot(u’)

ylabel("u_t")

subplot(2,4,4+1)

plot(sqrt(sum(u.^2,1)))

xlabel("t")

ylabel("||u_t||")

cvx_begin

variable u(m,T)

27

variable x(n,T+1)

minimize(sum(norms(u,2,1)));

subject to

x(:,end) == zeros(n,1)

x(:,1) == x_init

for t = 2:(T+1)

subject to

x(:,t) == A*x(:,t-1) + B*u(:,t-1)

end

cvx_end

subplot(2,4,2)

plot(u’)

ylabel("u_t")

subplot(2,4,4+2)

plot(sqrt(sum(u.^2,1)))

xlabel("t")

ylabel("||u_t||")

cvx_begin

variable u(m,T)

variable x(n,T+1)

minimize(max(norms(u,2,1)));

subject to

x(:,end) == zeros(n,1)

x(:,1) == x_init

for t = 2:(T+1)

subject to

x(:,t) == A*x(:,t-1) + B*u(:,t-1)

end

cvx_end

subplot(2,4,3)

plot(u’)

ylabel("u_t")

subplot(2,4,4+3)

plot(sqrt(sum(u.^2,1)))

xlabel("t")

ylabel("||u_t||")

cvx_begin

variable u(m,T)

variable x(n,T+1)

minimize(sum(norms(u,1,1)));

28

subject to

x(:,end) == zeros(n,1)

x(:,1) == x_init

for t = 2:(T+1)

subject to

x(:,t) == A*x(:,t-1) + B*u(:,t-1)

end

cvx_end

subplot(2,4,4)

plot(u’)

ylabel("u_t")

subplot(2,4,4+4)

plot(sqrt(sum(u.^2,1)))

xlabel("t")

ylabel("||u_t||")

The following Julia code solves the problem.

29

6. Morphing between two discrete distributions. Consider two distributions for a random
variable that takes values in {1, 2, . . . , n}, given by q, r ∈ Rn, with q � 0, 1T q = 1, and
r � 0, 1T r = 1. We seek a sequence of distributions p(i), i = 1, . . . , N , that ‘morph’
between q and r. This means that p(1) = q, p(N) = r, and p(i+1) is close to p(i) for
i = 1, . . . , (N − 1), in some sense. Specifically we will minimize

N−1∑
i=1

d(p(i), p(i+1))

where d is a distance function.

(a) Euclidean morphing. What is the solution when the distance function is the sum
of squares, dsq(u, v) = ‖u − v‖22? The solution is simple; you can just give it
without justification.

(b) Hellinger morphing. Now we use the Hellinger distance function

dhel(u, v) =
n∑
i=1

(
√
ui −

√
vi)

2.

Explain how to solve the Hellinger morphing problem using convex optimization.

(c) Kolmogorov morphing. Now we use the Kolmogorov distance function

dkol(u, v) = max
i=1,...,n

∣∣∣∣∣
i∑

j=1

uj −
i∑

j=1

vj

∣∣∣∣∣ ,
which is the `∞ distance between the respective cumulative distributions (using
the order of the outcomes). Explain how to solve the Kolmogorov morphing
problem using convex optimization.

(d) Find the Euclidean, Hellinger, and Kolmogorov morphings for N = 10, n = 100.
Use q and r provided in morphing_data.*. Plot each p(i) versus n. Produce one
figure for each choice of distance function.

Note. In Python and Julia, you should use the ECOS solver.

Solution.

(a) As you might suspect, the optimal distributions satisfy

p(i) =

(
1− i− 1

N − 1

)
q +

(
i− 1

N − 1

)
r, i = 1, . . . , N.

(In other words, p(i) are N evenly spaced points along the line segment between
q and r.) You can verify this by differentiating the objective (ignoring the cons-
triants), which yields

2p(i) = p(i−1) + p(i+1), i = 2, . . . , N − 1.

30

Solving this recurrence yields the solution above (and the unconstrained minimum
also satisfies the constraints).

(b) The problem as given is convex, since dhel(u, v) is (jointly) convex. This is because

dhel(u, v) = (u+ v)T1− 2
n∑
i=1

√
uivi,

which is convex since the geometric mean is concave.

(c) The problem as given is convex, since dkol(u, v) is (jointly) convex. This is because

for i = 1, . . . , n, the function
∣∣∣∑i

j=1 uj −
∑i

j=1 vj

∣∣∣ is the composition of a convex

function (absolute value) with a linear function of u and v. Since dkol is the
maximum of these n functions, it is convex.

