
EE364a: Convex Optimization I S. Boyd
June 7–8 or 8–9, 2017

Final Exam Solutions

This is a 24 hour take-home final. Please turn it in at Bytes Cafe in the Packard building,
24 hours after you pick it up.

You may use any books, notes, or computer programs, but you may not discuss the exam
with anyone until 5PM June 9, after everyone has taken the exam. The only exception is
that you can ask us for clarification, via the course staff email address. We’ve tried pretty
hard to make the exam unambiguous and clear, so we’re unlikely to say much.

Please make a copy of your exam, or scan it, before handing it in.

Please attach the cover page to the front of your exam. Assemble your solutions in
order (problem 1, problem 2, problem 3, . . .), starting a new page for each problem. Put
everything associated with each problem (e.g., text, code, plots) together; do not attach code
or plots at the end of the final.

We will deduct points from long, needlessly complex solutions, even if they are
correct. Our solutions are not long, so if you find that your solution to a problem goes on
and on for many pages, you should try to figure out a simpler one. We expect neat, legible
exams from everyone, including those enrolled Cr/N.

When a problem involves computation you must give all of the following: a clear discussion
and justification of exactly what you did, the source code that produces the result, and the
final numerical results or plots.

Files containing problem data can be found in the usual place,

http://www.stanford.edu/~boyd/cvxbook/cvxbook_additional_exercises/

Please respect the honor code. Although we allow you to work on homework assignments in
small groups, you cannot discuss the final with anyone, at least until everyone has taken it.

All problems have equal weight. Some are (quite) straightforward. Others, not so much.

Be sure you are using the most recent version of CVX, CVXPY, or Convex.jl. Check your
email often during the exam, just in case we need to send out an important announcement.

Some problems involve applications. But you do not need to know anything about the
problem area to solve the problem; the problem statement contains everything you need.

Some of the data files generate random data (with a fixed seed), which are not necessarily
the same for Matlab, Python, and Julia.

1

1. Transforming to a normal distribution. We are given n samples xi ∈ R from an
unknown distribution. We seek an increasing piecewise-affine function ϕ : R→ R for
which yi = ϕ(xi) has a distribution close to N (0, 1). In other words, the nonlinear
transformation x 7→ y = ϕ(x) (approximately) transforms the given distribution to a
standard normal distribution.

You can assume that the samples are distinct and sorted, i.e., x1 < x2 < · · · < xn, and
therefore we also have y1 < y2 < · · · < yn. The empirical CDF (cumulative distribution
function) of yi is the piecewise-constant function F : R→ R given by

F (z) =

0 z < y1,
k/n yk ≤ z < yk+1, k = 1, . . . , n− 1,
1 z ≥ yn.

The Kolmogorov-Smirnov distance between the empirical distribution of yi and the
standard normal distribution is given by

D = sup
z
|F (z)− Φ(z)|,

where Φ is the CDF of an N (0, 1) random variable. We will use D as our measure of
how close the transformed distribution is to normal. Note that D can be as small as
1/(2n) (but no smaller), by choosing yi = Φ−1((i− 1/2)/n).

Note that D only depends on the n numbers y1, . . . , yn. From these numbers we extend
ϕ to a function on R using linear interpolation between these values, and extending
outside the interval [x1, xn] using the same slopes as the first and last segments, re-
spectively. So y1, . . . , yn determine ϕ.

Our regularization (measure of complexity) of ϕ is

R =
n−1∑
i=2

∣∣∣∣ yi+1 − yi
xi+1 − xi

− yi − yi−1

xi − xi−1

∣∣∣∣ .
This is the sum of the absolute values of the change in slope of ϕ. Note that R = 0 if
and only if ϕ has no kinks, i.e., is affine.

We will choose yi (which defines ϕ) by minimizing R, subject to D ≤ Dmax, where
Dmax ≥ 1/(2n) is a parameter. It can be shown that the condition yi < yi+1 will hold
automatically; but if you are nervous about this, you are welcome to add the constraint
yi + ε ≤ yi+1, where ε is a small positive number.

(a) Explain how to solve this problem using convex or quasiconvex optimization. If
your formulation involves a change of variables or other transformation, justify it.

(b) The file transform_to_normal_data.* contains the vector x (in sorted order)
and its length n. Use the method of part (a) to find the optimal ϕ (i.e., y) for
Dmax = 0.05. Plot the empirical CDF of the original data x and the normal CDF

2

Φ on one plot, the empirical CDF of the transformed data y and the normal CDF
Φ on another plot, and the optimal transformation ϕ on a third plot. Report the
optimal value of R.

Hints. In Python and Julia, you should use the (default) ECOS solver to avoid
warnings about inaccurate solutions. You can evaluate the normal CDF Φ us-
ing normcdf.m/norminv.m (Matlab), scipy.stats.norm.cdf/ppf (Python), or
normcdf/norminvcdf in StatsFuns.jl (Julia). To plot the empirical CDFs of x
and y, you are welcome to use the basic plot functions, which connect adjacent
points with lines. But if you’d like to create step function style plots, you can
use ecdf.m (Matlab), matplotlib.pyplot.step (Python), or step in PyPlot.jl
(Julia).

Solution.

(a) The objective R is a convex function, since it is a sum of absolute values (an `1

norm) of an affine function of y.

Now let’s look at the constraints. The first step is to express D in terms of y.
Note that the supremum must occur at one of the yk or ±∞ (this follows since
in each interval [yk, yk+1) F is constant and Φ is monotone increasing, where we
take y0 = −∞ and yn+1 =∞). But Φ(y0) = 0 and Φ(yn+1) = 1, and so we have

D = max
k=1,...,n

max{|(k − 1)/n− Φ(yk)|, |k/n− Φ(yk)|},

This is not a convex function of y; but it is quasiconvex, as we now show.

We have D ≤ Dmax if and only if

k/n−Dmax ≤ Φ(yk) ≤ (k − 1)/n+Dmax, k = 1, . . . , n.

By monotonicity of Φ, this is the same as for k = 1, . . . , n

Φ−1(max{k/n−Dmax, 0}) ≤ yk ≤ Φ−1(min{(k − 1)/n+Dmax, 1}),

for k = 0, . . . , n. These are 2n bound constraints on y, evidently convex.

So now we have a convex problem: minimize R subject to these bound constraints.

(b) For Matlab, the optimal R is 5.7391. The requested plots are shown below.

3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Phi and Empirical CDF of x

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Phi and Empirical CDF of y

−1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Optimal φ

4

For Julia, the optimal R is 6.4386. The requested plots are shown below.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

Phi and Empirical CDF of x

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Phi and Empirical CDF of y

−1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

5

For Python, the optimal R is 8.0915. The plots are shown below.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0
Phi and Empirical CDF of x

−2 −1 0 1 2 3
0.0

0.5

1.0
Phi and Empirical CDF of y

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

2

Optimal ϕ

The following Matlab code solves the problem.

transform_to_normal_data;

Dmax = 0.05;

lb = norminv(max([(1:n)/n-Dmax; zeros(1, n)]), 0, 1)’;

ub = norminv(min([(0:(n-1))/n+Dmax; ones(1, n)]), 0, 1)’;

idlb = (lb ~= -Inf); lb = lb(idlb);

idub = (ub ~= Inf); ub = ub(idub);

