
EE364a: Convex Optimization I S. Boyd
March 14–15 or March 15–16, 2014

Final Exam Solutions

This is a 24 hour take-home final. Please turn it in at Bytes Cafe in the Packard building,
24 hours after you pick it up.

You may use any books, notes, or computer programs (e.g., Matlab, CVX), but you may not
discuss the exam with anyone until March 18, after everyone has taken the exam. The only
exception is that you can ask us for clarification, via the course staff email address. We’ve
tried pretty hard to make the exam unambiguous and clear, so we’re unlikely to say much.

Please make a copy of your exam before handing it in.

Please attach the cover page to the front of your exam. Assemble your solutions in
order (problem 1, problem 2, problem 3, . . .), starting a new page for each problem. Put
everything associated with each problem (e.g., text, code, plots) together; do not attach code
or plots at the end of the final.

We will deduct points from long needlessly complex solutions, even if they are
correct. Our solutions are not long, so if you find that your solution to a problem goes on
and on for many pages, you should try to figure out a simpler one. We expect neat, legible
exams from everyone, including those enrolled Cr/N.

When a problem involves computation you must give all of the following: a clear discussion
and justification of exactly what you did, the Matlab source code that produces the result,
and the final numerical results or plots.

To download Matlab files containing problem data, you’ll have to type the whole URL given
in the problem into your browser. To get a file called filename.m, for example, you would
retrieve

http://www.stanford.edu/class/ee364a/data_for_final/filename.m

with your browser.

All problems have equal weight. Some are easy. Others, not so much.

Be sure you are using the most recent version of CVX, which is Version 2.1, build 1074. You
can check this using the command cvx_version. Check your email often during the exam,
just in case we need to send out an important announcement.

Some problems involve applications. But you do not need to know anything about the
problem area to solve the problem; the problem statement contains everything you need.

1

1. Lightest structure that resists a set of loads. We consider a mechanical structure in 2D
(for simplicity) which consists of a set of m nodes, with known positions p1, . . . , pm ∈
R2, connected by a set of n bars (also called struts or elements), with cross-sectional
areas a1, . . . , an ∈ R+, and internal tensions t1, . . . , tn ∈ R.

Bar j is connected between nodes rj and sj. (The indices r1, . . . , rn and s1, . . . , sn give
the structure topology.) The length of bar j is Lj = ‖prj − psj‖2, and the total volume
of the bars is V =

∑n
j=1 ajLj. (The total weight is proportional to the total volume.)

Bar j applies a force (tj/Lj)(prj − psj) ∈ R2 to node sj and the negative of this force
to node rj. Thus, positive tension in a bar pulls its two adjacent nodes towards each
other; negative tension (also called compression) pushes them apart. The ratio of the
tension in a bar to its cross-sectional area is limited by its yield strength, which is
symmetric in tension and compression: |tj| ≤ σaj, where σ > 0 is a known constant
that depends on the material.

The nodes are divided into two groups: free and fixed. We will take nodes 1, . . . , k
to be free, and nodes k + 1, . . . ,m to be fixed. Roughly speaking, the fixed nodes are
firmly attached to the ground, or a rigid structure connected to the ground; the free
ones are not.

A loading consists of a set of external forces, f1, . . . , fk ∈ R2 applied to the free
nodes. Each free node must be in equilibrium, which means that the sum of the forces
applied to it by the bars and the external force is zero. The structure can resist a
loading (without collapsing) if there exists a set of bar tensions that satisfy the tension
bounds and force equilibrium constraints. (For those with knowledge of statics, these
conditions correspond to a structure made entirely with pin joints.)

Finally, we get to the problem. You are given a set of M loadings, i.e., f
(i)
1 , . . . , f

(i)
k ∈

R2, i = 1, . . . ,M . The goal is to find the bar cross-sectional areas that minimize
the structure volume V while resisting all of the given loadings. (Thus, you are to
find one set of bar cross-sectional areas, and M sets of tensions.) Using the problem
data provided in lightest_struct_data.m, report V ? and V unif , the smallest feasible
structure volume when all bars have the same cross-sectional area. The node positions
are given as a 2×m matrix P, and the loadings as a 2× k ×M array F. Use the code
included in the data file to visualize the structure with the bar cross-sectional areas
that you find, and provide the plot in your solution.

Hint. You might find the graph incidence matrix A ∈ Rm×n useful. It is defined as

Aij =

+1 i = rj
−1 i = sj
0 otherwise.

Remark. You could reasonably ask, ‘Does a mechanical structure really solve a convex
optimization problem to determine whether it should collapse?’. It sounds odd, but
the answer is, yes it does.

2

Solution. We can use the graph incidence matrix A to express the force exerted by
the bars on each node. For a loading f1, . . . , fk, define G ∈ R2×m such that gi, the
ith column of G, is the sum of the forces from each of the bars connected to node
i. Then G = −PADAT , where P ∈ R2×m is a matrix whose ith column is pi, and
D ∈ Rn×n is a diagonal matrix such that Djj = tj/Lj. (To see this, note that the
ith column of PAD is (ti/Li)(pri − psi), the force that bar i applies to the adjacent
node ri.) The force equilibrium constraints for the loading can then be written as
gi + fi = 0, for i = 1, . . . , k. A single set of bar cross-sectional areas must satisfy
the equilibrium constraints for each of the M loadings. The remaining constraints are
easily formulated.