(d) For each choice of d above, we simply solve

minimize
∑N−1

i=1 d(p(i), p(i+1))
subject to p(i) � 0, 1Tp(i) = 1, i = 1, 2, . . . N,

p(1) = q, p(N) = r.

Here’s the sequence of distributions obtained by using the Euclidean distance.

20 40 60 80 100

0.00

0.01

0.02

0.03

0.04

0.05

p(1)

p(2)

p(3)

p(4)

p(5)

p(6)

p(7)

p(8)

p(9)

p(10)

Here’s the sequence of distributions obtained by using the Hellinger distance.

31

20 40 60 80 100

0.00

0.01

0.02

0.03

0.04

0.05

p(1)

p(2)

p(3)

p(4)

p(5)

p(6)

p(7)

p(8)

p(9)

p(10)

Here’s the sequence of distributions obtained by using the Kolmogorov distance.

20 40 60 80 100

0.00

0.01

0.02

0.03

0.04

0.05

p(1)

p(2)

p(3)

p(4)

p(5)

p(6)

p(7)

p(8)

p(9)

p(10)

The following Julia code solves the problem.

using Convex, ECOS, PSPlot

include("morphing_data.jl")

plotting colors

cm = ColorMap("coolwarm"); colors = [cm(i) for i in linspace(0, 0.9, N)];

distance functions

euc(a, b) = sumsquares(a - b)

hel(a, b) = -sum(geomean(a[i], b[i]) for i in 1:n)

kol(a, b) = maximum(abs(sum(a[1:i] - b[1:i])) for i in 1:n)

functions = [euc, hel, kol]

for d in functions

p = Variable(n, N, Positive())

32

obj = sum(d(p[:, i], p[:, i+1]) for i in 1:(N-1))

prob = minimize(obj, [p[:, 1] == q, p[:, N] == r, p’ * ones(n) == ones(N)])

solve!(prob, ECOSSolver(verbose=false), verbose=false)

p = p.value

plot

figure()

for i in 1:N

plot(1:n, p[:, i], label=" ", color=colors[i])

end

legend()

printfig("../figures/morphing_$(d)")

end

The following Python code solves the problem.

from morphing_data import *

import cvxpy as cp

import matplotlib.pyplot as plt

from matplotlib import cm

coolwarm = cm.get_cmap(’coolwarm’)

colors = [coolwarm(i) for i in np.linspace(0, 0.9, N)]

distance functions

functions = [

lambda a,b : cp.sum_squares(a - b),

lambda a,b : -cp.sum([cp.geo_mean(cp.vstack([a[i], b[i]])) for i in range(n)]),

lambda a,b : cp.max(cp.vstack([cp.abs(cp.sum(a[:i] - b[:i])) for i in range(1,n)])),

]

for d in functions:

p = cp.Variable((n, N), nonneg=True)

obj = cp.Minimize(cp.sum([d(p[:, i], p[:, i+1]) for i in range(N-1)]))

prob = cp.Problem(obj, [p[:, 0] == q, p[:, -1] == r, p.T@np.ones(n) == np.ones(N)])

prob.solve(solver="ECOS")

p = p.value

for i in range(N):

plt.plot(p[:, i], label="$p^{(%d)}$"%(i+1), color=colors[i])

plt.legend()

plt.show()

The following MATLAB code solves the problem.

N = 10;

n = 100;

clf

colormap cool;

q = [exp(-((1:50) -25).^2 ./ 2) exp(-((51:100) -75).^2 ./ 2)];

r = exp(-((1:100) - 50).^2 ./ 2);

q = q/sum(q);

r = r/sum(r);

fns = {@euc,@hel,@kol}

33

for i = 1:3

cvx_begin

variable p(n,N) nonnegative

expression x(N-1);

for k=1:N-1

x(k) = fns{i}(p(:,k), p(:,k+1));

end

minimize(sum(x))

subject to

p(:,1) == q’;

p(:,end) == r’;

p’*ones(n,1) == ones(N,1);

cvx_end

plot(p)

end

function r=euc(a,b)

r=sum(sum((a-b).^2));

end

function r=hel(a,b)

r = 0;

for j = 1:100

r = r-geo_mean([a(j),b(j)]);

end

end

function r=kol(a,b)

m = [];

for k = 1:100

m = [m, abs(sum(a(1:k) - b(1:k)))];

end

r = max(m);

end

34

7. Constrained maximum likelihood estimation of mean and covariance. You are given
some independent samples x1, . . . , xN ∈ Rn from a Gaussian distribution N (µ,Σ).
Explain how to find the maximum-likelihood estimate of µ and Σ, subject to the
constraint that Σ−1µ � 0, using convex optimization. You must fully justify any
change of variables.