% CVX Solve

cvx_begin

variable y(n)

y2xdiff = (y(2 : n) - y(1 : n-1)) ./ (x(2 : n) - x(1 : n-1));

minimize(sum(abs(y2xdiff(2 : n-1) - y2xdiff(1 : n-2))));

lb <= y(idlb); y(idub) <= ub;

cvx_end

% Plots: emp-cdf of x & y, optimal phi

xnormp = linspace(min(x)-1,max(x),1000); px = normcdf(xnormp, 0, 1);

ynormp = linspace(min(y)-1,max(y),1000); py = normcdf(ynormp, 0, 1);

p1 = figure(1); ecdf(x); hold on; plot(xnormp, px, ’r’, ’LineWidth’, 2);

xlim([min(xnormp), max(xnormp)]); title(’Phi and Empirical CDF of x’);

p2 = figure(2); ecdf(y); hold on; plot(ynormp, py, ’r’, ’LineWidth’, 2);

xlim([min(ynormp), max(ynormp)]); title(’Phi and Empirical CDF of y’);

p3 = figure(3); plot(x, y, ’LineWidth’, 2); xlabel(’x’); ylabel(’y’);

xlim([min(x), max(x)]); ylim([min(y), max(y)]); title(’Optimal \phi’);

print(p1,’-depsc’,’t2n1.eps’); print(p2,’-depsc’,’t2n2.eps’);

6

print(p3,’-depsc’,’t2n3.eps’);

The following Julia code also solves the problem.

using Convex, ECOS, StatsFuns, PyPlot

include("transform_to_normal_data.jl")

Constraints

Dmax = 0.05; z = zeros(n); e = ones(n);

lb_const = collect(1 : n) / n; lb_val = max(lb_const - Dmax, z);

ub_const = collect(0 : n-1) / n; ub_val = min(ub_const + Dmax, e);

lb = [norminvcdf(lb_val[i]) for i in 1 : n];

ub = [norminvcdf(ub_val[i]) for i in 1 : n];

idlb = collect(1:n)[lb.!=-Inf]; lb = lb[idlb];

idub = collect(1:n)[ub.!=Inf]; ub = ub[idub];

Convex.jl Solve

y = Variable(n);

y2xdiff = (y[2:n] - y[1:n-1]) ./ (x[2:n] - x[1:n-1]);

p = minimize(sum(abs(y2xdiff[2:n-1] - y2xdiff[1:n-2])));

p.constraints += [y[idlb] >= lb; y[idub] <= ub];

solve!(p, ECOSSolver()); y = squeeze(y.value, 2);

println(p.optval);

Plots

xl = minimum(x)-1; xr = maximum(x)+0.1;

yl = minimum(y)-1; yr = maximum(y)+0.1;

xnormp = linspace(xl,xr,1000); ynormp = linspace(yl,yr,1000);

px = [normcdf(xnormp[i]) for i in 1 : 1000];

py = [normcdf(ynormp[i]) for i in 1 : 1000];

figure(); step([xl;x;xr], [0;0;lb_const], color="blue", linewidth=2.0);

plot(xnormp, px, color="red", linewidth=2.0);

title("Phi and Empirical CDF of x"); savefig("t2n1_jl.eps");

figure(); step([yl;y;yr], [0;0;lb_const], color="blue", linewidth=2.0);

plot(ynormp, py, color="red", linewidth=2.0);

title("Phi and Empirical CDF of y"); savefig("t2n2_jl.eps");

figure(); ax = axes(); plot(x, y, linewidth=2.0);

ax[:set_xlim]([minimum(x), maximum(x)]); savefig("t2n3_jl.eps");

The following Python code also solves the problem.

import numpy as np

import scipy as sc

import cvxpy as cp

7

import matplotlib.pyplot as plt

from scipy.stats import norm as normal

from transform_to_normal_data import *

Constraints

Dmax = 0.05; z = np.zeros(n,); e = np.ones(n,)

lb_const = np.array(range(1,n+1))*1.0/n; lb_Dmax = lb_const-Dmax

ub_const = np.array(range(0,n))*1.0/n; ub_Dmax = ub_const+Dmax

lb = normal.ppf(np.amax(np.column_stack((lb_Dmax,z)), axis=1))

ub = normal.ppf(np.amin(np.column_stack((ub_Dmax,e)), axis=1))

idlb = (lb != -np.Inf); lb = lb[idlb]

idub = (ub != np.Inf); ub = ub[idub]

CVXPY Solve

y = cp.Variable(n)

y2xdiff = cp.mul_elemwise(1 / (x[1:n] - x[0:n-1]), y[1:n] - y[0:n-1])

objective = cp.Minimize(sum(cp.abs(y2xdiff[1:n-1] - y2xdiff[0:n-2])))

constraints = [lb <= y[idlb], y[idub] <= ub]

t2n = cp.Problem(objective, constraints)

R = t2n.solve(); y = np.squeeze(np.array(y.value)); print R

Plots

xl = np.amin(x)-1; xr = np.amax(x)+0.1;

yl = np.amin(y)-1; yr = np.amax(y)+0.1

xnormp = np.linspace(xl,xr,num=1000); px = normal.cdf(xnormp);

ynormp = np.linspace(yl,yr,num=1000); py = normal.cdf(ynormp);

figx, ax = plt.subplots(3,1);

ax[0].set_xlim((xl,xr)); ax[0].plot(xnormp, px, color=’red’);

ax[0].set_title(’Phi and Empirical CDF of x’)

ax[0].step(np.insert(x,[0,n],[xl,xr]), np.insert(lb_const,[0,0],[0,0]))

ax[1].set_xlim((yl,yr)); ax[1].plot(ynormp, py, color=’red’)

ax[1].set_title(’Phi and Empirical CDF of y’)

ax[1].step(np.insert(y,[0,n],[yl,yr]), np.insert(lb_const,[0,0],[0,0]))

ax[2].plot(x, y, color=’blue’); ax[2].set_title(’Optimal ϕ’)

ax[2].set_xlim((min(x),max(x))); ax[2].set_ylim((min(y),max(y)));

plt.show(); figx.tight_layout(); figx.savefig(’transform_to_normal_py.eps’)

8

2. Inverse of product. The function f(x, y) = 1/(xy) with x, y ∈ R, dom f = R2
++,

is convex. How do we represent it using disciplined convex programming (DCP), and
the functions 1/u,

√
uv,
√
u, u2, u2/v, addition, subtraction, and scalar multiplication?

(These functions have the obvious domains, and you can assume a sign-sensitive version
of DCP, e.g., u2/v increasing in u for u ≥ 0.) Hint. There are several ways to represent
f using the atoms given above.

Solution. Here is one solution.
√
xy is concave for x, y > 0. 1/u is convex and

decreasing for x > 0, so by the DCP rules, 1/
√
xy is convex for x, y > 0. u2 is convex

and increasing for u > 0, so

(1/
√
xy)2 = 1/(xy) = f(x, y)

is convex.

Here is an alternative solution.
√
x is concave for x > 0. 1/u is convex and decreasing

for x > 0, so by the DCP rules, 1/
√
x is convex for x > 0. Quadratic-over-linear

function g(x, y) = x2/y is jointly convex for x, y > 0, increasing in x for x > 0, and
decreasing for y > 0. So

g(1/
√
x, y) = 1/(xy)

is convex by the general vector composition rule in additional exercise 2.2.

9

3. Path planning with contingencies. A vehicle path down a (straight, for simplicity)
road is specified by a vector p ∈ RN , where pi gives the position perpendicular to the
centerline at the point ih meters down the road, where h > 0 is a given discretization
size. (Throughout this problem, indexes on N -vectors will correspond to positions
on the road.) We normalize p so −1 ≤ pi ≤ 1 gives the road boundaries. (We are
modeling the vehicle as a point, by adjusting for its width.) You are given the initial
two positions p1 = a and p2 = b (which give the initial road position and angle), as
well as the final two positions pN−1 = c and pN = d.

You know there may be an obstruction at position i = O. This will require the path to
either go around the obstruction on the left, which requires pO ≥ 0.5, or on the right,
which requires pO ≤ −0.5, or possibly the obstruction will clear, and the obstruction
does not place any additional constraint on the path. These are the three contingencies
in the problem title, which we label as k = 1, 2, 3.