We find that V ? = 188.55, and V unif = 492.00.

The following code solves the problem.

% lightest structure that resists a set of loads

lightest_struct_data;

% form incidence matrix

A = zeros(m, n);

for i = 1:n

A(r(i), i) = +1;

A(s(i), i) = -1;

end

L = norms(P*A)’;

% solve with all bars having same cross-sectional area

cvx_begin quiet

variables a(n) t(n, M)

expression G(2, m, M) % force due to bars

minimize (a’*L)

3

subject to

a == mean(a);

for i = 1:M

abs(t(:, i)) <= sigma.*a;

G(:, :, i) = -P*A*diag(t(:, i)./L)*A’;

G(:, 1:k, i) + F(:, :, i) == 0;

end

cvx_end

fprintf(’V^unif = %f\n’, cvx_optval);

% plot

clf;

subplot(1,2,1); hold on;

for i = 1:n

p1 = r(i); p2 = s(i);

plt_str = ’b-’;

if a(i) < 0.001

plt_str = ’r--’;

end

plot([P(1, p1) P(1, p2)], [P(2, p1) P(2, p2)], ...

plt_str, ’LineWidth’, a(i));

end

axis([-0.5 N-0.5 -0.1 N-0.5]); axis square; box on;

set(gca, ’xtick’, [], ’ytick’, []);

hold off;

% solve with bars having different cross-sectional areas

cvx_begin quiet

variables a(n) t(n, M)

expression G(2, m, M) % force due to bars

minimize (a’*L)

subject to

for i = 1:M

abs(t(:, i)) <= sigma.*a;

G(:, :, i) = -P*A*diag(t(:, i)./L)*A’;

G(:, 1:k, i) + F(:, :, i) == 0;

end

cvx_end

fprintf(’V^star = %f\n’, cvx_optval);

% plot

subplot(1,2,2); hold on;

4

for i = 1:n

p1 = r(i); p2 = s(i);

plt_str = ’b-’;

width = a(i);

if a(i) < 0.001

plt_str = ’r--’;

width = 1;

end

plot([P(1, p1) P(1, p2)], [P(2, p1) P(2, p2)], ...

plt_str, ’LineWidth’, width);

end

axis([-0.5 N-0.5 -0.1 N-0.5]); axis square; box on;

set(gca, ’xtick’, [], ’ytick’, []);

hold off;

print -depsc lightest_struct.eps;

5

2. Theory-applications split in a course. A professor teaches an advanced course with 20
lectures, labeled i = 1, . . . , 20. The course involves some interesting theoretical topics,
and many practical applications of the theory. The professor must decide how to split
each lecture between theory and applications. Let Ti and Ai denote the fraction of the
ith lecture devoted to theory and applications, for i = 1, . . . , 20. (We have Ti ≥ 0,
Ai ≥ 0, and Ti + Ai = 1.)

A certain amount of theory has to be covered before the applications can be taught.
We model this in a crude way as

A1 + · · ·+ Ai ≤ φ(T1 + · · ·+ Ti), i = 1, . . . , 20,

where φ : R → R is a given nondecreasing function. We interpret φ(u) as the cu-
mulative amount of applications that can be covered, when the cumulative amount of
theory covered is u. We will use the simple form φ(u) = a(u−b)+, with a, b > 0, which
means that no applications can be covered until b lectures of the theory is covered;
after that, each lecture of theory covered opens the possibility of covering a lectures
on applications.

The theory-applications split affects the emotional state of students differently. We let
si denote the emotional state of a student after lecture i, with si = 0 meaning neutral,
si > 0 meaning happy, and si < 0 meaning unhappy. Careful studies have shown that
si evolves via a linear recursion (dynamics)

si = (1− θ)si−1 + θ(αTi + βAi), i = 1, . . . , 20,

with s0 = 0. Here α and β are parameters (naturally interpreted as how much the
student likes or dislikes theory and applications, respectively), and θ ∈ [0, 1] gives the
emotional volatility of the student (i.e., how quickly he or she reacts to the content of
recent lectures). The student’s terminal emotional state is s20.

Now consider a specific instance of the problem, with course material parameters a = 2,
b = 3, and three groups of students, with emotional dynamics parameters given as
follows.

Group 1 Group 2 Group 3
θ 0.05 0.1 0.3
α -0.1 0.8 -0.3
β 1.4 -0.3 0.7

Find (four different) theory-applications splits that maximize the terminal emotional
state of the first group, the terminal emotional state of the second group, the terminal
emotional state of the third group, and, finally, the minimum of the terminal emotional
states of all three groups.

For each case, plot Ti and the emotional state si for the three groups, versus i. Report
the numerical values of the terminal emotional states for each group, for each of the
four theory-applications splits.

6

Solution. Because of the way that φ was chosen, the first b lectures have to be theory
only, i.e., Ti = 1, Ai = 0 for i = 1, . . . , b. Using this observation, we can rewrite the
condition on the theory-applications split:

Ab+1 + · · ·+ Ai ≤ a(Tb+1 + · · ·+ Ti), i = b+ 1, . . . , 20.

This is a linear inequality in the variables Tb+1, . . . , T20, and Ab+1, . . . , A20.