Finance interpretation. (Not needed to solve the problem.) Suppose x ∼ N (µ,Σ) is
the return of n assets. The portfolio vector h that maximizes the risk-adjusted return
µTh− γhTΣh, where γ > 0 is the risk aversion parameter, is h = (1/2γ)Σ−1µ. So the
constraint in the problem above is that the optimal portfolio has nonnegative entries,
i.e., is a long-only portfolio. The constrained maximum-likelihood estimate finds the
maximum likelihood mean and covariance of the return distribution, subject to the
constraint that the associated optimal portfolio is long-only.

Probability interpretation. (Not needed to solve the problem.) The constraint Σ−1µ � 0
is the same as ∇p(0) � 0, where p is the density of the N (µ,Σ) distribution. In other
words, at 0, the density is nondecreasing in each coordinate.

Solution. The negative log-likelihood is

1

2

N∑
i=1

(
n log(2π) + log det Σ + (xi − µ)TΣ−1(xi − µ)

)
,

which is not (in general) convex in the variable Σ and µ, and nor is the constraint
Σ−1µ � 0.

However, we use the standard change of variables, to the so-called natural parameters
for a Gaussian distribution, θ = Σ−1 and ω = Σ−1µ. We can recover the original
parameters from these using Σ = θ−1 and µ = θ−1ω. Using these parameters, the
negative log-likelihood is (dropping a constant that doesn’t matter)

`(θ, ω) = −N
2

log det θ +
1

2

N∑
i=1

(xi − θ−1ω)T θ(xi − θ−1ω)

= −N
2

log det θ +
1

2

N∑
i=1

(
xTi θxi − 2xTi ω + ωT θ−1ω

)
,

which is convex. Our constraint is very simple, and convex in the new variables: ω � 0.
So the constrained maximum likelihood problem is convex in the new variables θ, ω.

35

8. Minimizing tax liability. You will liquidate (sell) some stocks that you hold to raise a
given amount of cash C. The stocks are divided into n tax lots; a tax lot is a group of
stocks you bought at the same time. For each tax lot i, you have the cost basis bi > 0,
the current market value vi > 0 (both in $), and its short term / long term status.
(Long term means that you acquired the stock in the tax lot more than one year ago,
and short term means that you acquired it less than one year ago.) We assume that
tax lots i = 1, . . . , L are long term, and tax lots i = L+ 1, . . . , n are short term.

The goal is to choose how much of each lot to sell. We let si denote the amount of tax
lot i we sell (in $). These must satisfy 0 ≤ si ≤ vi, and we must have 1T s = C.

When vi < bi, the sale is called a loss, and when vi > bi, the sale is called a gain. The
amount of the gain or loss is given by gi = (si/vi)(vi−bi), with positive values meaning
a gain, and negative values meaning a loss. We define the (net) long and short term
gains as

N l =
L∑
i=1

gi, N s =
n∑

i=L+1

gi.

When N l > 0 (N l < 0), we say that we have had a long term capital gain (loss), and
similary for short term gain.

These two net gains determine the total tax liability. The long and short term net
gains are taxed at two different rates, ρl and ρs, respectively, which satisfy 0 < ρl < ρs.

The simplest case is when both net gains are nonnegative, in which case the tax is
ρlN l + ρsN s. Another simple case occurs when both net gains are nonpositive, in
which case the tax is zero.

In the case when one of the net gains is positive and the other is negative, you are
allowed to use the net loss in one to offset the net gain in the other, up to the value of the
net gain. Specifically, if N l < 0 (you have a long term loss), the tax is ρs(N s +N l)+; if
N s < 0 (you have a short term loss), the tax is ρl(N s+N l)+. (Here (u)+ = max{u, 0}.)
Note that you have zero tax liability if N s +N l ≤ 0, i.e., your total long and short net
gains is less than or equal to zero.

Apology. Sorry this sounds complicated. In fact, this is a highly simplified version of
the way taxes really work.

Hint. The tax liability is neither a convex nor quasiconvex function of the long and
short term net gains N l and N s.

(a) Explain how to find s that minimizes the tax liability, subject to the constraints
listed above, using convex optimization. Your solution can involve solving a mod-
est number of convex problems.

