
EE364a: Convex Optimization I S. Boyd
March 15–16 or March 16–17, 2013

Final Exam Solutions

This is a 24 hour take-home final. Please turn it in at Bytes Cafe in the Packard building,
24 hours after you pick it up.

You may use any books, notes, or computer programs (e.g., Matlab, CVX), but you may not
discuss the exam with anyone until March 18, after everyone has taken the exam. The only
exception is that you can ask us for clarification, via the course staff email address. We’ve
tried pretty hard to make the exam unambiguous and clear, so we’re unlikely to say much.

Please make a copy of your exam before handing it in.

Please attach the cover page to the front of your exam. Assemble your solutions in
order (problem 1, problem 2, problem 3, . . .), starting a new page for each problem. Put
everything associated with each problem (e.g., text, code, plots) together; do not attach code
or plots at the end of the final.

We will deduct points from long needlessly complex solutions, even if they are
correct. Our solutions are not long, so if you find that your solution to a problem goes on
and on for many pages, you should try to figure out a simpler one. We expect neat, legible
exams from everyone, including those enrolled Cr/N.

When a problem involves computation you must give all of the following: a clear discussion
and justification of exactly what you did, the Matlab source code that produces the result,
and the final numerical results or plots.

To download Matlab files containing problem data, you’ll have to type the whole URL given
in the problem into your browser; there are no links on the course web page pointing to these
files. To get a file called filename.m, for example, you would retrieve

http://www.stanford.edu/class/ee364a/data_for_final/filename.m

with your browser.

All problems have equal weight.

Be sure you are using the most recent version of CVX, which is Version 2.0 (beta), build
937. You can check this using the command cvx_version.

Be sure to check your email often during the exam, just in case we need to send out an
important announcement.

1

1. Minimum time speed profile along a road. A vehicle of mass m > 0 moves along a road
in R3, which is piecewise linear with given knot points p1, . . . , pN+1 ∈ R3, starting at
p1 and ending at pN+1. We let hi = (pi)3, the z-coordinate of the knot point; these are
the heights of the knot points (above sea-level, say). For your convenience, these knot
points are equidistant, i.e., ‖pi+1 − pi‖2 = d for all i. (The points give an arc-length
parametrization of the road.) We let si > 0 denote the (constant) vehicle speed as it
moves along road segment i, from pi to pi+1, for i = 1, . . . , N , and sN+1 ≥ 0 denote
the vehicle speed after it passes through knot point pN+1. Our goal is to minimize the
total time to traverse the road, which we denote T .

We let fi ≥ 0 denote the total fuel burnt while traversing the ith segment. This
fuel burn is turned into an increase in vehicle energy given by ηfi, where η > 0 is a
constant that includes the engine efficiency and the energy content of the fuel. While
traversing the ith road segment the vehicle is subject to a drag force, given by CDs

2
i ,

where CD > 0 is the coefficient of drag, which results in an energy loss dCDs
2
i .

We derive equations that relate these quantities via energy balance:

1

2
ms2

i+1 +mghi+1 =
1

2
ms2

i +mghi + ηfi − dCDs2
i , i = 1, . . . , N,

where g = 9.8 is the gravitational acceleration. The lefthand side is the total vehicle
energy (kinetic plus potential) after it passes through knot point pi+1; the righthand
side is the total vehicle energy after it passes through knot point pi, plus the energy
gain from the fuel burn, minus the energy lost to drag. To set up the first vehicle speed
s1 requires an additional initial fuel burn f0, with ηf0 = 1

2
ms2

1.

Fuel is also used to power the on-board system of the vehicle. The total fuel used for
this purpose is fob, where ηfob = TP , where P > 0 is the (constant) power consumption
of the on-board system. We have a fuel capacity constraint:

∑N
i=0 fi + fob ≤ F , where

F > 0 is the total initial fuel.

The problem data are m, d, h1, . . . , hN+1, η, CD, P , and F . (You don’t need the knot
points pi.)

(a) Explain how to find the fuel burn levels f0, . . . , fN that minimize the time T ,
subject to the constraints.

(b) Carry out the method described in part (a) for the problem instance with data
given in min_time_speed_data.m. Give the optimal time T ?, and compare it
to the time T unif achieved if the fuel for propulsion were burned uniformly, i.e.,
f0 = · · · = fN . For each of these cases, plot speed versus distance along the road,
using the plotting code in the data file as a template.

Solution.

2

(a) The time to traverse the ith segment is d/si, so the total time is

T =
N∑
i=1

d

si
.

We are to solve the problem

minimize
∑N

i=1 d/si
subject to 1

2
ms2

i+1 +mghi+1 = 1
2
ms2

i +mghi + ηfi − dCDs2
i , i = 1, . . . , N∑N

i=0 fi + PT/η ≤ F
fi ≥ 0, i = 0, . . . , N
ηf0 = 1

2
ms2

1,

with variables fi and si. The domain of the objective gives the implicit constraint
si > 0, i = 1, . . . , N . The objective is convex, but unfortunately, the equality
constraints are not linear because of the s2

i terms. So we will try introducing the
new variables zi = s2

i . Since si ≥ 0, we can recover speed from the new variables
using si =

√
zi. Note that zi is proportional to the kinetic energy; therefore this

change of variables can be thought of as solving the problem in terms of kinetic
energy instead of speed. Our equality constraints now become