Note that each si is also linear in the same set of variables. Thus, maximizing the
given objective functions is a linear program.

Solving the numerical instance gives the following plots. The black curve shows Ti.
The red, green, and blue curves show the emotional states of the three student groups.

2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

Plan 1

2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

Plan 2

2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

Plan 3

2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

Plan 4

The terminal emotional states for the three groups under the four different lecture
plans are given by the table below.

Group 1 Group 2 Group 3
Plan 1 0.597 -0.064 0.682
Plan 2 -0.064 0.703 -0.300
Plan 3 0.597 -0.064 0.682
Plan 4 0.306 0.306 0.306

7

The following code solves the problem and generates the plots shown above.

% theory-applications split in a course

clear all; clf;

% set up the parameters

a = 2; b = 3;

theta = [0.05; 0.1; 0.3];

alpha = [-0.1; 0.8; -0.3];

beta = [1.4; -0.3; 0.7];

n = 20; % number of lectures

m = 3; % number of student groups

for plan = 1:m+1

cvx_begin quiet

variable T(n)

expressions s(m, n+1) obj

% compute the emotional states

for i = 1:n

s(:, i+1) = (1-theta).*s(:, i) ...

+ theta.*(alpha*T(i)+beta*(1-T(i)));

end

if plan == 4

obj = min(s(:, n+1));

else

obj = s(plan, n+1);

end

maximize obj

subject to

T >= 0;

T <= 1;

T(1:b) == 1;

cumsum(1-T(b+1:n)) <= a*cumsum(T(b+1:n));

cvx_end

% plot

subplot(4, 1, plan);

plot(1:n, T, ’k’, ...

1:n, s(1, 2:n+1), ’r’, ...

1:n, s(2, 2:n+1), ’g’, ...

8

1:n, s(3, 2:n+1), ’b’);

title(sprintf(’Plan %d’, plan));

axis([1 n -0.5 1.5]);

fprintf(’Plan %d: %f %f %f\n’, plan, ...

s(1, n+1), s(2, n+1), s(3, n+1));

end

print -depsc theory_appls.eps;

9

3. Optimal electric motor drive currents. In this problem you will design the drive current
waveforms for an AC (alternating current) electric motor. The motor has a magnetic
rotor which spins with constant angular velocity ω ≥ 0 inside the stationary stator. The
stator contains three circuits (called phase windings) with (vector) current waveform
i : R→ R3 and (vector) voltage waveform v : R→ R3, which are 2π-periodic functions
of the angular position θ of the rotor. The circuit dynamics are

v(θ) = Ri(θ) + ωL
d

dθ
i(θ) + ωk(θ),

where R ∈ S3
++ is the resistance matrix, L ∈ S3

++ is the inductance matrix, and
k : R → R3, a 2π-periodic function of θ, is the back-EMF waveform (which encodes
the electromagnetic coupling between the rotor permanent magnets and the phase
windings). The angular velocity ω, the matrices R and L, and the back-EMF waveform
k, are known.

We must have |vi(θ)| ≤ vsupply, i = 1, 2, 3, where vsupply is the (given) supply voltage.
The output torque of the motor at rotor position θ is τ(θ) = k(θ)T i(θ). We will require
the torque to have a given constant nonnegative value: τ(θ) = τdes for all θ.

The average power loss in the motor is

P loss =
1

2π

∫ 2π

0

i(θ)TRi(θ) dθ.

The mechanical output power is P out = ωτdes, and the motor efficiency is

η = P out/(P out + P loss).

The objective is to choose the current and voltage waveforms to maximize η.

Discretization. To solve this problem we consider a discretized version in which θ takes
on the N values θ = h, 2h, . . . , Nh, where h = 2π/N . We impose the voltage and
torque constraints for these values of θ. We approximate the power loss as

P loss = (1/N)
∑N

j=1i(jh)TRi(jh).

The circuit dynamics are approximated as

v(jh) = Ri(jh) + ωL
i((j + 1)h)− i(jh)

h
+ ωk(jh), j = 1, . . . , N,

where here we take i((N + 1)h) = i(h) (by periodicity).

Find optimal (discretized) current and voltage waveforms for the problem instance with
data given in ac_motor_data.m. The back-EMF waveform is given as a 3×N matrix
K. Plot the three current waveform components on one plot, and the three voltage
waveforms on another. Give the efficiency obtained.

Solution. We first note that all of the constraints are convex as stated. To maximize
the efficiency, we minimize the power loss, which is a sum of convex quadratic terms.
The following code will solve the problem.

10

% optimal electric motor drive currents

ac_motor_data;

Rhalf = chol(R);

cvx_begin

variables I(3, N) V(3, N)

minimize (norm(Rhalf*I, ’fro’)) % sqrt(N*Ploss)

subject to

V == R*I + omega*K + omega*L*(I(:, [2:N, 1])-I)/h; % dynamics

tau_des == sum(K.*I); % torque constraint

abs(V) <= V_supply; % voltage limits

cvx_end

Ploss = cvx_optval^2/N;

Pout = omega*tau_des;

eta = Pout/(Pout+Ploss);

fprintf(’Maximum efficiency: %f\n’, eta);

% plot

subplot(2, 1, 1);

plot(I(:, 1:N)’);

xlabel(’theta’); ylabel(’i(theta)’);

axis([0, 360, -100, 100]);

subplot(2, 1, 2);

plot(V’);

xlabel(’theta’); ylabel(’v(theta)’);

axis([0, 360, -750, 750]);

print -depsc ac_motor.eps;

The maximum efficiency is 90.2%. The optimal current and voltage waveforms are
shown below.