(b) Suppose you want to raise C = 2300 dollars from n = 10 tax lots, and the cost

36

basis and values of each lot are given by

b = (400, 80, 400, 200, 400, 400, 80, 400, 100, 500),

v = (500, 100, 500, 200, 700, 300, 120, 300, 150, 600).

Carry out your method on this data with L = 4, ρl = 0.2, and ρs = 0.3. Give
optimal values of si, and the optimal value of the tax liability. Compare this to
the tax liability when you liquidate all tax lots proportionally, i.e., s = (C/1Tv)v.

Solution. The problem is not convex or quasiconvex as stated, since the tax liability
function is not convex or quasiconvex. (The hint tells you that.)

We first work out an expression for the tax liability T (N l, N s) as a convex function of
its two arguments. We observe that the net long and short term gains are linear in the
variable s. T (x, y) is a piecewise linear function, in regions defined by the signs of x,
y, and x+ y. From the description above, we have

T (x, y) =


ρlx+ ρsy x ≥ 0, y ≥ 0
ρl(x+ y)+ x ≥ 0, y < 0
ρs(x+ y)+ x < 0, y ≥ 0
0 x ≤ 0, y ≤ 0.

This function is neither convex nor quasiconvex. It is piecewise linear, however, with
four regions.

Here is a simple method to solve the problem: We optimize s over each of the four
regions, adding constraints that require the long and short term losses to have the right
signs, and then choose the solution among these that gives us the smallest tax liability.
Sometimes brute force is just the right thing to do.

This results in four different convex problems, which are readily converted to LPs. In
each one we minimize T (N l, N s) subject to the the linear constraints relating these
variables and s, along with the inequalities given above. In each of the four cases, we
add the additional constraints on the signs of the two gains (and their sum), to ensure
that we are in one region of T .

The first problem we solve is the Gain-Gain problem (i.e., long and short term gains,
the first of the four regions listed above.)

minimize ρlx+ ρsy

subject to x =
∑L

i=1 gi, y =
∑n

i=L+1 gi,
gi = (si/vi)(vi − bi), i = 1, . . . , n,
0 � s � v,
1T s = C,
x ≥ 0, y ≥ 0,

with variables s, g, x, y. If this is infeasible, we record the tax liability in this case as
+∞.

37

The second problem we solve is the Gain-Loss problem (i.e., long term gain, short term
loss.)

minimize ρl(x+ y)+
subject to x =

∑L
i=1 gi, y =

∑n
i=L+1 gi,

gi = (si/vi)(vi − bi), i = 1, . . . , n,
0 � s � v,
1T s = C,
x ≥ 0, y ≤ 0.

If this is infeasible, we record the tax liability in this case as +∞.

The third problem we solve is the Loss-Gain problem (i.e., long term loss, short term
gain.)

minimize ρs(x+ y)+
subject to x =

∑L
i=1 gi, y =

∑n
i=L+1 gi,

gi = (si/vi)(vi − bi), i = 1, . . . , n,
0 � s � v,
1T s = C,
x ≤ 0, y ≥ 0.

If this is infeasible, we record the tax liability in this case as +∞.

The fourth problem we solve is the Loss-Loss problem (i.e., long term loss, short term
loss.)

minimize 0

subject to x =
∑L

i=1 gi, y =
∑n

i=L+1 gi,
gi = (si/vi)(vi − bi), i = 1, . . . , n,
0 � s � v,
1T s = C,
x ≤ 0, y ≤ 0.

This is really just a feasibility problem; if it is feasible, then we have no tax liability,
which is optimal (since in all cases the taxes are nonnegative). If it is not feasible, we
take the tax to be +∞.

Finally, we see which of the four problems has the lowest tax liability. That’s our
solution. The code for this is given below.

The four values of optimal tax liability are $24.27 (gain-gain), $16 (gain-loss), $78
(loss-gain), and +∞ (loss-loss). We choose the second one, with a long term gain
and and short term loss. The optimal tax liability is $16. The tax liability when you
liquidate all tax lots proportionally is $72.91.

The optimal liquidations are

s? = (419.43, 61.14, 419.43, 200, 0, 300, 0, 300, 0, 600).

(Most of these are either fully liquidated or not liquidated at all.)

38

Remark. It’s possible, but not fun, to work out an ‘analytical’ solution for s in each of
the regions above. We did not ask you to do that.