1

2
mzi+1 +mghi+1 =

1

2
mzi +mghi + ηfi − dCDzi, i = 1, . . . , N

and ηf0 = 1
2
mz1, which are linear equations in the variables zi and fi. We now

return to our objective which, under this change of variables, becomes

T =
N∑
i=1

d

si
=

N∑
i=1

dz
−1/2
i ,

which is convex since z
−1/2
i is convex. Having shown that T is convex in our new

variables, it is clear that the fuel capacity constraint

N∑
i=0

fi + PT/η =
N∑
i=0

fi + P/η

N∑
i=1

dz
−1/2
i ≤ F

is a convex constraint. We can therefore find f0, . . . , fN by solving the convex
optimization problem

minimize
∑N

i=1 dz
−1/2
i

subject to 1
2
mzi+1 +mghi+1 = 1

2
mzi +mghi + ηfi − dCDzi, i = 1, . . . , N∑N

i=0 fi + P/η
∑N

i=1 d(zi)
−1/2 ≤ F

fi ≥ 0, i = 0, . . . , N
ηf0 = 1

2
mz1,

with variables f0, . . . , fN and z1, . . . , zN . Then we recover si using si =
√
zi.

3

(b) The following code solves the problem:

% Minimum time speed profile along a road.

min_time_speed_data;

% minimum time

cvx_begin

variables z(N+1) f(N+1)

minimize sum(d*inv_pos(sqrt(z(1:N))))

subject to

.5*m*z(2:N+1)+m*g*h(2:N+1) ==...

.5*m*z(1:N)+m*g*h(1:N)+eta*f(2:N+1)-d*C_D*z(1:N)

sum(f)+P/eta*sum(d*inv_pos(sqrt(z(1:N)))) <= F

f >= 0

eta*f(1) == .5*m*z(1)

cvx_end

T = cvx_optval

% constant fuel burn

cvx_solver sdpt3

% sedumi fails, but only on this 1 part of 1 problem

% from the entire exam, and only if you replaced

% the vector f, by the variable fc as below

cvx_begin

variables zc(N+1) fc

minimize sum(d*inv_pos(sqrt(zc(1:N))))

subject to

.5*m*zc(2:N+1)+m*g*h(2:N+1) ==...

.5*m*zc(1:N)+m*g*h(1:N)+eta*fc-d*C_D*zc(1:N)

(N+1)*fc+P/eta*sum(d*inv_pos(sqrt(zc(1:N)))) <= F

fc >= 0

eta*fc == .5*m*zc(1)

cvx_end

T_unif = cvx_optval

figure

subplot(3,1,1)

plot((0:N)*d,h);

ylabel(’height’);

subplot(3,1,2)

stairs((0:N)*d,sqrt(z),’b’);

4

hold on

stairs((0:N)*d,sqrt(zc),’--r’);

ylabel(’speed’)

legend(’minimum time’,’constant burn’)

subplot(3,1,3)

plot((0:N)*d,f,’b’);

hold on

plot((0:N)*d,fc*ones(N+1,1),’--r’)

xlabel(’distance’)

ylabel(’fuel burned’)

print -depsc min_time_speed;

We get T ∗ = 213.26 and T unif = 258.48. Note that you can find T unif by replacing
the fi’s by a single parameter fc as we did, or by constraining all of the fi’s to be
equal. The plot below shows the speed and fuel burn profiles for the two cases.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−200

−100

0

100

200

h
e

ig
h

t

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
20

40

60

80

s
p

e
e

d

minimum time

constant burn

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

distance

fu
e

l
b

u
rn

e
d

We see that the optimal fuel burn attempts to keep a constant velocity, except
near the end of the trajectory, where it coasts to the finish line. The uniform fuel
burn wastes fuel (and therefore loses time) by burning fuel on the downhill parts,
leading to a large speed, and therefore, large loss due to drag.

5

2. Polynomial approximation of inverse using eigenvalue information. We seek a polyno-
mial of degree k, p(a) = c0 + c1a+ c2a

2 + · · ·+ cka
k, for which

p(A) = c0I + c1A+ c2A
2 · · ·+ ckA

k

is an approximate inverse of the nonsingular matrix A, for all A ∈ A ⊂ Rn×n. When
x̂ = p(A)b is used as an approximate solution of the linear equation Ax = b, the
associated residual norm is ‖A(p(A)b) − b‖2. We will judge our polynomial (i.e., the
coefficients c0, . . . , ck) by the worst case residual over A ∈ A and b in the unit ball:

Rwc = sup
A∈A, ‖b‖2≤1

‖A(p(A)b)− b‖2.

The set of matrices we take is A = {A ∈ Sn | σ(A) ⊆ Ω}, where σ(A) is the set of
eigenvalues of A (i.e., its spectrum), and Ω ⊂ R is a union of a set of intervals (that
do not contain 0).

(a) Explain how to find coefficients c?0, . . . , c
?
k that minimize Rwc. Your solution can

involve expressions that involve the supremum of a polynomial (with scalar argu-
ment) over an interval.

(b) Carry out your method for k = 4 and Ω = [−0.6,−0.3] ∪ [0.7, 1.8]. You can
replace the supremum of a polynomial over Ω by a maximum over uniformly
spaced (within each interval) points in Ω, with spacing 0.01. Give the optimal
value Rwc? and the optimal coefficients c? = (c?0, . . . , c

?
k).

Remarks. (Not needed to solve the problem.)

• The approximate inverse p(A)b would be computed by recursively, requiring the
multiplication of A with a vector k times.