You will plan three paths for these contingencies, p(i) ∈ RN for i = 1, 2, 3. They must
each satisfy the given initial and final two road positions and the constraint of staying
within the road boundaries. Paths p(1) and p(2) must satisfy the (different) obstacle
avoidance constraints given above. Path p(3) does not need to satisfy an avoidance
constraint.

Now we add a twist: You will not learn which of the three contingencies will occur until
the vehicle arrives at position i = S, when the sensors will determine which contingency
holds. We model this with the information constraints (also called causality constraints
or non-anticipatory constraints),

p
(1)
i = p

(2)
i = p

(3)
i , i = 1, . . . , S,

which state that before you know which contingency holds, the three paths must be
the same.

The objective to be minimized is

3∑
k=1

N−1∑
i=2

(p
(k)
i−1 − 2p

(k)
i + p

(k)
i+1)2,

the sum of the squares of the second differences, which gives smooth paths.

(a) Explain how to solve this problem using convex optimization.

(b) Solve the problem with data given in path_plan_contingencies_data.*. The
data files include code to plot the results, which you should use to plot (on one
plot) the optimal paths. Report the optimal objective value. Give a very brief
informal explanation for what you see happening for i = 1, . . . , S.

Hint. In Python, use the (default) solver ECOS to avoid warnings about inaccu-
rate solutions.

10

Solution.

(a) Note that the objective is a sum of squares of affine functions and therefore convex.
The constraints are all affine. The following convex program solves the problem:

minimize
∑3

k=1

∑N−1
i=2 (p

(k)
i−1 − 2p

(k)
i + p

(k)
i+1)2

subject to p
(k)
1 = a, p

(k)
2 = b, p

(k)
N−1 = c, p

(k)
N = d, k = 1, 2, 3

−1 � p(k) � 1, k = 1, 2, 3

p
(1)
i = p

(2)
i = p

(3)
i , i = 1, . . . , S

p
(1)
O ≥ 0.5, p

(2)
O ≤ −0.5.

(b) The resulting plots are listed below:

10 20 30 40 50 60
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

left safe region
right safe region
obstacle revealed
obstacle left
obstacle right
obstacle clear

The optimal objective value is 0.000210137.

The vehicle heads towards the middle of the road before the obstacle is revealed,
in order to be ready for any of the contigencies. It seems strange at first to head
towards the obstruction, as opposed to away from it, but once you think about
it, it makes sense.

The following Matlab code solves the problem.

path_plan_contingencies_data;

% CVX Solve

cvx_begin

variable P(N, 3);

11

minimize(square_pos(norm((P(3:N, :)-2*P(2:N-1, :)+P(1:N-2, :)), ’fro’)));

pos_start_end = [p1; p2; pN_1; pN];

% Constraints

subject to

% Same Start & End

for i = 1 : 3

P([1, 2, N-1, N], i) == pos_start_end;

end

% Equality before Reveal

P(3 : S, 1) == P(3 : S, 2); P(3 : S, 2) == P(3 : S, 3);

% Avoid Obstruction

P(O, 1) >= 0.5; P(O, 2) <= -0.5;

% Boundary Constraints

P >= -1; P <= 1;

cvx_end

The following Julia code also solves the problem.

using Convex, ECOS, PyPlot

include("path_plan_contingencies_data.jl")

Convex.jl Solve

P = Variable(N, 3);

p = minimize(square(vecnorm((P[3:N, :]-2*P[2:N-1, :]+P[1:N-2, :]), 2)));

pos_start_end = [p1; p2; pN_1; pN];

p.constraints += [P[[1, 2, N-1, N], i] == pos_start_end for i in 1:3];

p.constraints += [P[3:S, 1] == P[3:S, 2], P[3:S, 2] == P[3:S, 3]];

p.constraints += [P[O, 1] >= 0.5, P[O, 2] <= -0.5];

p.constraints += [P >= -1, P <= 1];

solve!(p, ECOSSolver()); println(p.optval); P = P.value;

The following Python code also solves the problem.

from cvxpy import *

from path_plan_contingencies_data import *

P = Variable(N, 3)

obj = Minimize(square(norm((P[2:, :]-2*P[1:N-1, :]+P[:N-2, :]), "fro")))

pos_start_end = np.array([p1, p2, pN_1, pN])

Constraints

constraints = []

Same Start & End

constraints += [P[[0,1,N-2,N-1], i] == pos_start_end for i in range(0,3)]

Equality before Reveal

12

constraints += [P[2 : S, 0] == P[2 : S, 1]]

constraints += [P[2 : S, 1] == P[2 : S, 2]]

Avoid Obstruction

constraints += [P[O - 1, 0] >= 0.5]

constraints += [P[O - 1, 1] <= -0.5]

Boundary Constraints

constraints += [P >= -1, P <= 1]

Solve by CVXPY

prob = Problem(obj, constraints)

prob.solve(verbose=True)

13

4. Total variation de-mosaicing. A color image is represented by 3 m× n matrices R, G,
and B that give the red, green, and blue pixel intensities. A camera sensor, however,
measures only one of the color intensities at each pixel. The pattern of pixel sensor
colors varies, but most of the patterns have twice as many green sensor pixels as red
or blue. A common arrangement repeats the 2× 2 block

R G
G B

(assuming m and n are even).

De-mosaicing is the process of guessing, or interpolating, the missing color values at
each pixel. The sensors give usmn entries in the matrices R, G, and B; in de-mosaicing,
we guess the remaining 2mn entries in the matrices.

First we describe a very basic method of de-mosaicing. For each 2× 2 block of pixels
we have the 4 intensity values

Ri,j Gi,j+1

Gi+1,j Bi+1,j+1
.

We use the value Ri,j as the red value for the other three pixels, and we do the same
for the blue value Bi+1,j+1. For guessing the green values at i, j and i + 1, j + 1, we
simply use the average of the two measured green values, (Gi,j+1 +Gi+1,j)/2.

A more sophisticated method relies on convex optimization. You choose the unknown
pixel values in R, G, and B to minimize the total variation of the color image, defined
as

m−1∑
i=1

n−1∑
j=1

∥∥∥∥∥∥∥∥∥∥∥∥

Ri,j −Ri,j+1

Gi,j −Gi,j+1

Bi,j −Bi,j+1

Ri+1,j −Ri,j

Gi+1,j −Gi,j

Bi+1,j −Bi,j

∥∥∥∥∥∥∥∥∥∥∥∥
2

.

Note that the norms in the sum here are not squared. The argument of the norms is
a vector in R6, an estimate of the spatial gradient of the RGB values.

We have provided you with several files in the data directory. Three images are given (in
png format): demosaic_raw.png, which contains the raw or mosaic image to de-mosaic,
demosaic_original.png, which contains the original image from which the raw image
was constructed, and demosaic_simple.png, which is the image de-mosaiced by the
simple method described above. Remember that the raw image, and any reconstructed
de-mosaiced image, have only one third the information of the original, so we cannot
expect them to look as good as the original. You don’t need the original or basic
de-mosaiced image files to solve the problem; they are given only so you can look at
them to see what they are. You should zoom in while viewing the raw image and the

14

basic de-mosaic version, so you can see the pattern of 2× 2 blocks in the first, and the
simple de-mosaic method in the second.

The tv function, invoked as tv(R,G,B), gives the total variation. CVXPY has the tv

function built-in, but CVX and CVX.jl do not, so we have provided the files tv.m and
tv.jl which contain implementations for you to use.

The file demosaic_data.* constructs arrays R_mask, G_mask, and B_mask, which
contain the indices of pixels whose values we know in the original image, the num-
ber of rows and columns in the image, m,n respectively, and arrays R_raw, B_raw,
G_raw, which contain the known values of each color at each pixel, filled in with ze-
roes for the unknown values. So if R is an m × n matrix variable, the constraint
R[R_mask]==R_raw[R_mask] in Julia and Python will impose the constraint that it
agrees with the given red pixel values; in Matlab, the constraint can be expressed
as R(R_mask)==R_raw(R_mask). This file also contains a save_image method, which
takes three arguments, R, G, B arrays (that you’ve reconstructed) and saves the file
under the name output_image.png. To see the image in Matlab, use the imshow

function.