11

0 50 100 150 200 250 300 350
−100

−50

0

50

100

theta

i(
th

e
ta

)

0 50 100 150 200 250 300 350

−600

−400

−200

0

200

400

600

theta

v
(t

h
e
ta

)

12

4. Multi-label support vector machine. The basic SVM described in the book is used for
classification of data with two labels. In this problem we explore an extension of SVM
that can be used to carry out classification of data with more than two labels. Our
data consists of pairs (xi, yi) ∈ Rn × {1, . . . , K}, i = 1, . . . ,m, where xi is the feature
vector and yi is the label of the ith data point. (So the labels can take the values
1, . . . , K.) Our classifier will use K affine functions, fk(x) = aTk x + bk, k = 1, . . . , K,
which we also collect into affine function from Rn into RK as f(x) = Ax + b. (The
rows of A are aTk .) Given feature vector x, we guess the label ŷ = argmaxk fk(x). We
assume that exact ties never occur, or if they do, an arbitrary choice can be made.
Note that if a multiple of 1 is added to b, the classifier does not change. Thus, without
loss of generality, we can assume that 1T b = 0.

To correctly classify the data examples, we need fyi(xi) > maxk 6=yi fk(xi) for all i. This
is a set of homogeneous strict inequalities in ak and bk, which are feasible if and only if
the set of nonstrict inequalities fyi(xi) ≥ 1+maxk 6=yi fk(xi) are feasible. This motivates
the loss function

L(A, b) =
m∑
i=1

(
1 + max

k 6=yi
fk(xi)− fyi(xi)

)
+

,

where (u)+ = max{u, 0}. The multi-label SVM chooses A and b to minimize

L(A, b) + µ‖A‖2F ,

subject to 1T b = 0, where µ > 0 is a regularization parameter. (Several variations
on this are possible, such as regularizing b as well, or replacing the Frobenius norm
squared with the sum of norms of the columns of A.)

(a) Show how to find A and b using convex optimization. Be sure to justify any
changes of variables or reformulation (if needed), and convexity of the objective
and constraints in your formulation.

(b) Carry out multi-label SVM on the data given in multi_label_svm_data.m. Use
the data given in X and y to fit the SVM model, for a range of values of µ. This
data set includes an additional set of data, Xtest and ytest, that you can use to
test the SVM models. Plot the test set classification error rate (i.e., the fraction
of data examples in the test set for which ŷ 6= y) versus µ.

You don’t need to try more than 10 or 20 values of µ, and we suggest choosing
them uniformly on a log scale, from (say) 10−2 to 102.

Solution.

(a) The multi-label SVM problem is convexas stated. The variables are A and b.
The only constraint, 1T b = 0, is linear. The regularization term in the objective,

13

µ‖A‖2F , is convex quadratic. Let us justify that the loss function term L(A, b) is
convex, which we can do by showing each term,(

1 + max
k 6=yi

fk(xi)− fyi(xi)
)

+

,

is convex. Since fk(xi) is linear in the variables, maxk 6=yi fk(xi) is convex. The
argument of (·)+ is a sum of a constant, a convex, and a linear function, and so
is convex. The function (·)+ is convex and nondecreasing, so by the composition
rule, the term above is convex.

(b) The plot below shows the training and test error obtained for different values of
µ. A reasonable value to choose would be around µ = 1, although smaller values
seem to work well too.

10
−2

10
−1

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

µ

e
rr

o
r

Training Error

Test Error

The following code solves the problem.

% multi-label support vector machine

multi_label_svm_data;

mus = 10.^(-2:0.25:2);

errorTrain = [];

errorTest = [];

for mu = mus

cvx_begin quiet

variables A(K, n) b(K)

expressions L f(K, mTrain)

14

% f(k, i) stores f_k(x_i)

f = A*x + b*ones([1 mTrain]);

L = 0;

for k = 1:K

% process all examples with y_i = k simultaneously

ind = [1:k-1 k+1:K];

L = L + sum(pos(1 + max(f(ind, y==k), [], 1) ...

- f(k, y==k)));

end

minimize (L + mu*sum(sum(A.^2)))

subject to

sum(b) == 0;

cvx_end

[~, indTrain] = max(A*x + b*ones([1 mTrain]), [], 1);

errorTrain(end+1) = sum(indTrain~=y)/mTrain;

[~, indTest] = max(A*xtest + b*ones([1 mTest]), [], 1);

errorTest(end+1) = sum(indTest~=ytest)/mTest;

end

% plot

clf;

semilogx(mus, errorTrain); hold on;

semilogx(mus, errorTest, ’r’); hold off;

xlabel(’\mu’); ylabel(’error’);

legend(’Training Error’, ’Test Error’);

print -depsc multi_label_svm.eps;

15

5. De-leveraging. We consider a multi-period portfolio optimization problem, with n
assets and T time periods, where xt ∈ Rn gives the holdings (say, in dollars) at time
t, with negative entries denoting, as usual, short positions. For each time period the
return vector has mean µ ∈ Rn and covariance Σ ∈ Sn++. (These are known.)