• This approximate inverse could be used as a preconditioner for an iterative method.

• The Cayley-Hamilton theorem tells us that the inverse of any (invertible) matrix
is a polynomial of degree n− 1 of the matrix. Our hope here, however, is to get a
single polynomial, of relatively low degree, that serves as an approximate inverse
for many different matrices.

Solution.

(a) We can rewrite
Rwc = sup

A∈A
sup
‖b‖2≤1

‖A(p(A)b)− b‖2,

and recognize the inner supremum as the definition of the spectral norm of
Ap(A)− I. If A is symmetric, then Ap(A)− I is also symmetric, and its spectral
norm is the largest absolute value of its eigenvalues.

6

Let QDQT be an eigenvalue decomposition of A, with Q orthogonal and D diag-
onal. Then

Ap(A)− I = c0A+ c1A
2 + · · ·+ ckA

k+1 − I
= c0QDQ

T + c1QD
2QT + · · ·+ ckQD

k+1QT − I
= Q(c0D + c1D

2 + · · ·+ ckD
k+1 − I)QT

= Q(Dp(D)− I)QT ,

which shows that λp(λ)− 1 ∈ σ(Ap(A)− I) if λ ∈ σ(A).

We can then rewrite

Rwc = sup
A∈A
‖Ap(A)− I‖2

= sup
A∈A

sup
λ∈σ(A)

|λp(λ)− 1|

= sup
λ∈Ω
|λp(λ)− 1|

= sup
λ∈Ω
|c0λ+ c1λ

2 + · · ·+ ckλ
k+1 − 1|,

and note that Rwc is a convex function of c since, for any λ, c0λ + c1λ
2 + · · · +

ckλ
k+1 − 1 is an affine function of c. We can write the optimization problem as

minimize supλ∈Ω |c0λ+ c1λ
2 + · · ·+ ckλ

k+1 − 1|.

This problem can be converted exactly into an SDP (since the supremum of a
polynomial has an LMI representation), but for any practical purpose simple
sampling of Ω is fine.

(b) Let λ1, . . . , λN be uniformly spaced (within each interval contained in Ω) sample
points, with spacing 0.01. We approximate the objective by

max
i=1,...,N

|c0λi + c1λ
2
i + · · ·+ ckλ

k+1
i − 1|.

Define Λ ∈ RN×(k+1) as Λij = λji . This allows us to write the (approximate)
optimization problem as

minimize ‖Λc− 1‖∞.

We find that Rwc? = 0.2441, with coefficients

c? = (−1.54, 4.43, 1.98,−5.61, 1.96).

That’s impressive: A single polynomial of degree 4 serves as a crude inverse for
a whole family of matrices! We plot λp(λ) − 1 with a blue line over the interval
[−0.6, 1.8], and indicate Ω and the bounds ±Rwc? with a red dashed line.

7

We didn’t ask you to do this, but we also compute ‖Ap(A)b−b‖2 for 1000 random
instances of A ∈ A with n = 10, and b with ‖b‖2 = 1. We generate A by sampling
eigenvalues uniformly from Ω, placing them in a diagonal matrix D, and forming
A = QDQT , for a random orthogonal matrix Q (which we generate by taking
the QR decomposition of a matrix with Gaussian entries). We generate b from a
Gaussian distribution and normalize (which gives a uniform distribution on the
unit sphere). Of course, the distributions don’t matter. A histogram and the code
are given below. Note that the worst case error across the samples is a bit under
0.24, quite consistent with our value of Rwc?.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

λ
 p

(λ
)

−
 1

λ

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

10

20

30

40

50

60

70

80

90

100

||Ap(A)b − b||
2

o
c
c
u

rr
e

n
c
e

s

% Polynomial approximation of inverse using eigenvalue information.

k = 4; % k degree polynomials

l1 = -.6;

u1 = -.3;

l2 = .7;

8

u2 = 1.8;

eta = 0.01;

lambdas = [l1:eta:u1 l2:eta:u2]’;

Lambda = lambdas;

for i = 1:k

Lambda(:,end+1) = Lambda(:,end).*lambdas;

end

cvx_begin

variable c(k+1)

minimize(norm(Lambda*c - 1,inf))

cvx_end

R_wc = cvx_optval;

lambdas_full = [l1:eta:u2]’;

Lambda_full = lambdas_full;

for i = 1:k

Lambda_full(:,end+1) = Lambda_full(:,end).*lambdas_full;

end

y2 = Lambda_full*c - 1;

figure

hold on

plot(lambdas_full,y2)

plot(l1:eta:u1,0*(l1:eta:u1) + R_wc,’--r’,...

l1:eta:u1,0*(l1:eta:u1) - R_wc,’--r’,...

l2:eta:u2,0*(l2:eta:u2) + R_wc,’--r’,...

l2:eta:u2,0*(l2:eta:u2) - R_wc,’--r’)

ylabel(’\lambda p(\lambda) - 1’)

xlabel(’\lambda’)

axis([l1 u2 -1.2 .4])

print ’-depsc’ ’poly_approx_inv.eps’

%testing code

randn(’state’,0)

rand(’state’,0)

n = 10;

runs = 1000;

9

r = (u1-l1)/(u2-l2 + u1-l1);

errors = zeros(runs,1);

for i = 1:runs

%create random eigenvalues in [l1,u1] \cup [l2,u2]

a = rand(n,1);

a = l1 + (l2-u1)*(sign(a-r)+1)/2 + (u2-l2 + u1-l1)*a;