Report the optimal value of total variation, and attach the de-mosaiced image. (If you
don’t have access to a color printer, you can submit a monochrome version. Print it
large enough that we can see it, say, at least half the page width wide.)

Hint. Your solution code should take less than 10 seconds or so to run in Python
and Matlab, but up to a minute or so in Julia. You might get a warning about an
inaccurate solution, but you can ignore it.

Solution. Letting R,G,B denote the matrices for the de-mosaiced image, and letting
Rraw, Braw, Graw denote the matrices for the known color values, with Kred, Kgreen, Kblue

denoting the indices for the known red, green, and blue pixels, respectively, then de-
mosaicing can be written in the following form:

minimize tv(R,G,B)
subject to Rij = Rraw

ij , (i, j) ∈ Kred

Gij = Graw
ij , (i, j) ∈ Kgreen

Bij = Braw
ij , (i, j) ∈ Kblue.

The following code solves the problem in Python.

import numpy as np

from cvxpy import *

from demosaic_data import *

R = Variable(m, n)

G = Variable(m, n)

B = Variable(m, n)

15

tv_obj = Minimize(tv(R, G, B))

cons = []

cons += [R[R_mask] == R_raw[R_mask]]

cons += [G[G_mask] == G_raw[G_mask]]

cons += [B[B_mask] == B_raw[B_mask]]

prob = Problem(tv_obj, cons)

prob.solve()

print(’optimal value : {}’.format(prob.value))

save_image(R.value, G.value, B.value)

In Julia:

using Convex

include("demosaic_data.jl")

include("tv.jl")

R = Variable(m, n);

G = Variable(m, n);

B = Variable(m, n);

constraints = [

R[R_mask] == R_raw[R_mask];

G[G_mask] == G_raw[G_mask];

B[B_mask] == B_raw[B_mask];

];

print("everything is loaded");

prob = minimize(tv(R, G, B), constraints);

solve!(prob);

save_image(R.value, G.value, B.value);

In Matlab:

demosaic_data;

cvx_begin quiet

16

variables R(m,n) G(m,n) B(m,n)

minimize tv(R,G,B)

subject to

% Reconstruction matches the raw R, G, B values known

R(R_mask) == R_raw(R_mask)

G(G_mask) == G_raw(G_mask)

B(B_mask) == B_raw(B_mask)

cvx_end

save_image(R,G,B);

With the results shown below:

The original image is shown on the left, with the raw image following. The image
reconstructed with the simple blocking method for de-mosaicing described is third,
while the last image is the TV-reconstructed image.

In Python and Matlab and Julia, we received an optimal value of 354.51.

17

5. Maximum Sharpe ratio portfolio. We consider a portfolio optimization problem with
portfolio vector x ∈ Rn, mean return µ ∈ Rn, and return covariance Σ ∈ Sn++. The
ratio of portfolio mean return µTx to portfolio standard deviation ‖Σ1/2x‖2 is called
the Sharpe ratio of the portfolio. (It is often modified by subtracting a risk-free return
from the mean return.) The Sharpe ratio measures how much return you get per
risk taken on, and is a widely used single metric that combines return and risk. It is
undefined for µTx ≤ 0.

Consider the problem of choosing the portfolio to maximize the Sharpe ratio, subject
to the constraint 1Tx = 1, and the leverage constraint ‖x‖1 ≤ Lmax, where Lmax ≥ 1
is a given leverage limit. You can assume there is a feasible x with µTx > 0.

(a) Show that the maximum Sharpe ratio problem is quasiconvex in the variable x.

(b) Show how to solve the maximum Sharpe ratio problem by solving one convex
optimization problem. You must fully justify any change of variables or problem
transformation.

Solution.

Full disclosure. The problem statement above is very slightly modified from the
original one, by replacing S+ with S++, and requiring that µTx > 0. Only one student
(and unfortunately, not an alpha or beta tester) discovered that these slightly stronger
conditions are actually required. We thank him, and made these small changes so the
problem will be air-tight as it continues its life as an exercise. It goes without saying
that we did not penalize others (including the Professor and TAs) for missing these
corner cases.

(a) The constraints are evidently convex, so we only need to show that the Sharpe
ratio is quasiconcave, since this is a maximization problem. This means that its
superlevel sets, Sα = {x | µTx > 0, µTx/‖Σ1/2x‖2 ≥ α}, are convex for any α.
(The inequality µTx > 0 defines the domain of the Sharpe ratio.) For α ≤ 0,
Sα = ∅, which is convex. So we can focus on the case α > 0.

From µTx > 0 we know that x 6= 0. Its α-superlevel set is defined by

µTx

‖Σ1/2x‖2

≥ α⇐⇒ µTx ≥ α‖Σ1/2x‖2,

which is a convex constraint since α ≥ 0.

(b) We will use the same trick used to solve a linear fractional program by solving
one linear program.

We first observe that the Sharpe ratio is (positively) homogeneous, i.e., x and
αx have the same Sharpe ratio, provided α > 0. We rewrite the constraint
‖x‖1 ≤ Lmax as

‖x‖1 ≤ Lmax1Tx,

18

which is also positively homogeneous. This is the homogeneous form of the lever-
age limit. We can also add the (redundant, positive homogeneous) constraint
µTx > 0. So the problem becomes

maximize µTx/‖Σ1/2x‖2

subject to ‖x‖1 ≤ Lmax1Tx, µTx > 0, 1Tx = 1.

The objective and constraints are all homogeneous except for 1Tx = 1.

We will change variables using z, defined as z = x/µTx. (Note that this is a
positive multiple of x.) The variable z satisfies µT z = 1; we can recover x from z
as x = z/1T z. Using z the problem becomes

maximize 1/‖Σ1/2z‖2

subject to ‖z‖1 ≤ Lmax1T z, µT z = 1.

The objective can be replaced with minimizing ‖Σ1/2z‖2, which results in the
convex problem

minimize ‖Σ1/2z‖2

subject to ‖z‖1 ≤ Lmax1T z, µT z = 1.

We solve this, then recover the portfolio that maximizes Sharpe ratio as x? =
z?/1T z?.

There are several other ways to use the same argument, and we accepted all
of them. The critical part was to use a linear fractional or perspective change
of variable, and to explain how to recover the original portfolio vector from the
solution of the convex problem.

19

6. Optimizing a set of disks. A disk D ⊂ R2 is parametrized by its center c ∈ R2 and
its radius r ≥ 0, with the form D = {x | ‖x − c‖2 ≤ r}. (We allow r = 0, in which
case the disk reduces to a single point {c}.) The goal is to choose a set of n disks
D1, . . . , Dn (i.e., specify their centers and radii), to minimize an objective subject to
some constraints.

One constraint is that the first k disks are fixed, i.e.,

ci = cfix
i , ri = rfix

i , i = 1, . . . , k,

where cfix
i and rfix

i are given.

The second constraint is an overlap or intersection constraint, which requires some
pairs of disks to intersect:

Di ∩Dj 6= ∅, (i, j) ∈ I,

where I ⊂ {1, . . . , n}2 is given. You can assume that for each (i, j) ∈ I, i < j.

We consider two objectives: The sum of the disk areas, and the sum of the disk
perimeters. These two objectives result in two different problems.

(a) Explain how to solve these two problems using convex optimization.

(b) Solve both problems for the problem data given in disks_data.*. Give the
optimal total area, and the optimal total perimeter. Plot the two optimal disk
arrangements, using the code included in the data file. Give a very brief comment
on the results, especially the distribution of disk radii each problem obtains.

Solution.