Python solution for all parts:

import cvxpy as cp

import numpy as np

np.set_printoptions(precision=2, suppress=True)

n = 10

L = 4

C = 2300

rho_long = .2

rho_short = .3

b = np.array([400, 80, 400, 200, 400, 400, 80, 400, 100, 500])

v = np.array([500, 100, 500, 200, 700, 300, 120, 300, 150, 600])

s = cp.Variable(n)

g = cp.multiply(cp.multiply(s, 1. / v), v - b)

x = cp.sum(g[:L])

y = cp.sum(g[L:])

base_constraints = [s >= 0, s <= v, cp.sum(s) == C]

gaingain = cp.Problem(cp.Minimize(rho_long * x + rho_short * y),

base_constraints + [x >= 0, y >= 0])

result = gaingain.solve()

print("gaingain has", "%.3f" % result,

"tax liability, selling", s.value)

gainloss = cp.Problem(cp.Minimize(rho_long * cp.pos(x + y)),

base_constraints + [x >= 0, y <= 0])

result = gainloss.solve()

print("gainloss has", "%.3f" % result,

"tax liability, selling", s.value)

lossgain = cp.Problem(cp.Minimize(rho_short * cp.pos(x + y)),

base_constraints + [x <= 0, y >= 0])

result = lossgain.solve()

print("lossgain has", "%.3f" % result,

"tax liability, selling", s.value)

lossloss = cp.Problem(cp.Minimize(0),

base_constraints + [x <= 0, y <= 0])

result = lossloss.solve()

39

print("lossloss has", "%.3f" % result,

"tax liability, selling", s.value)

s.value = C / v.sum() * v

liability = 0.

if x.value >= 0 and y.value >= 0:

liability = rho_long * x.value + rho_short * x.value

elif x.value >= 0 and y.value <= 0:

liability = rho_long * np.maximum(x.value + y.value, 0)

elif x.value <= 0 and y.value >= 0:

liability = rho_short * np.maximum(x.value + y.value, 0)

print("proportional has", "%.3f" %

liability, "tax liability, selling", s.value)

Julia solution for all parts:

using Convex

using ECOS

using PyPlot

n = 10

L = 4

C = 2300

rho_long = 0.2

rho_short = 0.3

b = [400; 80; 400; 200; 400; 400; 80; 400; 100; 500]

v = [500; 100; 500; 200; 700; 300; 120; 300; 150; 600]

s = Variable(n)

g = dot(*)(dot(/)(s, v), v - b)

x = sum(g[1:L])

y = sum(g[L+1:n])

constr = Constraint[]

push!(constr, s >= 0)

push!(constr, s <= v)

push!(constr, sum(s) == C)

gaingain = minimize(rho_long * x + rho_short * y, constr + [x >= 0, y >= 0])

solve!(gaingain, ECOSSolver())

println("gaingain has $(gaingain.optval) tax liability, selling $(s.value)")

40

gainloss = minimize(rho_long * pos(x+y), constr + [x >= 0, y <= 0])

solve!(gainloss, ECOSSolver())

println("gainloss has $(gainloss.optval) tax liability, selling $(s.value)")

lossgain = minimize(rho_short * pos(x+y), constr + [x <= 0, y >= 0])

solve!(lossgain, ECOSSolver())

println("lossgain has $(lossgain.optval) tax liability, selling $(s.value)")

lossloss = minimize(0, constr + [x <= 0, y <= 0])

solve!(lossloss, ECOSSolver())

println("lossloss has $(lossloss.optval) tax liability, selling $(s.value)")

proportional = C/sum(v) * v

g = (proportional./v).*(v-b)

prop_liability = rho_long * sum(g[1:L]) + rho_short * sum(g[L+1:n])

println("proportional has $(prop_liability), selling $(proportional)")

Matlab solution for all parts:

n = 10;

L = 4;

C = 2300;

rho_long = 0.2;

rho_short = 0.3;

b = [400; 80; 400; 200; 400; 400; 80; 400; 100; 500];

v = [500; 100; 500; 200; 700; 300; 120; 300; 150; 600];

cvx_begin

variable s(n);

g = s.*(1./v).*(v - b);

x = sum(g(1:L));

y = sum(g(L+1:n));

minimize (rho_long*x + rho_short*y);

x >= 0;

y >= 0;

s >= 0;

s <= v;

sum(s) == C;

cvx_end

gg = cvx_optval;

cvx_begin

variable s(n);