[Q R] = qr(rand(n,n));

A = Q*diag(a)*Q’;

b = randn(n,1);

b = b/norm(b);

q = -b;

for j = 1:k+1

q = q + c(j)*A^j*b;

end

errors(i) = norm(q);

end

figure

hist(errors,25)

xlabel(’||Ap(A)b - b||_2’)

ylabel(’occurrences’)

print -depsc poly_approx_inv_hist.eps

10

3. Fitting a generalized additive regression model. A generalized additive model has the
form

f(x) = α +
n∑
j=1

fj(xj),

for x ∈ Rn, where α ∈ R is the offset, and fj : R→ R, with fj(0) = 0. The functions
fj are called the regressor functions. When each fj is linear, i.e., has the form wjxj,
the generalized additive model is the same as the standard (linear) regression model.
Roughly speaking, a generalized additive model takes into account nonlinearities in
each regressor xj, but not nonlinear interactions among the regressors. To visualize a
generalized additive model, it is common to plot each regressor function (when n is
not too large).

We will restrict the functions fj to be piecewise-affine, with given knot points p1 <
· · · < pK . This means that fj is affine on the intervals (−∞, p1], [p1, p2], . . . , [pK−1, pK],
[pK ,∞), and continuous at p1, . . . , pK . Let C denote the total (absolute value of)
change in slope across all regressor functions and all knot points. The value C is a
measure of nonlinearity of the regressor functions; when C = 0, the generalized additive
model reduces to a linear regression model.

Now suppose we observe samples or data (x(1), y(1)), . . . , (x(N), y(N)) ∈ Rn × R, and
wish to fit a generalized additive model to the data. We choose the offset and the
regressor functions to minimize

1

N

N∑
i=1

(y(i) − f(x(i))2 + λC,

where λ > 0 is a regularization parameter. (The first term is the mean-square error.)

(a) Explain how to solve this problem using convex optimization.

(b) Carry out the method of part (a) using the data in the file gen_add_reg_data.m.
This file contains the data, given as an N × n matrix X (whose rows are (x(i))T),
a column vector y (which give y(i)), a vector p that gives the knot points, and the
scalar lambda.

Give the mean-square error achieved by your generalized additive regression model.
Compare the estimated and true regressor functions in a 3×3 array of plots (using
the plotting code in the data file as a template), over the range −10 ≤ xi ≤ 10.
The true regressor functions (to be used only for plotting, of course) are given in
the cell array f.

Hints.

• You can represent each regressor function fj as a linear combination of the basis
functions b0(u) = u and bi(u) = (u − pk)+ − (−pk)+ for k = 1, 2, . . . , K, where
(a)+ = max{a, 0}.

11

• You might find the matrix XX =
[
b0(X) b1(X) · · · bK(X)

]
useful.

Solution. There is not much more to say beyond showing the code and the plot.

% Fitting a generalized additive regression model.

gen_add_reg_data;

%build an augmented data matrix XX

XX=X;

for ii=1:K

XX=[XX,max(0,X-p(ii))+min(p(ii),0)];

end

%Perform regression

cvx_begin

variables alpha c(9*(K+1))

minimize(1/N*sum_square(y-alpha-XX*c)+lambda*norm(c,1))

cvx_end

%Plot functions.

xx=linspace(-10,10,1024);

yy=zeros(9,1024);

figure

for jj=1:9

yy(jj,:)=c(jj)*xx;

for ii=1:K

yy(jj,:)=yy(jj,:)+c(ii*9+jj)*(pos(xx-p(ii))-pos(-p(ii)));

end

subplot(3,3,jj);

plot(xx,yy(jj,:));

hold on;

plot(xx,f{jj}(xx),’r’)

end

print -depsc gen_add_reg.eps

12

−10 0 10
−4

−2

0

2

4

−10 0 10
−1

0

1

2

3

−10 0 10
−2

0

2

4

−10 0 10
−2

−1

0

1

2

−10 0 10
−2

−1

0

1

−10 0 10
−2

−1

0

1

−10 0 10
−1

0

1

2

−10 0 10
−1

0

1

2

3

−10 0 10
−1

0

1

2

The blue and red lines correspond to the estimated and true regressors, respectively.

13

4. Maximum likelihood estimation for an affinely transformed distribution. Let z be a
random variable on Rn with density pz(u) = exp−φ(‖u‖2), where φ : R → R is
convex and increasing. Examples of such distributions include the standard normal
N (0, σ2I), with φ(u) = (u)2

+ + α, and the multivariable Laplacian distribution, with
φ(u) = (u)+ + β, where α and β are normalizing constants, and (a)+ = max{a, 0}.
Now let x be the random variable x = Az + b, where A ∈ Rn×n is nonsingular. The
distribution of x is parametrized by A and b.

Suppose x1, . . . , xN are independent samples from the distribution of x. Explain how
to find a maximum likelihood estimate of A and b using convex optimization. If you
make any further assumptions about A and b (beyond invertiblility of A), you must
justify it.

Hint. The density of x = Az + b is given by

px(v) =
1

| detA|
pz(A

−1(v − b)).

Solution. The density of x = Az + b is given by

px(v) =
1

| detA|
exp−φ(‖A−1(v − b)‖2).

We first observe that the density with parameters (A, b) is the same as the density
with parameters (AQ, b), for any orthogonal matrix Q, since

| det(AQ)| = | detA|| detQ| = | detA|,

and
‖(AQ)−1(v − b)‖2 = ‖QTA−1(v − b)‖2 = ‖A−1(v − b)‖2.