(a) We consider the first objective, minimizing the sum of the disk areas. The ob-
jective function

∑n
i=1 πr

2
i is convex in the variables c1, . . . , cn and r1, . . . , rn. The

second objective, the sum of the disk perimeters
∑n

i=1 2πri is also convex (in fact,
affine).

Now we consider the constraints. The constraint that the first k disks are fixed
are a set of linear constraints. The second constraint, the intersection constraint,
can be written as ‖ci − cj‖2 ≤ ri + rj for each (i, j) ∈ I. It is convex because the
left hand side is convex, and the right hand side is linear.

The first problem is

minimize
∑n

i=1 πr
2
i

subject to ci = cfix
i , ri = rfix

i , i = 1, . . . , k
ri ≥ 0, i = 1, . . . , n
‖ci − cj‖2 ≤ ri + rj, (i, j) ∈ I.

20

The second problem is

minimize
∑n

i=1 2πri
subject to ci = cfix

i , ri = rfix
i , i = 1, . . . , k

ri ≥ 0, i = 1, . . . , n
‖ci − cj‖2 ≤ ri + rj, (i, j) ∈ I.

Alternative solution. Here is a nice alternative solution. Instead of explicitly
working out the condition under which two disks intersect, we introduce a new
variable xij ∈ R2 for each (i, j) ∈ I, and we require that this point is in disks i
and j. The latter is convex, since it has the form ‖x− c‖2 ≤ r.

(b) The optimal total area is 210.77, and the optimal total perimeter is 139.35.

The resulting plot for optimal area disks is below.

−10 −5 0 5 10

−10

−5

0

5

10

The resulting plot for optimal perimeter disks is below.

21

−10 −5 0 5 10

−10

−5

0

5

10

We observe that when minimizing the perimeter, which is the sum, and therefore
also the `1 norm, of the radii, leads to a solution where a few disks have large
radii and several disks have radius zero. This is characteristic of `1 minimization.

Minimizing the area, which is the `2 norm squared of the radii, leads to a solution
with fewer large radii, and none with zero radii.

The following Matlab code solves the problem.

disks_data;

% minimum area

cvx_begin quiet

variables C(n, 2) R(n)

minimize(sum(R.^2))

subject to

R >= 0;

C(1:k,:) == Cgiven(1:k,:);

R(1:k) == Rgiven(1:k);

for i = 1 : size(Gindexes, 1)

norm(C(Gindexes(i,1),:) - C(Gindexes(i,2),:)) ...

<= (R(Gindexes(i,1)) + R(Gindexes(i,2)));

end

cvx_end

fprintf(’optimal area: %3.4f\n’, pi * cvx_optval);

22

% minimum perimeter

cvx_begin quiet

variables C(n, 2) R(n)

minimize(sum(R))

subject to

R >= 0;

C(1:k,:) == Cgiven(1:k,:);

R(1:k) == Rgiven(1:k);

for i = 1 : size(Gindexes, 1)

norm(C(Gindexes(i,1),:) - C(Gindexes(i,2),:)) ...

<= (R(Gindexes(i,1)) + R(Gindexes(i,2)));

end

cvx_end

fprintf(’optimal perimeter: %3.4f\n’, 2 * pi * cvx_optval);

The following Julia code also solves the problem.

using Convex, ECOS

include("disks_data.jl")

Convex.jl Solve: Area

C = Variable(n, 2);

R = Variable(n);

p_area = minimize(sum(R.^2));

p_area.constraints += [R >= 0];

p_area.constraints += [C[1:k,:] == Cgiven[1:k,:]];

p_area.constraints += [R[1:k] == Rgiven[1:k]];

for i = 1 : size(Gindexes, 1)

p_area.constraints +=

[norm(C[Gindexes[i,1],:] - C[Gindexes[i,2],:])<=

R[Gindexes[i,1]] + R[Gindexes[i,2]]];

end

solve!(p_area, ECOSSolver());

println("optimal area: ", pi * p_area.optval);

plot_disks(C.value, R.value, Gindexes, "disks_area.eps")

Convex.jl Solve: Perimeter

C = Variable(n, 2);

R = Variable(n);

p_peri = minimize(sum(R));

p_peri.constraints += [R >= 0];

p_peri.constraints += [C[1:k,:] == Cgiven[1:k,:]];

p_peri.constraints += [R[1:k] == Rgiven[1:k]];

for i = 1 : size(Gindexes, 1)

23

p_peri.constraints +=

[norm(C[Gindexes[i,1],:] - C[Gindexes[i,2],:])<=

R[Gindexes[i,1]] + R[Gindexes[i,2]]];

end

solve!(p_peri, ECOSSolver());

println("optimal perimeter: ", 2 * pi * p_peri.optval);

plot_disks(C.value, R.value, Gindexes, "disks_perimeter.eps")

The following Python code also solves the problem.

from cvxpy import *

from disks_data import *

C = Variable(n, 2)

R = Variable(n)

min_area_obj = Minimize(sum_squares(R))

min_perim_obj = Minimize(sum(R))

constraints = [R >= 0]

constraints += [C[:k,:] == Cgiven[:k,:]]

constraints += [R[:k] == Rgiven[:k]]

for i in range(0, len(Gindexes)):

constraints += [norm(

C[Gindexes[i, 0],:]-C[Gindexes[i, 1],:])

<= (R[Gindexes[i, 0]]+R[Gindexes[i, 1]])]

min_total_area = Problem(min_area_obj, constraints)

min_total_perim = Problem(min_perim_obj, constraints)

opt_area = min_total_area.solve(verbose=True)

print ’optimal area: ’, np.pi*opt_area

plot_disks(C.value, R.value, Gindexes, name = ’areas.eps’)

opt_peri = min_total_perim.solve(verbose=True)

print ’optimal perimeter: ’, 2*np.pi*opt_peri

plot_disks(C.value, R.value, Gindexes, name = ’perimeters.eps’)

24

7. Decomposing a PV array output time series. We are given a time series p ∈ RT
+

that gives the output power of a photo-voltaic (PV) array in 5-minute intervals, over
T = 2016 periods (one week), given in pv_output_data.*. In this problem you will
use convex optimization to decompose the time series into three components:

• The clear sky output c ∈ RT
+, a smooth daily-periodic component, which gives

what the PV output would have been without clouds. This signal is 24-hour-
periodic, i.e., ct+288 = ct for t = 1, . . . , T − 288. (The clear sky output is zero at
night, but we will not use this prior information in our decomposition method.)

• A weather shading loss component s ∈ RT
+, which gives the loss of power due

to clouds. This component satisfies 0 � s � c, can change rapidly, and is not
periodic.

• A residual r ∈ RT , which accounts for measurement error, anomalies, and other
errors.

These components satisfy p = c− s+ r.

We will assume that the average absolute value of the residual is no more than 4 (which
is less than 1% of the average of p).

Smoothness of c is measured by its Laplacian,

L(c) = (c1 − c2)2 + · · ·+ (c287 − c288)2 + (c288 − c1)2.

(Note that the term involves c1 and c288.)

We will choose c, s, and r by minimizing L(c) + λ1T s subject to the constraints
described above, where λ is a positive parameter, that we take to be one.

Solve this problem, and plot the resulting c, s, r, and p (which is given), on separate
plots. Give the average values of c, s, and p, and the average absolute value of r (which
should be 4).