The initial portfolio x0 maximizes the risk-adjusted expected return µTx − γxTΣx,
where γ > 0, subject to the leverage limit constraint ‖x‖1 ≤ Linit, where Linit > 0 is
the given initial leverage limit. (There are several different ways to measure leverage;
here we use the sum of the total short and long positions.) The final portfolio xT
maximizes the risk-adjusted return, subject to ‖x‖1 ≤ Lnew, where Lnew > 0 is the
given final leverage limit (with Lnew < Linit). This uniquely determines x0 and xT ,
since the objective is strictly concave.

The question is how to move from x0 to xT , i.e., how to choose x1, . . . , xT−1. We will
do this so as to maximize the objective

J =
T∑
t=1

(
µTxt − γxTt Σxt − φ(xt − xt−1)

)
,

which is the total risk-adjusted expected return, minus the total transaction cost. The
transaction cost function φ has the form

φ(u) =
n∑
i=1

(
κi|ui|+ λiu

2
i

)
,

where κ � 0 and λ � 0 are known parameters. We will require that ‖xt‖1 ≤ Linit, for
t = 1, . . . , T − 1. In other words, the leverage limit is the initial leverage limit up until
the deadline T , when it drops to the new lower value.

(a) Explain how to find the portfolio sequence x?1, . . . , x
?
T−1 that maximizes J subject

to the leverage limit constraints.

(b) Find the optimal portfolio sequence x?t for the problem instance with data given
in deleveraging_data.m. Compare this sequence with two others: xlpt = x0 for
t = 1, . . . , T − 1 (i.e., one that does all trading at the last possible period), and
the linearly interpolated portfolio sequence

xlint = (1− t/T)x0 + (t/T)xT , t = 1, . . . , T − 1.

For each of these three portfolio sequences, give the objective value obtained, and
plot the risk and transaction cost adjusted return,

µTxt − γxTt Σxt − φ(xt − xt−1),

and the leverage ‖xt‖1, versus t, for t = 0, . . . , T . Also, for each of the three
portfolio sequences, generate a single plot that shows how the holdings (xt)i of
the n assets change over time, for i = 1, . . . , n.

Give a very short (one or two sentence) intuitive explanation of the results.

16

Solution.

(a) It is easy to see that φ is convex in u. By the composition rule, it follows that each
period cost at time t is concave in x1, . . . , xT−1. Then, maximizing J subject to
the leverage limit constraints is a convex optimization problem. The constraints
for this optimization problem are straightforward: ‖xi‖1 ≤ Linit, i = 1, ..., T − 1,
x0 = x?0 and xT = x?T , where x?0 and x?T are both given by maximizing the risk
adjusted return (without transaction cost) subject to initial and last leverage
limit.

(b) The total net returns for the linearly interpolated portfolio sequence, the portfolio
sequence that does all the trading at the last period, and the optimal sequence
are 506.18, 520.42 and 531.38 respectively. In the following graphs, the three
sequences are drawn in green, red, and blue, in this order.

0 5 10 15
−20

−10

0

10

20

30

40

T

N
e

t
re

tu
rn

0 5 10 15

5

6

7

8

9

10

T

L
e

v
e

ra
g

e

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

T

h
o

ld
in

g
s

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

T

h
o

ld
in

g
s

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

T

h
o

ld
in

g
s

Intuitive explanation. The linearly interpolated portfolio smoothly changes its
positions, so it doesn’t incur much transaction cost. On the other hand, it starts
deleveraging well before the deadline, so it loses some opportunity to improve the
objective in the early steps. When we make all trades in the last period, we get
a good objective value up until then, but then we pay for it in transaction costs
in the last period, and the total objective suffers. When you transition just right,
you combine the best of both strategies: you keep the portfolio near the optimal

17

one for high leverage for about 10 periods, then smoothly transition to the new
portfolio, in such a way that the total objective is maximized.

The following code solve the problem.

% de-leveraging

deleveraging_data;

% compute initial and final portfolio

cvx_begin quiet

variable x0_star(n)

maximize (mu’*x0_star - gamma*quad_form(x0_star, Sigma))

subject to

norm(x0_star, 1) <= Linit;

cvx_end

cvx_begin quiet

variable xT_star(n)

maximize (mu’*xT_star - gamma*quad_form(xT_star, Sigma))

subject to

norm(xT_star, 1) <= Lnew;

cvx_end

% linear interpolation

Xlin = zeros(n, T+1);

for i = 1:T+1

Xlin(:, i) = (1-(i-1)/T)*x0_star + (i-1)/T*xT_star;

end

% trading at the last period

Xlp = [repmat(x0_star, 1, T) xT_star];

% optimization

cvx_begin quiet

variable X(n, T+1)

expressions dX(n, T) ret trs

dX = X(:, 2:T+1) - X(:, 1:T);

ret = 0; trs = 0;

for t = 2:T+1

ret = ret + mu’*X(:, t) - gamma*quad_form(X(:, t), Sigma);

trs = trs + kappa’*abs(dX(:, t-1)) ...