Let A have SVD A = UΣV T . Choosing Q = V UT , we see that AQ = UΣUT ∈ Sn++.
So we can always assume that A ∈ Sn++.

The log-likelihood function for a single sample x is

`(A, b) = − log detA− φ(‖A−1(x− b)‖2),

so for N independent samples, we have log-likelihood function

`(A, b) = −N log detA−
N∑
i=1

φ(‖A−1(xi − b)‖2).

We must maximize ` over A ∈ Sn++ and b ∈ Rn. It’s not concave in these parameters,
but we will use instead the parameters

B = A−1 ∈ Sn++, c = A−1b ∈ Rn.

14

From B and c we can recover A and b as

A = B−1, b = B−1c.

In terms of B and c, the log-likelihood function is

˜̀(B, c) = N log detB −
N∑
i=1

φ(‖Bxi − c‖2),

which is concave. To see this, we note that the first term is concave in B, and the
second term is concave since ‖Bxi − c‖2 is convex in (B, c), and by the composition
rule, φ(‖Bxi − c‖2) is convex.

So we just maximize ˜̀(B, c) over B ∈ Sn++, c ∈ Rn, and then get A and b as described
above.

15

5. Functions of a random variable with log-concave density. Suppose the random variable
X on Rn has log-concave density, and let Y = g(X), where g : Rn → R. For each of
the following statements, either give a counterexample, or show that the statement is
true.

(a) If g is affine and not constant, then Y has log-concave density.

(b) If g is convex, then Prob(Y ≤ a) is a log-concave function of a.

(c) If g is concave, then E ((Y − a)+) is a convex and log-concave function of a. (This
quantity is called the tail expectation of Y ; you can assume it exists. We define
(s)+ as (s)+ = max{s, 0}.)

Solution.

(a) This one is true. Let p be the density of X, and let g(x) = cTx + d, with c 6= 0
(otherwise g would be constant). Since g is not constant, we conclude that Y has
a density pY .

With δa > 0, define the function

h(x, a) =

{
1 a ≤ g(x) ≤ a+ δa
0 otherwise,

which is the 0−1 indicator function of the convex set {(x, a) | a ≤ g(x) ≤ a+δa}.
The 0− 1 indicator function of a convex set is log-concave, so by the integration
rule it follows that∫

p(x)h(x, a) dx = Eh(X, a) = Prob(a ≤ Y ≤ a+ δa)

is log-concave in a. It follows that

Prob(a ≤ Y ≤ a+ δa)

δa

is log-concave (since δa > 0). Taking δa → 0, this converges to pY (a), which we
conclude is log-concave.

(b) This one is true. Here we define the function

h(x, a) =

{
1 g(x) ≤ a
0 otherwise,

which is the 0− 1 indicator function of the convex set epi g = {(x, a) | g(x) ≤ a},
and therefore log-concave. By the integration rule we get that∫

p(x)h(x, a) dx = Eh(X, a) = Prob(Y ≤ a)

is log-concave in a.

If we assume that g is concave, and we switch the inequality, we conclude that
Prob(Y ≥ a) is log-concave in a. (We’ll use this below.)

16

(c) This one is true. Convexity of the tail expectation holds for any random variable,
so it has has nothing to do with g, and it has nothing to do with log-concavity of
the density of X. For any random variable Y on R, we have

d

da
E(Y − a)+ = −Prob(Y ≥ a).

The righthand side is nondecreasing in a, so the tail expectation has nondecreasing
derivative, which means it is a convex function.

Now let’s show that the tail expectation is log-concave. One simple method is to
use the formula above to note that

E(Y − a)+ =

∫ ∞
a

Prob(Y ≥ b) db.

The integration rule for log-concave functions tells us that this is log-concave.

We can also give a direct proof following the style of the ones given above. We
define g as h(x, a) = (g(x)− a)+. This function is log-concave. First, its domain
is {(x, a) | g(x) > a}, which is convex. Concavity of log h(x, a) = log(g(x) − a)
follows from the composition rule: log is concave and increasing, and g(x)− a is
concave in (x, a). So by the integration rule we get∫

p(x)h(x, a) dx = E(g(x)− a)+

is log-concave in a.

17

6. Affine policy. We consider a family of LPs, parametrized by the random variable u,
which is uniformly distributed on U = [−1, 1]p,

minimize cTx
subject to Ax � b(u),

where x ∈ Rn, A ∈ Rm×n, and b(u) = b0 + Bu ∈ Rm is an affine function of u. You
can think of ui as representing a deviation of the ith parameter from its nominal value.
The parameters might represent (deviations in) levels of resources available, or other
varying limits.

The problem is to be solved many times; in each time, the value of u (i.e., a sample) is
given, and then the decision variable x is chosen. The mapping from u into the decision
variable x(u) is called the policy, since it gives the decision variable value for each value
of u. When enough time and computing hardware is available, we can simply solve the
LP for each new value of u; this is an optimal policy, which we denote x?(u).

In some applications, however, the decision x(u) must be made very quickly, so solving
the LP is not an option. Instead we seek a suboptimal policy, which is affine: xaff(u) =
x0 +Ku, where x0 is called the nominal decision and K ∈ Rn×p is called the feedback
gain matrix. (Roughly speaking, x0 is our guess of x before the value of u has been
revealed; Ku is our modification of this guess, once we know u.) We determine the
policy (i.e., suitable values for x0 and K) ahead of time; we can then evaluate the policy
(that is, find xaff(u) given u) very quickly, by matrix multiplication and addition.