41

g = s.*(1./v).*(v - b);

x = sum(g(1:L));

y = sum(g(L+1:n));

minimize (rho_long*subplus(x + y));

x >= 0;

y <= 0;

s >= 0;

s <= v;

sum(s) == C;

cvx_end

gl = cvx_optval;

s_opt = s;

cvx_begin

variable s(n);

g = s.*(1./v).*(v - b);

x = sum(g(1:L));

y = sum(g(L+1:n));

minimize (rho_short*subplus(x + y));

x <= 0;

y >= 0;

s >= 0;

s <= v;

sum(s) == C;

cvx_end

lg = cvx_optval;

cvx_begin

variable s(n);

g = s.*(1./v).*(v - b);

x = sum(g(1:L));

y = sum(g(L+1:n));

minimize (0);

x <= 0;

y <= 0;

s >= 0;

s <= v;

sum(s) == C;

cvx_end

ll = cvx_optval;

s = (C / sum(v)) * v;

42

g = s.*(1./v).*(v - b);

x = sum(g(1:L));

y = sum(g(L+1:n));

liability = 0.0;

if x >= 0 && y >= 0

liability = rho_long * x + rho_short * y;

elseif x >= 0 && y <= 0

liability = rho_long * subplus(x + y);

elseif x <= 0 && y >= 0

liability = rho_short * subplus(x + y);

end

fprintf("gain-gain optimal tax liability: %d\n", gg);

fprintf("gain-loss optimal tax liability: %d\n", gl);

fprintf("loss-gain optimal tax liability: %d\n", lg);

fprintf("loss-loss optimal tax liability: %d\n", ll);

fprintf("proportional tax liability %d\n", liability);

fprintf("The optimal liquidations are \n");

disp(s_opt);

43

9. Fitting with a nonnegative combination of vectors from ellipsoids. You are given ellip-
soids E1, . . . , En ⊂ Rk, and the vector b ∈ Rk. Explain how to use convex optimization
to choose ai ∈ Ei, i = 1, . . . , n, and nonnegative x1, . . . , xn ∈ R, that minimize∥∥∥∥∥

n∑
i=1

xiai − b

∥∥∥∥∥
2

.

You can use any parametrization of the ellipsoids you like, for example,

Ei = {a | ‖Pia+ qi‖2 ≤ 1} ,

or
Ei = {Piu+ qi | ‖u‖2 ≤ 1} ,

or
Ei =

{
a | (a− ci)TP−1i (a− ci) ≤ 1

}
,

with Pi ∈ Sk++ and ci ∈ Rk.

Remark. This is the opposite situation from robust approximation. In robust approxi-
mation, the ai’s would be chosen to maximize the objective, once you choose x. Here,
however, the ai’s are chosen to minimize the objective, along with x.

Solution. Our hint about the parameterization of the ellipsoids was really a red
herring; it turns out all of the parameterizations we suggested work.

First parametrization. If we use the first ellipsoid parameterization above,

Ei = {a | ‖Pia+ qi‖2 ≤ 1} ,

we can formulate a convex problem in the following way. Define zi = xiai, so the
objective is ‖

∑n
i=1 zi − b‖2 is convex. For xi > 0, we have zi/xi = ai ∈ Ei, which can

be written as ‖Pi(zi/xi) + qi‖2 ≤ 1, which can then be expressed as ‖Pizi+xiqi‖2 ≤ xi.
This is a convex constraint, in fact, a second order cone constraint. When xi = 0, we
have zi = 0, so in this case too we can express the constraint as ‖Pizi + xiqi‖2 ≤ xi.
So, the problem is equivalent to the convex problem

minimize ‖
∑n

i=1 zi − b‖2
subject to ‖Pizi + xiqi‖2 ≤ xi, i = 1, . . . , n,

with variables zi ∈ Rk and x ∈ Rn. (The constraint xi ≥ 0 is implicit.) We solve this
problem to get z?i and x?, and then we recover the solution of the original problem as
a?i = x?i z

?
i .

44

Second parameterization. If we used the ellipsoid parameterization

Ei = {Piu+ qi | ‖u‖2 ≤ 1} ,

then the problem is equivalent to

minimize ‖
∑n

i=1(Pizi + xiqi)− b‖2
subject to ‖zi‖2 ≤ xi, i = 1, . . . , n.

Third parameterization. If we used the ellipsoid parameterization

Ei =
{
a | (a− ci)TP−1i (a− ci) ≤ 1

}
,

then the problem is equivalent to

minimize ‖
∑n

i=1 zi − b‖2
subject to ‖P−1/2i (zi − xici)‖2 ≤ xi, i = 1, . . . , n.

In addition to the three solutions above, some students made different changes of vari-
ables (for example, multiplying zi by P

−1/2
i) that result in equivalent convex problems.

We accepted these as long as they were clear and mathematically correct.

45