+ quad_form(dX(:, t-1), diag(lambda));

end

18

maximize ret - trs

subject to

X(:, 1) == x0_star;

X(:, T+1) == xT_star;

norms(X(:, 2:T), 1) <= Linit;

cvx_end

levOpt = norms(X, 1);

levLin = norms(Xlin, 1);

levLp = norms(Xlp, 1);

retOpt = X’*mu - gamma*diag(X’*Sigma*X);

retLin = Xlin’*mu - gamma*diag(Xlin’*Sigma*Xlin);

retLp = Xlp’*mu - gamma*diag(Xlp’*Sigma*Xlp);

dXlin = Xlin(:, 2:T+1) - Xlin(:, 1:T);

dXlp = Xlp(:, 2:T+1) - Xlp(:, 1:T);

trsOpt = abs(dX)’*kappa + diag(dX’*diag(lambda)*dX);

trsLin = abs(dXlin)’*kappa + diag(dXlin’*diag(lambda)*dXlin);

trsLp = abs(dXlp)’*kappa + diag(dXlp’*diag(lambda)*dXlp);

netReturnOpt = retOpt(2:T+1) - trsOpt;

netReturnLin = retLin(2:T+1) - trsLin;

netReturnLp = retLp (2:T+1) - trsLp;

fprintf(’J of x^lin : %f\n’, sum(netReturnLin));

fprintf(’J of x^lp : %f\n’, sum(netReturnLp));

fprintf(’J of x^star: %f\n’, sum(netReturnOpt));

% plot

clf;

subplot(2, 3, 1.5);

plot(1:T, netReturnLin, ’g’, 1:T, netReturnLp, ’r’, ...

1:T, netReturnOpt, ’b’);

xlabel(’T’); ylabel(’Net return’); xlim([0, T]);

subplot(2, 3, 2.5);

plot(0:T, levLin, ’g’, 0:T, levLp, ’r’, 0:T, levOpt, ’b’);

xlabel(’T’); ylabel(’Leverage’); axis([0 T Lnew-0.5 Linit+0.5]);

subplot(2, 3, 4); % x^lin

19

hold on;

for i = 1:n

plot(0:T, Xlin(i, :), ’g’);

end

hold off;

xlabel(’T’); ylabel(’holdings’); xlim([0 T]);

subplot(2, 3, 5); % x^lp

hold on;

for i = 1:n

plot(0:T, Xlp(i, :), ’r’);

end

hold off;

xlabel(’T’); ylabel(’holdings’); xlim([0 T]);

subplot(2, 3, 6); % x^star

hold on;

for i = 1:n

plot(0:T, X(i, :), ’b’);

end

hold off;

xlabel(’T’); ylabel(’holdings’); xlim([0 T]);

print -depsc deleveraging.eps;

20

6. Worst-case variance. Suppose Z is a random variable on Rn with covariance matrix
Σ ∈ Sn+. Let c ∈ Rn. The variance of Y = cTZ is var(Y) = cTΣc. We define the

worst-case variance of Y , denoted wcvar(Y), as the maximum possible value of cT Σ̃c,
over all Σ̃ ∈ Sn+ that satisfy Σii = Σ̃ii, i = 1, . . . , n. In other words, the worst-case
variance of Y is the maximum possible variance, if we are allowed to arbitrarily change
the correlations between Zi and Zj. Of course we have wcvar(Y) ≥ var(Y).

(a) Find a simple expression for wcvar(Y) in terms of c and the diagonal entries of
Σ. You must justify your expression.

(b) Portfolio optimization. Explain how to find the portfolio x ∈ Rn that maximizes
the expected return µTx subject to a limit on risk, var(rTx) = xTΣx ≤ R, and a
limit on worst-case risk wcvar(rTx) ≤ Rwc, where R > 0 and Rwc > R are given.
Here µ = E r and Σ = E(r − µ)(r − µ)T are the (given) mean and covariance of
the (random) return vector r ∈ Rn.

(c) Carry out the method of part (b) for the problem instance with data given in
wc_risk_portfolio_opt_data.m. Also find the optimal portfolio when the worst-
case risk limit is ignored. Find the expected return and worst-case risk for these
two portfolios.

Remark. If a portfolio is highly leveraged, and the correlations in the returns change
drastically, you (the portfolio manager) can be in big trouble, since you are now exposed
to much more risk than you thought you were. And yes, this (almost exactly) has
happened.

Solution.

(a) We will show that

wcvar(Y) =

(
n∑
i=1

|ci|
√

Σii

)2

.

This worst-case variance value is obtained by the matrix Σwc = ddT , where d ∈ Rn

is defined as
di = sign(ci)

√
Σii, i = 1, . . . , n.

Note that Σwc ∈ Sn+ and its diagonal entries are the same as Σ.

To show this (and also, to derive it) we proceed as follows. For any Σ̃ ∈ Sn+ that

satisfies Σii = Σ̃ii for all i, we have

cT Σ̃c =
n∑
i=1

c2i Σ̃ii +
∑
i 6=j

cicjΣ̃ij

=
n∑
i=1

c2iΣii +
∑
i 6=j

cicjΣ̃ij.

21

Since Σ̃ � 0, we must have

|Σ̃ij| ≤
√

Σ̃iiΣ̃jj =
√

ΣiiΣjj

for i 6= j. If we maximize cT Σ̃c over the off-diagonal elements of Σ̃ subject to this
limit, we find that the maximum occurs when

Σ̃ij = sign(cicj)
√

ΣiiΣjj

for i 6= j. We can re-write this as

Σ̃ij =
√

ΣiiΣjj sign(ci) sign(cj), i, j = 1, . . . , n.