We will choose x0 and K in order to minimize the expected value of the objective,
while insisting that for any value of u, feasibility is maintained:

minimize E cTxaff(u)
subject to Axaff(u) � b(u) ∀u ∈ U .

The variables here are x0 and K. The expectation in the objective is over u, and the
constraint requires that Axaff(u) � b(u) hold almost surely.

(a) Explain how to find optimal values of x0 and K by solving a standard explicit
convex optimization problem (i.e., one that does not involve an expectation or an
infinite number of constraints, as the one above does.) The numbers of variables
or constraints in your formulation should not grow exponentially with the problem
dimensions n, p, or m.

(b) Carry out your method on the data given in affine_pol_data.m. To evaluate
your affine policy, generate 100 independent samples of u, and for each value,
compute the objective value of the affine policy, cTxaff(u), and of the optimal
policy, cTx?(u). Scatter plot the objective value of the affine policy (y-axis) versus
the objective value of the optimal policy (x-axis), and include the line y = x on
the plot. Report the average values of cTxaff(u) and cTx?(u) over your samples.
(These are estimates of E cTxaff(u) and E cTx?(u). The first number, by the way,
can be found exactly.)

18

Solution. Let’s start with the objective. We compute the expected value of the affine
policy as

E cT (x0 +Ku) = cTx0 + (KT c)T Eu = cTx0.

Now let’s look at the constraints, which we write out in terms of its entries:

(Ax0)i + sup
u∈U

((AK −B)u)i ≤ (b0)i, i = 1, . . . ,m.

This turns into the explicit constraint

(Ax0)i + ‖(AK −B)i‖1 ≤ (b0)i, i = 1, . . . ,m.

Here (AK −B)i is the ith row of the matrix A−BK.

So we can find an optimal affine policy by solving the problem (which can be trans-
formed to an LP)

minimize cTx0

subject to (Ax0)i + ‖(AK −B)i‖1 ≤ (b0)i, i = 1, . . . ,m,

with variables x0 and K.

The code below implements this.

% Affine policy.

affine_pol_data;

% compute affine policy

cvx_begin

variables x0(n) K(n,p)

minimize (c’*x0)

subject to

A*x0+norms(A*K-B,1,2) <= b0

cvx_end

% compare 100 samples

aff_obj = []; opt_obj = [];

for i=1:100

u = 2*rand(p,1)-1;

cvx_begin quiet

variable x_opt(n)

minimize (c’*x_opt)

subject to

A*x_opt <= b0+B*u

19

cvx_end

aff_obj(i) = c’*(x0+K*u);

opt_obj(i) = cvx_optval;

end

figure;

plot(opt_obj,aff_obj,’x’); hold on;

axis equal

plot(xlim, xlim);

xlabel(’Optimal policy objective’)

ylabel(’Affine policy objective’)

print -depsc affine_pol.eps

−3.8 −3.6 −3.4 −3.2 −3 −2.8 −2.6

−3.8

−3.7

−3.6

−3.5

−3.4

−3.3

−3.2

−3.1

−3

−2.9

−2.8

Optimal policy objective

A
ff
in

e
 p

o
lic

y
 o

b
je

c
ti
v
e

The (exact) expected cost of the affine policy is −3.219, the mean objective of the
affine policy is −3.223 for the sample, and the mean objective of the optimal policy is
−3.301 for the sample. The plot shows that the affine policy produces points that are
suboptinmal, but not by much.

20

7. Cost-comfort trade-off in air conditioning. A heat pump (air conditioner) is used to
cool a residence to temperature Tt in hour t, on a day with outside temperature T out

t ,
for t = 1, . . . , 24. These temperatures are given in degrees Kelvin, and we will assume
that T out

t ≥ Tt.

A total amount of heat Qt = α(T out
t −Tt) must be removed from the residence in hour

t, where α is a positive constant (related to the quality of thermal insulation).

The electrical energy required to pump out this heat is given by Et = Qt/γt, where

γt = η
Tt

T out
t − Tt

is the coefficient of performance of the heat pump and η ∈ (0, 1] is the efficiency
constant. The efficiency is typically around 0.6 for a modern unit; the theoretical limit
is η = 1. (When Tt = T out

t , we take γt =∞ and Et = 0.)

Electrical energy prices vary with the hour, and are given by Pt > 0 for t = 1, . . . , 24.
The total energy cost is C =

∑
t PtEt. We will assume that the prices are known.

Discomfort is measured using a piecewise-linear function of temperature,

Dt = (Tt − T ideal)+,

where T ideal is an ideal temperature, below which there is no discomfort. The total
daily discomfort is D =

∑24
t=1 Dt. You can assume that T ideal < T out

t .

To get a point on the optimal cost-comfort trade-off curve, we will minimize C + λD,
where λ > 0. The variables to be chosen are T1, . . . , T24; all other quantities described
above are given.

Show that this problem has an analytical solution of the form Tt = ψ(Pt, T
out
t), where

ψ : R2 → R. The function ψ can depend on the constants α, η, T ideal, λ. Give ψ
explicitly. You are free (indeed, encouraged) to check your formula using CVX, with
made up values for the constants.

Disclaimer. The focus of this course is not on deriving 19th century pencil and paper
solutions to problems. But every now and then, a practical problem will actually have
an analytical solution. This is one of them.