Solution. The following Matlab code solves the problem, obtaining 529.517, 4.480,
and 529.038 as the average values of c, s, and p, respectively, and 4.000 as the average
absolute value of r.

pv_modeling_data

N=24*12; %samples per day

lambda=1;

cvx_begin

variable c(T);

variable s(T);

variable r(T);

L = sum_square(c(1:N-1)-c(2:N)) + square(c(N) - c(1));

25

minimize (L+lambda*sum(s));

subject to

0 <= s <= c

p == c-s+r

(1/T)*norm(r,1) <= 4

for i = (N+1):T

c(i) == c(i-N)

end

cvx_end

fprintf(’average optimal c value: %f\n’, mean(c));

fprintf(’average optimal s value: %f\n’, mean(s));

fprintf(’average optimal p value: %f\n’, mean(p));

fprintf(’average optimal absolute r value: %f\n’, mean(abs(r)));

figure

subplot(4,1,1)

plot(1/N*(1:T),p)

title(’p’)

subplot(4,1,2)

plot(1/N*(1:T),c)

title(’c’)

subplot(4,1,3)

plot(1/N*(1:T),s)

title(’s’)

subplot(4,1,4)

plot(1/N*(1:T),r)

title(’residual error’)

xlabel(’day’)

figure

plot((5/60)*(1:N),c(1:N))

xlabel(’hours’)

title(’c over one day’)

Our Python code obtains 529.520, 4.480, and 529.038 as the average values of c, s, and
p, and 4.000 as the average absolute value of r.

from cvxpy import *

import numpy as np

import numpy.matlib as mlib

import matplotlib.pyplot as ppt

from math import *

26

from pv_modeling_data import *

N=24*12 # samples per day

lambd = 1

c = Variable(T)

s = Variable(T)

r = Variable(T)

L = sum_squares(c[0:N-1]-c[1:N]) + square(c[N-1] - c[0]);

obj = Minimize(L + lambd*sum(s));

constraints = []

constraints += [0<=s]

constraints += [s<=c]

constraints += [p == c-s+r]

constraints += [(1.0/T)*norm(r,1) <= 4]

for i in range(N,T):

constraints += [c[i] == c[i - N]]

prob = Problem(obj, constraints)

prob.solve(verbose=True)

c = c.value

s = s.value

r = r.value

print (’average optimal c value: ’, np.mean(c))

print (’average optimal s value: ’, np.mean(s))

print (’average optimal p value: ’, np.mean(p))

print (’average optimal absolute r value: ’, np.mean(np.abs(r)))

ppt.figure()

ppt.subplot(411)

ppt.plot(1.0/N*np.arange(T),p)

ppt.title("p")

ppt.subplot(412)

ppt.plot(1.0/N*np.arange(T),c)

ppt.title("c")

ppt.subplot(413)

ppt.plot(1.0/N*np.arange(T),s)

ppt.title("s")

ppt.subplot(414)

27

ppt.plot(1.0/N*np.arange(T),r)

ppt.title("residual error")

ppt.xlabel("day")

ppt.figure()

ppt.plot((5.0/60)*np.arange(N),c[0:N])

ppt.xlabel("hours")

ppt.title("c over one day")

ppt.show()

And our Julia code obtains 529.526, 4.481, and 529.038 as the average values of c, s,
and p, and 3.999 as the average absolute value of r.

using Convex

using PyPlot

using ECOS

include("pv_modeling_data.jl")

N = 24*12 #samples per day

lambda = 1

c = Variable(T)

s = Variable(T)

r = Variable(T)

L = sumsquares(c[1:N-1]-c[2:N]) + square(c[N] - c[1])

prob = minimize(L + lambda*sum(s))

prob.constraints += 0 <= s

prob.constraints += s <= c

prob.constraints += p == c- s + r

prob.constraints += (1/T)*norm(r,1) 4

for i in N + 1 : T

prob.constraints += c[i] == c[i - N]

end

solve!(prob, ECOSSolver())

c = c.value

s = s.value

r = r.value

println("average optimal c value: ", mean(c))

println("average optimal s value: ", mean(s))

28

println("average optimal p value: ", mean(p))

println("average optimal absolute r value: ", mean(abs(r)))

figure()

subplot(411)

plot(1/N*(1:T),p)

title("p")

subplot(412)

plot(1/N*(1:T),c)

title("c")

subplot(413)

plot(1/N*(1:T),s)

title("s")

subplot(414)

plot(1/N*(1:T),r)

title("residual error")

xlabel("day")

figure()

plot((5/60)*(1:N),c[1:N])

xlabel("hours")

title("c over one day")

The plots are shown below.

hours

0 5 10 15 20 25

0

200

400

600

800

1000

1200

1400

1600

1800
c over one day

29

0 1 2 3 4 5 6 7
0

1000

2000
p

0 1 2 3 4 5 6 7
0

1000

2000
c

0 1 2 3 4 5 6 7
0

50

100

150
s

day

0 1 2 3 4 5 6 7
0

200

400
residual error

30

8. Rank one nonnegative matrix approximation. We are given some entries of an m × n
matrix A with positive entries, and wish to approximate it as the outer product of
vectors x and y with positive entries, i.e., xyT . We will use the average relative
deviation between the entries of A and xyT as our approximation criterion,

1

mn

m∑
i=1

n∑
j=1

R(Aij, xiyj),

where R is the relative deviation of two positive numbers, defined as

R(u, v) = max{u/v, v/u} − 1.

If we scale x by the positive number α, and y by 1/α, the outer product (αx)(y/α)T

is the same as xyT , so we will normalize x as 1Tx = 1.

The data in the problem consists of some of the values of A. Specifically, we are given
Aij for (i, j) ∈ Ω ⊆ {1, . . . ,m}×{1, . . . , n}. Thus, your goal is to find x ∈ Rm

++ (which
satisfies 1Tx = 1), y ∈ Rn

++, and Aij > 0 for (i, j) 6∈ Ω, to minimize the average
relative deviation between the entries of A and xyT .

(a) Explain how to solve this problem using convex or quasiconvex optimization.

(b) Solve the problem for the data given in rank_one_nmf_data.*. This includes a
matrix A, and a set of indexes Omega for the given entries. (The other entries of
A are filled in with zeros.) Report the optimal average relative deviation between
A and xyT . Give your values for x1, y1, and A11 = x1y1.

Solution.

(a) Observe that when we fix x and y, the optimal choice of Aij for (i, j) 6∈ Ω is simply
Aij = xiyj. This results in zero relative deviation between between Aij and xiyj.
So we can assume the variables are only x and y, and the problem is

minimize
∑

(i,j)∈Ω R(Aij, xiyj)

subject to x � 0, y � 0, 1Tx = 1.

It’s easy to see that R(Aij, xiyj) is not a convex function, and the objective is not
convex. This is not, in its current form, a convex problem.

We’ll need to transform or change the variables. We’ll use u = log x, v = log y,
so x = expu, y = exp v (interpreted entrywise). We can write

R(Aij, xiyj) = max{exp(−ui − vj + logAij), exp(ui + vj − logAij)} − 1

= exp |ui + vj − logAij| − 1.

We can drop the −1 from the objective terms, and obtain the objective∑
(i,j)∈Ω

exp |ui + vj − logAij|

31

which is convex in u, v. The constraints u, v � 0 come for free.

The constraint 1Tx = 1 however, is not convex in the new variables, since it is
1T expu = 1. Now we we use a trick: In the original problem, we could scale x
by any α > 0 and y by 1/α, without changing xyT . With the new variables, this
corresponds to adding β1 to u and subtracting β1 from v. So we will normalize
the problem with 1Tu = 0. This leads to the problem

minimize
∑

(i,j)∈Ω exp |ui + vj − logAij|
subject to 1Tu = 0.

This normalization does not give 1Tx = 1; it gives
∏

i xi = 1. However, we can
solve the problem above (which is convex) to get x̃, ỹ, and then set

x? = x̃/(1Tx), y? = (1T x̃)ỹ.

These scalings do not affect the objective.

Connection to geometric programming. A number of students solved the
problem by reducing it to a geometric program (GP). Of course that’s very close
to what we did above, since in both cases you work with the log of the variables,
not the variables.

You keep the original variables A, x and y, and observe that R(Aij, xiyj) is the
maximum of two monomials. This is not a posynomial, but it is a generalized
posynomial. For those who claimed this was a GP, we took a few points off,
because it’s not a GP; it’s a generalzied GP. By introducing an epigraph variable
for each max, though, we can reduce the problem to a GP.