So far, we have not taken into account the constraint that Σ̃ � 0. Fortunately,
the matrix above satisfies this, since we can express it as Σ̃ = ddT .

(b) Given the data µ, Σ, R, and Rwc, we solve the optimization problem

maximize µTx
subject to xTΣx ≤ R∑n

i=1 |xi|
√

Σii ≤
√
Rwc.

(c) The optimal portfolio with the worst-case risk limit is

x? = (2.263, 0, 0, 0, 0, 0, 0, 0.698, − 1.673, 0),

with expected return µTx? = 8.195, and worst case risk wcvar(rTx?) = 10.

The optimal portfolio with the worst-case risk limit ignored is

x? = (1.625, 1.214, −0.672, −1.821, 2.395, −0.892, 0.533, 3.967, −0.565, −2.769),

with expected return µTx? = 13.512, and worst case risk wcvar(rTx?) = 117.197.

The following code solves the problem.

% worst-case variance

wc_risk_portfolio_opt_data;

cvx_begin quiet

variable x(n)

maximize (mu’*x)

subject to

quad_form(x, Sigma) <= R;

norm(sqrt(diag(Sigma)).*x, 1) <= sqrt(R_wc);

cvx_end

fprintf(’Portfolio with the worst-case risk limit:\n’)

22

fprintf(’ Expected return: %.3f\n’, mu’*x);

fprintf(’ Variance: %.3f\n’, quad_form(x, Sigma));

fprintf(’ Worst case risk: %.3f\n’, norm(sqrt(diag(Sigma)).*x, 1)^2);

fprintf(’ x = (’);

for i = 1:n

fprintf(’%.3f, ’, x(i));

end

fprintf(’)\n\n’);

cvx_begin quiet

variable x(n)

maximize (mu’*x)

subject to

quad_form(x, Sigma) <= R;

cvx_end

fprintf(’Portfolio without the worst-case risk limit:\n’)

fprintf(’ Expected return: %.3f\n’, mu’*x);

fprintf(’ Variance: %.3f\n’, quad_form(x, Sigma));

fprintf(’ Worst case risk: %.3f\n’, norm(sqrt(diag(Sigma)).*x, 1)^2);

fprintf(’ x = (’);

for i = 1:n

fprintf(’%.3f, ’, x(i));

end

fprintf(’)\n’);

23

7. Smallest confidence ellipsoid. Suppose the random variable X on Rn has log-concave
density p. Formulate the following problem as a convex optimization problem: Find an
ellipsoid E that satisfies Prob(X ∈ E) ≥ 0.95 and is smallest, in the sense of minimizing
the sum of the squares of its semi-axis lengths. You do not need to worry about how to
solve the resulting convex optimization problem; it is enough to formulate the smallest
confidence ellipsoid problem as the problem of minimizing a convex function over a
convex set involving the parameters that define E .

Solution. We parametrize the ellipsoid as E(c, P) = {x | (x − c)TP−1(x − c) ≤ 1},
where P � 0. The semi-axis lengths are λ

1/2
i , where λi are the eigenvalues of P . The

sum of the squares of the semi-axis lengths is
∑

i λi = TrP . So our job is to minimize
TrP subject to Prob(X ∈ E) ≥ 0.95.

Define g(x, c, P) as the 0-1 indicator function of E , i.e.,

g(x, c, P) =

{
1 (x− c)TP−1(x− c) ≤ 1
0 otherwise.

Since (x− c)TP−1(x− c) is a convex function of (x, c, P) (for P � 0), log g is concave
in (x, c, P), so g is log-concave in (x, c, P). By the integration rule for log-concave
functions, ∫

p(x)g(x, c, P) dx = Prob(X ∈ E(c, P))

is log-concave in (c, P). So for any η, Prob(X ∈ E(c, P)) ≥ η is a convex constraint
in (c, P). In particular,

{(c, P) | Prob(X ∈ E(c, P)) ≥ 0.95}

is a convex set. We simply minimize (the linear function) TrP over this set to get the
smallest confidence ellipsoid.

24

8. Lyapunov analysis of a dynamical system. We consider a discrete-time time-varying
linear dynamical system with state xt ∈ Rn. The state propagates according to the
linear recursion xt+1 = Atxt, for t = 0, 1, . . ., where the matrices At are unknown but
satisfy At ∈ A = {A(1), . . . , A(K)}, where A(1), . . . , A(K) are known. (In computer sci-
ence, this would be called a non-deterministic linear automaton.) We call the sequence
x0, x1, . . . a trajectory of the system. There are infinitely many trajectories, one for
each sequence A0, A1,

The Lyapunov exponent κ of the system is defined as

κ = sup
A0,A1,...

lim sup
t→∞

‖xt‖1/t2 .

(If you don’t know what sup and lim sup mean, you can replace them with max and
lim, respectively.) Roughly speaking, this means that all trajectories grow no faster
than κt. When κ < 1, the system is called exponentially stable.

It is a hard problem to determine the Lyapunov exponent of the system, or whether
the system is exponentially stable, given the data A(1), . . . , A(K). In this problem we
explore a powerful method for computing an upper bound on the Lyapunov exponent.

