
EE364a: Convex Optimization I S. Boyd
March 11–12 or March 12–13, 2016

Final Exam

This is a 24-hour take-home final. Please turn it in at Bytes Cafe in the Packard building,
24 hours after you pick it up.

You may use any books, notes, or computer programs, but you may not discuss the exam
with anyone until March 16, after everyone has taken the exam. The only exception is that
you can ask us for clarification, via the course staff email address. We’ve tried pretty hard
to make the exam unambiguous and clear, so we’re unlikely to say much.

Please make a copy of your exam, or scan it, before handing it in.

Please attach the cover page to the front of your exam. Assemble your solutions in
order (problem 1, problem 2, problem 3, . . . ), starting a new page for each problem. Put
everything associated with each problem (e.g., text, code, plots) together; do not attach code
or plots at the end of the final.

We will deduct points from long needlessly complex solutions, even if they are
correct. Our solutions are not long, so if you find that your solution to a problem goes on
and on for many pages, you should try to figure out a simpler one. We expect neat, legible
exams from everyone, including those enrolled Cr/N.

When a problem involves computation you must give all of the following: a clear discussion
and justification of exactly what you did, the source code that produces the result, and the
final numerical results or plots.

Files containing problem data can be found in the usual place,

http://www.stanford.edu/~boyd/cvxbook/cvxbook_additional_exercises/

Please respect the honor code. Although we allow you to work on homework assignments in
small groups, you cannot discuss the final with anyone, at least until everyone has taken it.

All problems have equal weight. Some are easy. Others, not so much.

Be sure you are using the most recent version of CVX, CVXPY, or Convex.jl. Check your
email often during the exam, just in case we need to send out an important announcement.

Some problems involve applications. But you do not need to know anything about the
problem area to solve the problem; the problem statement contains everything you need.
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1. Portfolio optimization using multiple risk models. Let w ∈ Rn be a vector of portfolio
weights, where negative values correspond to short positions, and the weights are
normalized such that 1Tw = 1. The expected return of the portfolio is µTw, where
µ ∈ Rn is the (known) vector of expected asset returns. As usual we measure the risk
of the portfolio using the variance of the portfolio return. However, in this problem we
do not know the covariance matrix Σ of the asset returns; instead we assume that Σ
is one of M (known) covariance matrices Σ(k) ∈ Sn

++, k = 1, . . . ,M . We can think of
the Σ(k) as representing M different risk models, associated with M different market
regimes (say). For a weight vector w, there are M different possible values of the
risk: wTΣ(k)w, k = 1, . . . ,M . The worst-case risk, across the different models, is given
by maxk=1,...,M wTΣ(k)w. (This is the same as the worst-case risk over all covariance
matrices in the convex hull of Σ(1), . . . ,Σ(M).)

We will choose the portfolio weights in order to maximize the expected return, adjusted
by the worst-case risk, i.e., as the solution w? of the problem

maximize µTw − γmaxk=1,...,M wTΣ(k)w
subject to 1Tw = 1,

with variable w, where γ > 0 is a given risk-aversion parameter. We call this the
mean-worst-case-risk portfolio problem.

(a) Show that there exist γ1, . . . , γM ≥ 0 such that
∑M

k=1 γk = γ and the solution w?

of the mean-worst-case-risk portfolio problem is also the solution of the problem

maximize µTw −
∑M

k=1 γkw
TΣ(k)w

subject to 1Tw = 1,

with variable w.

Remark. The result above has a beautiful interpretation: We can think of the
γk as allocating our total risk aversion γ in the mean-worst-case-risk portfolio
problem across the M different regimes.

Hint. The values γk are not easy to find: you have to solve the mean-worst-case-
risk problem to get them. Thus, this result does not help us solve the mean-worst-
case-risk problem; it simply gives a nice interpretation of its solution.

(b) Find the optimal portfolio weights for the problem instance with data given in
multi_risk_portfolio_data.*. Report the weights and the values of γk, k =
1, . . . ,M . Give the M possible values of the risk associated with your weights,
and the worst-case risk.
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2. Minimum possible maximum correlation. Let Z be a random variable taking values in
Rn, and let Σ ∈ Sn

++ be its covariance matrix. We do not know Σ, but we do know
the variance of m linear functions of Z. Specifically, we are given nonzero vectors
a1, . . . , am ∈ Rn and σ1, . . . , σm > 0 for which

var(aTi Z) = σ2
i , i = 1, . . . ,m.

For i 6= j the correlation of Zi and Zj is defined to be

ρij =
Σij√
ΣiiΣjj

.

Let ρmax = maxi 6=j |ρij| be the maximum (absolute value) of the correlation among
entries of Z. If ρmax is large, then at least two components of Z are highly correlated
(or anticorrelated).

(a) Explain how to find the smallest value of ρmax that is consistent with the given in-
formation, using convex or quasiconvex optimization. If your formulation involves
a change of variables or other transformation, justify it.

(b) The file correlation_bounds_data.* contains σ1, . . . , σm and the matrix A with
columns a1, . . . , am. Find the minimum value of ρmax that is consistent with this
data. Report your minimum value of ρmax, and give a corresponding covariance
matrix Σ that achieves this value. You can report the minimum value of ρmax to
an accuracy of 0.01.
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3. Bandlimited signal recovery from zero-crossings. Let y ∈ Rn denote a bandlimited
signal, which means that it can be expressed as a linear combination of sinusoids with
frequencies in a band:

yt =
B∑
j=1

aj cos

(
2π

n
(fmin + j − 1)t

)
+ bj sin

(
2π

n
(fmin + j − 1)t

)
, t = 1, . . . , n,

where fmin is lowest frequency in the band, B is the bandwidth, and a, b ∈ RB are
the cosine and sine coefficients, respectively. We are given fmin and B, but not the
coefficients a, b or the signal y.