Solution. We use the expression for Et and the efficiency to get

Et = (α/η)
(T out

t − Tt)2

Tt
,

which is a convex function of Tt. For any practical problem we can regard the de-
nominator as a constant, but it’s cool to note that we can handle the nonlinearity
of the thermodynamic efficiency exactly. It follows that the cost C, which is a posi-
tive weighted sum of Et, is convex. The discomfort is evidently convex in Tt, so the
composite objective C + λD is convex in Tt. So we have a convex problem here.

21

The composite objective C + λD is separable in Tt, i.e., a sum of functions of Tt:

C + λD =
24∑
t=1

(
Pt(α/η)

(T out
t − Tt)2

Tt
+ λ(Tt − T ideal)+

)
.

It follows that we can find each Tt (separately) by minimizing

Pt(α/η)
(T out

t − Tt)2

Tt
+ λ(Tt − T ideal)+.

The derivative of the first term is

Pt(α/η)
T 2
t − (T out

t)2

T 2
t

.

First assume that Tt > T ideal. Then the optimality condition is

Pt(α/η)
T 2
t − (T out

t)2

T 2
t

+ λ = 0,

which gives
Tt = (1 + ηλ/(Ptα))−1/2 T out

t .

If Tt < T ideal, the optimality condition is

Pt(α/η)
T 2
t − (T out

t)2

T 2
t

= 0,

which gives Tt = T out
t , which contradicts Tt < T ideal. So this case cannot happen. But

we can have Tt = T ideal; this happens when

(1 + ηλ/(Ptα))−1/2 T out
t ≤ T ideal.

So the optimal choice of temperature is simply

Tt = ψ(Pt, T
out
t) = max

{
(1 + ηλ/(Ptα))−1/2 T out

t , T ideal
}
.

Let’s test our formula using CVX.

% Cost-comfort trade-off in air conditioning.

N = 24;

Tout = 3*sin(2*pi*(1:N)’/24-pi/2)+29; Tideal = 25;

Tout = Tout + 273.15; Tideal = Tideal + 273.15;

eta = 0.6; alpha = 1.8; lambda = 1;

price = 6*[ones(8,1);1.5*ones(9,1);ones(7,1)];

22

k = price*alpha/eta;

cvx_begin

variable T(N)

C = k’*quad_over_lin(Tout-T,T,2);

D = sum(pos(T-Tideal));

minimize (C + lambda*D)

subject to

T >= 0; T <= Tout; % they are not necessary

cvx_end

T_analytic = max(sqrt(k./(k+lambda)).*Tout, Tideal);

C_analytic = k’*quad_over_lin(Tout-T_analytic,T_analytic,2);

display([’Total cost obtained by cvx: ’ num2str(C)]);

display([’Total cost obtained analytically: ’ num2str(C_analytic)]);

plot((1:N)’,Tout,’.-r’,(1:N)’,T,’.-b’,(1:N)’,Tideal*ones(N,1),’-k’);

xlabel(’t’); ylabel(’Temperature’); legend(’Tout’,’T’,’Tideal’);

print -depsc air_cond.eps

0 5 10 15 20 25
298

299

300

301

302

303

304

305

306

t

T
e
m

p
e
ra

tu
re

Tout

T

Tideal

23

The total energy cost obtained from the analytical solution is 31.838. CVX returns
the same answer (31.838, when using sdpt3; and 31.8204, when using Sedumi).

24

8. Least-cost road grading. A road is to be built along a given path. We must choose
the height of the roadbed (say, above sea level) along the path, minimizing the total
cost of grading, subject to some constraints. The cost of grading (i.e., moving earth to
change the height of the roadbed from the existing elevation) depends on the difference
in height between the roadbed and the existing elevation. When the roadbed is below
the existing elevation it is called a cut ; when it is above it is called a fill. Each of
these incurs engineering costs; for example, fill is created in a series of lifts, each of
which involves dumping just a few inches of soil and then compacting it. Deeper cuts
and higher fills require more work to be done on the road shoulders, and possibly, the
addition of reinforced concrete structures to stabilize the earthwork. This explains why
the marginal cost of cuts and fills increases with their depth/height.

We will work with a discrete model, specifying the road height as hi, i = 1, . . . , n, at
points equally spaced a distance d from each other along the given path. These are
the variables to be chosen. (The heights h1, . . . , hn are called a grading plan.) We are
given ei, i = 1, . . . , n, the existing elevation, at the points. The grading cost is

C =
n∑
i=1

(
φfill((hi − ei)+) + φcut((ei − hi)+)

)
,

where φfill and φcut are the fill and cut cost functions, respectively, and (a)+ =
max{a, 0}. The fill and cut functions are increasing and convex. The goal is to mini-
mize the grading cost C.

The road height is constrained by given limits on the first, second, and third derivatives:

|hi+1 − hi|/d ≤ D(1), i = 1, . . . , n− 1

|hi+1 − 2hi + hi−1|/d2 ≤ D(2), i = 2, . . . , n− 1

|hi+1 − 3hi + 3hi−1 − hi−2|/d3 ≤ D(3), i = 3, . . . , n− 1,

where D(1) is the maximum allowable road slope, D(2) is the maximum allowable cur-
vature, and D(3) is the maximum allowable third derivative.

(a) Explain how to find the optimal grading plan.