(a) Let P ∈ Sn++ and define V (x) = xTPx. Suppose V satisfies

V (A(i)x) ≤ γ2V (x) for all x ∈ Rn, i = 1, . . . , K.

Show that κ ≤ γ. Thus γ is an upper bound on the Lyapunov exponent κ. (The
function V is called a quadratic Lyapunov function for the system.)

(b) Explain how to use convex or quasiconvex optimization to find a matrix P ∈ Sn++

with the smallest value of γ, i.e., with the best upper bound on κ. You must
justify your formulation.

(c) Carry out the method of part (b) for the specific problem with data given in
lyap_exp_bound_data.m. Report the best upper bound on κ, to a tolerance of
0.01. The data A(i) are given as a cell array; A{i} gives A(i).

(d) Approximate worst-case trajectory simulation. The quadratic Lyapunov function
found in part (c) can be used to generate sequences of At that tend to result

in large values of ‖xt‖1/t2 . Start from a random vector x0. At each t, generate
xt+1 by choosing At = A(i) that maximizes V (A(i)xt), where P is computed from

part (c). Do this for 50 time steps, and generate 5 such trajectories. Plot ‖xt‖1/t2

and γ against t to verify that the bound you obtained in the previous part is valid.
Report the lower bound on the Lyapunov exponent that the trajectories suggest.

Solution.

25

(a) Suppose V satisfies the conditions given above, and x0, x1, . . . is any trajectory
of the system. Then, V (xt+1) ≤ γ2V (xt) for all t ≥ 0. It follows that V (xt) ≤
γ2tV (x0). So we have

‖xt‖22 =
xTt xt
xTt Pxt

xTt Pxt ≤ sup
x 6=0

xTx

xTPx
V (xt) ≤ λmin(P)−1γ2tV (x0),

and thus,
‖xt‖1/t2 ≤ λmin(P)−1/2tγV (x0)

1/2t.

Taking the limit as t→∞ we get κ ≤ γ.

(b) The given condition on V is equivalent to the matrix inequalities

A(i)TPA(i) � γ2P, i = 1, . . . , K.

For any fixed γ, these are linear matrix inequalities in P , hence convex constraints.

Note that the LMIs above are homogeneous in P . Therefore, without loss of
generality, we can require P � I in order to enforce P to be positive definite.
Thus, there is a quadratic Lyapunov function that establishes the bound γ if and
only if the LMIs

A(i)TPA(i) � γ2P, i = 1, . . . , K, P � I

are feasible. This defines a convex set of P , so finding the smallest possible value
of γ is a quasiconvex problem. Then, we can use bisection on γ to solve this
problem.

(c) We find that the best bound obtained by the method above is γ = 0.97. The
following code solves the problem.

% lyapunov analysis of a dynamical system

lyap_exp_bound_data;

% compute lower and upper bounds for bisection

l = 0; u = 0;

for i = 1:K

l = max(l, max(abs(eig(A{i}))));

u = max(u, norm(A{i}));

end

bisection_tol = 1e-4;

while u-l >= bisection_tol

fprintf(’bisection bounds: %f %f\n’, l, u);

gamma = (l+u)/2;

cvx_begin quiet

26

variable P(n, n) symmetric

minimize trace(P)

subject to

for i = 1:K

gamma^2*P - A{i}’*P*A{i} == semidefinite(n)

end

P-eye(n) == semidefinite(n)

cvx_end

if strcmp(cvx_status, ’Solved’)

u = gamma;

bound = gamma;

P_opt = P;

else

l = gamma;

end

end

fprintf(’smallest value of gamma = %f\n’, bound);

We mention the initial lower and upper bound used in the code, that we didn’t
ask you to explore. Suppose that the initial state was an eigenvector of some A(i)

with eigenvalue λ, and that this particular A(i) was chosen at every time step.
Under this condition, it is easy to see that |λ| gives a lower bound on γ. On the
other hand, the ratio ‖xt+1‖2/‖xt‖2 is bounded by maxi ‖A(i)‖, so we obtain an
upper bound on γ.

(d) The figure shows five random trajectories in blue, and the γ bound in red. The
initial lower and upper bound used in the bisection method are shown in green.
The trajectories suggest that the Lyapunov exponent of the system is 0.86 or
higher.

27

0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

t

|x
t| 21

/t

The following code generates the plot.

% approximate worst-case trajectory

% simulation of a dynamical system

clf; hold on;

T = 50;

for traj = 1:5

x = randn(n, 1); % random initial state

x = 1.1*x/norm(x);

ys = [];

for t = 1:T

best = 0;

for i = 1:K

if best < x’*A{i}’*P_opt*A{i}*x

best = x’*A{i}’*P_opt*A{i}*x;

x_next = A{i}*x;

end

end

x = x_next;

ys(end+1) = norm(x)^(1/t);

end

plot(1:T, ys);

28

end

l = 0; u = 0;

for i = 1:K

l = max(l, max(abs(eig(A{i}))));

u = max(u, norm(A{i}));

end

plot([1 T], [bound bound], ’r’, ...

[1 T], [l l], ’g’, ...

[1 T], [u u], ’g’);

xlabel(’t’); ylabel(’|x_t|_2^{1/t}’);

hold off;

print -depsc lyap_exp_bound.eps;

29