Among CVX*, CVX (but not yet CVXPY or Convex.jl) has a GP mode, invoked
by cvx_begin gp. It actually handles generalized GPs, so you could type in the
problem directly. As in the other solution above, you do have to normalize the
result in the end so that 1Tx = 1.

(b) The following Matlab code solves the problem: The optimal average relative devi-
ation between the entries of A and xyT is 0.1390, and our value for A11 is 0.3639.

rank_one_nmf_data;

% converting zero elements of A to one to prevent log(0) in the objective!

A = A + ones(m,n) - Omega;

cvx_begin

variables u(m) v(n);

obj = sum(sum(Omega .* exp(abs(u*ones(1,n) + ones(m,1)*v’ - log(A)))));

minimize(obj)

subject to

32

sum(u) == 0;

cvx_end

x_tilde = exp(u);

y_tilde = exp(v);

x = x_tilde / sum(x_tilde);

y = sum(x_tilde) * y_tilde;

rel_dev_opt = (cvx_optval - sum(sum(Omega))) / m / n;

A_11 = x(1) * y(1);

disp([’The optimal average relative deviation = ’, num2str(rel_dev_opt)]);

disp([’A_11 = ’, num2str(A_11)]);

The following Python code solves the problem: The optimal average relative
deviation between the entries of A and xyT is 0.1839, and our value for A11 is
0.2728.

import numpy as np

import cvxpy as cp

from rank_one_nmf_data import *

converting zero elements of A to one to prevent log(0) in the objective!

A += np.ones((m,n)) - Omega

u = cp.Variable(m)

v = cp.Variable(n)

constraints = [cp.sum_entries(u) == 0]

B = cp.exp(cp.abs(u*np.ones((1,n)) + np.ones((m,1))*v.T - cp.log(A)))

f = 0

for i in range(m):

for j in range(n):

f += Omega[i,j]*B[i,j]

obj = cp.Minimize(f)

prob = cp.Problem(obj, constraints)

prob.solve()

x_tilde = np.exp(u.value)

y_tilde = np.exp(v.value)

x = x_tilde / sum(x_tilde)

y = np.sum(x_tilde) * y_tilde

rel_dev_opt = (prob.value - sum(sum(Omega))) / m / n

print(’The optimal average relative deviation = ’, rel_dev_opt)

33

A_11 = x[0,0] * y[0,0]

print(’A_11 = ’, A_11)

The following Julia code solves the problem: The optimal average relative devia-
tion between the entries of A and xyT is 0.2987, and our value for A11 is 0.1719.

using Convex, SCS

include("rank_one_nmf_data.jl")

converting zero elements of A to one to prevent log(0) in the objective!

A = A + ones(m,n) - Omega;

u = Variable(m);

v = Variable(n);

obj = sum(Omega .* exp(abs(u*ones(1,n) + ones(m,1)*v’ - log(A))));

constraints = [sum(u) == 0];

prob = minimize(obj, constraints);

solve!(prob)

x_tilde = exp(u.value)

y_tilde = exp(v.value)

x = x_tilde / sum(x_tilde)

y = sum(x_tilde) * y_tilde

rel_dev_opt = (prob.optval - sum(Omega)) / m / n;

A_11 = x[1]*y[1]

println("The optimal average relative devation = $(rel_dev_opt)")

println("A_11 = $(A_11)")

34

9. Post-modern portfolio optimization metrics. Let r ∈ RT denote a time series (say,
daily) of investment returns, i.e., the increase in value divided by initial value. The
value of the investment (typically, a portfolio) is the time series vector v ∈ RT defined
by the recursion

vt+1 = vt(1 + rt), t = 0, . . . , T − 1,

with v0 a given positive initial value. Here we are compounding the investment returns.
We will assume that all returns satisfy rt > −1, which implies that v � 0. We define
the high-water value or last high value as

ht = max
τ≤t

vτ , t = 1, . . . , T.

The value and high-water value are functions of r.

Portfolio theory as originally developed by Markowitz in the 1950s takes into account
the mean return µ = 1T r/T and variance (risk) σ2 = ‖r − µ1‖2

2/T . The idea of using
a mathematical approach to choose a portfolio to maximize return and minimize risk
came to be called modern portfolio theory. Of course, it’s not so modern nowadays.

Researchers later suggested various alternative metrics that are (supposedly) closer to
what we really care about than the mean return and risk. The use of these metrics
was dubbed (or marketed as) post-modern portfolio theory. Some of these so-called
post-modern portfolio metrics are described below, along with a parenthetical note
about whether we’d like to minimize or maximize the metric.

For each metric we wish to minimize, determine if it is a convex or quasiconvex function
of r, or neither. For each metric we wish to maximize, determine if it is a concave or
quasiconcave function of r, or neither. For example, the mean return (which we wish
to maximize) is a concave function of r, and the risk (variance, which we wish to
minimize) is a convex function of r. When the metric is convex or quasiconvex (or
concave or quasiconcave), justify your answer. When it is neither, you can simply
state this; you do not need to produce a counterexample. We will deduct some points
if your answer is not strong enough, e.g., if you assert that a metric is quasiconvex,
but it is in fact convex.

(a) Logarithmic or Kelly growth rate. (Maximize.) (1/T)
∑

t log(1 + rt). This is the
average growth rate of vt.

(b) Downside variance. (Minimize.) The downside variance is (1/T)
∑

t(rt − µ)2
−,

where (u)− = max{−u, 0}, and µ is the mean return. This assesses a penalty
for a return below the average (the ‘downside’), but not for a return above the
average.

(c) Maximum drawdown. (Minimize.) The drawdown at period t is defined as dt =
(ht − vt)/ht. The maximum drawdown is defined as maxt dt.

(d) Maximum consecutive days under water. (Minimize.) A time period t is called
under water if vt < ht, i.e., the current value is less than the last high. Maximum

35

consecutive days under water means just that, i.e., the maximum number of
consecutive days under water.

Remark. Many other post-modern metrics can derived be from, or are related to, the
ones described above. Examples include the Sortino, Calmar, and Information ratios.
You can thank the EE364a staff for refraining from asking about these.

Solution.

(a) Logarithmic or Kelly growth rate. f(r) = (1/T)
∑

t log(1+rt) is evidently concave,
since it is a sum of the log (a concave function) of affine functions of r.

(b) Downside variance. This is convex, since rt − µ is affine, (rt − µ)− is convex and
nonnegative, and therefore its square is too, since the square function is convex
and increasing for nonnegative arguments. The sum gives the downside variance.

(c) Maximum drawdown. This is quasiconvex. Let’s look at its sublevel set, i.e., the
set of returns that satisfy dt = (ht − vt)/ht ≤ α for all t, where 1 > α > 0. We
write this as

(1− α)ht ≤ vt, t = 1, . . . , T.

which is equivalent to

vt ≥ (1− α) max
1≤s≤t

vs, t = 1, . . . , T.

Using vt/vs =
∏t−1

τ=s+1(1 + rτ) we can express this as

t−1∑
τ=s+1

log(1 + rτ) ≥ log(1− α) for 1 ≤ s ≤ t ≤ T.

Since the lefthand side is a concave function of r, for any values of s and t, this
describes a convex set as the inequality above describes the 1 − α superlevel set
of the lefthand side. Whew!

(d) Maximum consecutive days under water. This function is neither convex nor
quasi-convex.

It’s not that easy to show this, i.e., to produce a counter-example. We didn’t ask
you to do this, but we’ve done it for completeness.

We consider T = 4, and the following two return vectors:

r = (0.01,−0.9,−0.9, 100), r̃ = (−0.5,−0.5, 3.1, 0).