(b) Find the optimal grading plan for the problem with data given in
road_grading_data.m, and fill and cut cost functions

φfill(u) = 2(u)2
+ + 30(u)+, φcut = 12(u)2

+ + (u)+.

Plot hi − ei for the optimal grading plan and report the associated cost.

(c) Suppose the optimal grading problem with n = 1000 can be solved on a particular
machine (say, with one, or just a few, cores) in around one second. Assuming the
author of the software took EE364a, about how long will it take to solve the
optimal grading problem with n = 10000? Give a very brief justification of your
answer, no more than a few sentences.

25

Solution.

(a) Fortunately, this problem in convex; C is convex since φfill and φcut are convex
and increasing and max is convex. Therefore we simply solve the problem

minimize C
subject to |hi+1 − hi|/d ≤ D(1), i = 1, . . . , n− 1

|hi+1 − 2hi + hi−1|/d2 ≤ D(2), i = 2, . . . , n− 1
|hi+1 − 3hi + 3hi−1 − hi−2|/d3 ≤ D(3), i = 3, . . . , n− 1,

with optimization variables hi.

(b) For this problem instance we have cost functions shown below.

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

elevation change

c
o
s
t

fill

cut

The following code solves the problem:

% Least-cost road grading.

road_grading_data;

cvx_begin

variables h(n);

minimize sum(alpha_fill*square_pos(h-e)+beta_fill*pos(h-e)+...

alpha_cut*square_pos(e-h)+beta_cut*pos(e-h))

subject to

26

abs(h(2:n)-h(1:n-1)) <= D1*d

abs(h(3:n)-2*h(2:n-1)+h(1:n-2)) <= D2*d^2

abs(-h(4:n)+3*h(3:n-1)-3*h(2:n-2)+h(1:n-3)) <= D3*d^3

cvx_end

figure

subplot(2,1,1)

plot((0:n-1)*d,e,’--r’);

ylabel(’elevation’);

hold on

plot((0:n-1)*d,h, ’b’)

legend(’e’,’h’);

subplot(2,1,2)

plot((0:n-1)*d,h-e)

ylabel(’elevation change’)

xlabel(’distance’)

print -depsc road_grading;

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

e
le

v
a

ti
o

n

e

h

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

e
le

v
a

ti
o

n
 c

h
a

n
g

e

distance

We find that the optimal cost is 7562.82.

(c) Using our knowledge from EE364a we see immediately that this problem is well
structured. Our objective is separable and our constraints have bandwidth of at

27

most 4. For each Newton step we have to solve a banded system, which we know
we can do in O(nk2) flops, where k = 4 is the bandwidth. We can, therefore, take
a Newton step in O(n) flops. We have seen that the number of iterations required
to solve a problem with an interior point method is practically independent of
problem size. Thus, if an optimal grading problem with n = 1000 can be solved
in about 1 second, we can solve a problem with n = 10000 in approximately 10
seconds.

To see how this banded system arises, using EE364a knowledge you might solve
this problem using an interior point barrier method. For a given t you are now
solving the unconstrained minimization problem

minimize tC −
∑n−1

i=1

(
log(D(1)d− hi+1 + hi) + log(D(1)d+ hi+1 − hi)

)
−∑n−1

i=2

(
log(D(2)d2 − hi+1 + 2hi − hi−1)

)
−∑n−1

i=2

(
log(D(2)d2 + hi+1 − 2hi + hi−1)

)
−∑n−1

i=3

(
log(D(3)d3 − hi+1 + 3hi − 3hi−1 + hi−2)

)
−∑n−1

i=3

(
log(D(3)d3 + hi+1 − 3hi + 3hi−1 − hi−2)

)
.

We can represent the Hessian of this function as the sum of 4 matrices: the
Hessian relating to C and the Hessians relating to constraints with D(1), D(2),
and D(3). Since C is separable in the optimization variables hi, its Hessian is
diagonal. The constraints with D(1) will contribute a matrix of bandwidth 2 to
the Hessian, as there is only coupling between hi and hi+1. Similarly the terms
related to D(2) will contribute a matrix of bandwidth 3, and the terms related to
D(3) will contribute a matrix of bandwidth 4. Therefore at each Newton step, as
already stated we must solve a system with bandwidth 4. As the problem size
increases, the bandwidth remains constant, so we expect the problem to scale
linearly in n until we run into system related issues such as memory limitations.
The code below generates problem instances from n = 100 to n = 1000:

% Least-cost road grading timing for different problem sizes.

road_grading_data

N = 10;

times = zeros(N,1);

e2 = [];

for i = 1:N

e2 = [e2; e];

tic

cvx_begin

variables h(i*n);

minimize sum(alpha_fill*square_pos(h-e2)+...

beta_fill*pos(h-e2)+...

alpha_cut*square_pos(e2-h)+beta_cut*pos(e2-h))

28

subject to

abs(h(2:end)-h(1:end-1)) <= D1*d

abs(h(3:end)-2*h(2:end-1)+h(1:end-2)) <= D2*d^2

abs(-h(4:end)+3*h(3:end-1)-3*h(2:end-2)+h(1:end-3)) <= D3*d^3

cvx_end

times(i) = toc;

end

figure

plot((1:N)*n,times);

xlabel(’n’);

ylabel(’time in seconds’);

print -depsc road_grading_timing.eps

100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

16

18

n

ti
m

e
 i
n

 s
e

c
o

n
d

s

We see that in SDPT3 the timing is indeed linear with problem size (with an
offset for the CVX overhead).

29