With v0 = 1, the corresponding value sequences are

v = (1.01, 0.101, 0.0101, 1.0204), ṽ = (0.5, 0.25, 1.025, 1.025).

We can see that each of these returns has maximum days under water two.

36

Now consider the return sequence

r̂ = 0.5r + 0.5r̃ = (−0.245,−0.7, 1.1, 50).

If maximum days onder water is quasiconvex, then this return sequence should
have maximum days under water of no more than two. But its corresponding
value sequence is

v̂ = (1, 0.755, 0.2265, 0.47565, 24.258),

which has three maximum days under water.

37

10. Blending overlapping covariance matrices. We consider the problem of constructing a
covariance matrix R ∈ Sn+ from two (not necessarily consistent) estimates of submatri-
ces S and T . We order the indices in the underlying random variable so that the first
n1 entries correspond to those in the first submatrix but not the second, the next n2

entries correspond to the entries in both submatrices, and the last n3 entries are those
in the second submatrix but not the first. We have n1 + n2 + n3 = n, and we assume
all three are positive. We partition the matrix R as

R =

 R11 R12 R13

RT
12 R22 R23

RT
13 RT

23 R33

 .
We wish to choose R ∈ Sn+ so that

R(1) =

[
R11 R12

RT
12 R22

]
≈ S =

[
S11 S12

ST12 S22

]
and

R(2) =

[
R22 R23

RT
23 R33

]
≈ T =

[
T22 T23

T T23 T33

]
.

(Note the non-standard labeling of the block indices in T .) You can assume that
S ∈ Sn1+n2

+ and T ∈ Sn2+n3
+ are given.

Roughly speaking, your job is to guess the six submatrices Rij for i ≤ j. For four of
these, R11, R12, R23, and R33, you have only one piece of data to work with, i.e., S11,
S12, T23, and T33, respectively. For one of them, R22, you have two pieces of data to
work with, i.e., S22 and T22. For one submatrix, R13, you have no pieces of data to
work with.

(a) A simple method. Based on the given data S and T , our guess of R is

R11 = S11, R12 = S12, R13 = 0,
R22 = (1/2)(S22 + T22), R23 = T23, R33 = T33.

For the four submatrices for which you have only one piece of data, we simply
use that data as our guess. For the one submatrix for which we have two pieces
of data, we average the two values. For the one submatrix for which we have no
data, we guess the zero matrix.

Show by a specific numerical example that this simple method can yield an un-
acceptable value of R. (No, we will not be more specific about what we mean by
this; part of the problem is to figure out what we mean. Also, we will deduct
points from examples that are more complicated than they need to be.)

(b) Convex optimization to the rescue. Suppose we choose R by solving the convex
optimization problem

minimize ‖R(1) − S‖2
F + ‖R(2) − T‖2

F + ‖R13‖2
F

subject to R � 0.

38

Here the variable is R ∈ Sn, and ‖U‖F = (Tr(UTU))1/2 is the Frobenius norm of
a matrix.

Let Rsim be the estimate of R obtained using the simple method in part (a). Show
that if Rsim � 0, then it is the solution of this problem.

(c) Apply the method described in part (b) to the specific numerical example you
provided in part (a), and check (numerically) that the result R? is now acceptable.

Solution.

(a) The simple method can yield a matrix Rsim that is not positive semidefinite; it is
in this sense that the method is unacceptable. For example, if n1 = n2 = n3 = 1
and S and T are chosen such that

S = T =

[
1 1
1 1

]
,

then the simple method yields the guess

Rsim =

 1 1 0
1 1 1
0 1 1

 ,
which is not positive semidefinite. (You can verify this by computing its eigen-
values, or simply noticing that detRsim = −1.)

(b) Consider the unconstrained problem

minimize ‖R(1) − S‖2
F + ‖R(2) − T‖2

F + ‖R13‖2
F ,

with variable R ∈ S. We can write out the objective in terms of the blocks of R
as

‖R11 − S11‖2
F + 2‖R12 − S12‖2

F + ‖R22 − S22‖2
F+

‖R22 − T22‖2
F + 2‖R23 − T23‖2

F + ‖R33 − T33‖2
F + ‖R13‖2

F

Now let’s optimize over the subblocks of R separately. First, R13 only appears
in the last term, and its optimal value is clearly R13 = 0, which agrees with the
simple method of part (a). The four blocks of R for which we have only one
data piece occur in only one term above each, so we simply set them to equal the
associated given block, which also agrees with the simple method. Finally R22

appears in two terms above. Evidently the solution is to average the two matrices
S22 and T22 to get R22. This agrees with the simple method. So the simple method
solves this unconstrained problem. If the result is positive semidefinite, then it
solves the problem with the constraint too.

39

(c) The covariance matrix that is recovered by applying the method from part (b) to
the example furnished in part (a) is shown below, with a floating point precision
of 3 digits:

R? =

 1.10 0.850 0.197
0.850 1.11 0.850
0.197 0.850 1.10

 .
You can check that this matrix is positive semidefinite.

The following Matlab code was used to obtain the above estimate.

n_1 = 1

n_2 = 1

n_3 = 1

n = n_1 + n_2 + n_3

S = ones(n_1+n_2, n_1+n_2)

T = ones(n_2+n_3, n_2+n_3)

% Recover R as per the method described in part (b)

cvx_begin

variable R(n, n) semidefinite

R1 = R(1:2, 1:2)

R2 = R(2:3, 2:3)

R_13 = R(1, 3)

minimize(sum(sum_square(R1 - S)) + ...

sum(sum_square(R2 - T)) + sum(sum_square(R_13)));

cvx_end

display(’Recovered covariance matrix R’)

display(R)

display(’Eigenvalues’)

display(eig(R))

% For reference, output the matrix that the simple method would return

R_simple = [1, 1, 0; 1, 1, 1; 0, 1, 1]

display(’Matrix recovered from the simple method’)

display(R_simple)

The same estimate can be obtained using Python:

import numpy as np

import cvxpy as cp

n_1 = 1

40

n_2 = 1

n_3 = 1

n = n_1 + n_2 + n_3

S = np.ones((n_1+n_2, n_1+n_2))

T = np.ones((n_2+n_3, n_2+n_3))

R = cp.Semidef(n)

R1 = R[0:2, 0:2]

R2 = R[1:3, 1:3]

R_13 = R[0, 2]

Recover R as per the method described in part (b)

objective = cp.Minimize(

cp.norm(R1 - S, "fro")**2 + cp.norm(R2 - T, "fro")**2 +

cp.norm(R_13, "fro")**2)

p = cp.Problem(objective, [])

p.solve()

print "Optimal value: %f" % p.value

print "Recovered covariance matrix R\n%s" % str(R.value)

print "Eigenvalues\n%s" % str(np.linalg.eig(R.value)[0])

For reference, output the matrix that the simple method would return

R_simple = np.array([[1, 1, 0], [1, 1, 1], [0, 1, 1]])

print "Matrix recovered from simple method\n%s" % str(R_simple)

The estimate can also be obtained using Julia:

using Convex

n_1 = 1

n_2 = 1

n_3 = 1

n = n_1 + n_2 + n_3

S = ones(n_1+n_2, n_1+n_2)

T = ones(n_2+n_3, n_2+n_3)

Recover R as per the method described in part (b)

R = Semidefinite(n)

R1 = R[1:2, 1:2]

R2 = R[2:3, 2:3]

R_13 = R[1, 3]

41

p = minimize(vecnorm(R1 - S, 2)^2 + vecnorm(R2 - T, 2)^2 + vecnorm(R_13, 2)^2)

solve!(p)

println("Optimal value ", p.optval)

println("Recovered covariance matrix R\n", R.value)

println("Eigenvalues\n", eig(R.value)[1])

For reference, output the matrix that the simple method would return

R_simple = [1 1 0; 1 1 1; 0 1 1]

println("Matrix recovered from simple method\n", R_simple)

42