We do not know y, but we are given its sign s = sign(y), where st = 1 if yt ≥ 0
and st = −1 if yt < 0. (Up to a change of overall sign, this is the same as knowing
the ‘zero-crossings’ of the signal, i.e., when it changes sign. Hence the name of this
problem.)

We seek an estimate ŷ of y that is consistent with the bandlimited assumption and
the given signs. Of course we cannot distinguish y and αy, where α > 0, since both
of these signals have the same sign pattern. Thus, we can only estimate y up to a
positive scale factor. To normalize ŷ, we will require that ‖ŷ‖1 = n, i.e., the average
value of |yi| is one. Among all ŷ that are consistent with the bandlimited assumption,
the given signs, and the normalization, we choose the one that minimizes ‖ŷ‖2.

(a) Show how to find ŷ using convex or quasiconvex optimization.

(b) Apply your method to the problem instance with data in zero_crossings_data.*.
The data files also include the true signal y (which of course you cannot use to
find ŷ). Plot ŷ and y, and report the relative recovery error, ‖y− ŷ‖2/‖y‖2. Give
one short sentence commenting on the quality of the recovery.
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4. Satisfying a minimum number of constraints. Consider the problem

minimize f0(x)
subject to fi(x) ≤ 0 holds for at least k values of i,

with variable x ∈ Rn, where the objective f0 and the constraint functions fi, i =
1, . . . ,m (with m ≥ k), are convex. Here we require that only k of the constraints
hold, instead of all m of them. In general this is a hard combinatorial problem; the
brute force solution is to solve all

(
m
k

)
convex problems obtained by choosing subsets

of k constraints to impose, and selecting one with smallest objective value.

In this problem we explore a convex restriction that can be an effective heuristic for
the problem.

(a) Suppose λ > 0. Show that the constraint
m∑
i=1

(1 + λfi(x))+ ≤ m− k

guarantees that fi(x) ≤ 0 holds for at least k values of i. ((u)+ means max{u, 0}.)
Hint. For each u ∈ R, (1 + λu)+ ≥ 1(u > 0), where 1(u > 0) = 1 for u > 0, and
1(u > 0) = 0 for u ≤ 0.

(b) Consider the problem

minimize f0(x)
subject to

∑m
i=1(1 + λfi(x))+ ≤ m− k

λ > 0,

with variables x and λ. This is a restriction of the original problem: If (x, λ) are
feasible for it, then x is feasible for the original problem. Show how to solve this
problem using convex optimization. (This may involve a change of variables.)

(c) Apply the method of part (b) to the problem instance

minimize cTx
subject to aTi x ≤ bi holds for at least k values of i,

with m = 70, k = 58, and n = 12. The vectors b, c and the matrix A with rows
aTi are given in the file satisfy_some_constraints_data.*.

Report the optimal value of λ, the objective value, and the actual number of
constraints that are satisfied (which should be larger than or equal to k). To
determine if a constraint is satisfied, you can use the tolerance aTi x − bi ≤ εfeas,
with εfeas = 10−5.

A standard trick is to take this tentative solution, choose the k constraints with
the smallest values of fi(x), and then minimize f0(x) subject to these k constraints
(i.e., ignoring the other m − k constraints). This improves the objective value
over the one found using the restriction. Carry this out for the problem instance,
and report the objective value obtained.
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5. Ideal preference point. A set of K choices for a decision maker is parametrized by a
set of vectors c(1), . . . , c(K) ∈ Rn. We will assume that the entries ci of each choice are
normalized to lie in the range [0, 1]. The ideal preference point model posits that there
is an ideal choice vector cideal with entries in the range [0, 1]; when the decision maker
is asked to choose between two candidate choices c and c̃, she will choose the one that
is closest (in Euclidean norm) to her ideal point. Now suppose that the decision maker
has chosen between all K(K − 1)/2 pairs of given choices c(1), . . . , c(K). The decisions
are represented by a list of pairs of integers, where the pair (i, j) means that c(i) is
chosen when given the choices c(i), c(j). You are given these vectors and the associated
choices.

(a) How would you determine if the decision maker’s choices are consistent with the
ideal preference point model?

(b) Assuming they are consistent, how would you determine the bounding box of ideal
choice vectors consistent with her decisions? (That is, how would you find the
minimum and maximum values of cideali , for cideal consistent with being the ideal
preference point.)

(c) Carry out the method of part (b) using the data given in ideal_pref_point_data.*.
These files give the points c(1), . . . , c(K) and the choices, and include the code for
plotting the results. Report the width and the height of the bounding box and
include your plot.
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6. Matrix equilibration. We say that a matrix is `p equilibrated if each of its rows has the
same `p norm, and each of its columns has the same `p norm. (The row and column
`p norms are related by m, n, and p.) Suppose we are given a matrix A ∈ Rm×n.
We seek diagonal invertible matrices D ∈ Rm×m and E ∈ Rn×n for which DAE is `p
equilibrated.

(a) Explain how to find D and E using convex optimization. (Some matrices cannot
be equilibrated. But you can assume that all entries of A are nonzero, which is
enough to guarantee that it can be equilibrated.)

(b) Equilibrate the matrix A given in the file matrix_equilibration_data.*, with

m = 20, n = 10, p = 2.

Print the row `p norms and the column `p norms of the equilibrated matrix as
vectors to check that each matches.

Hints.

• Work with the matrix B, with Bij = |Aij|p.
• Consider the problem of minimizing

∑m
i=1

∑n
j=1Bije

ui+vj subject to 1Tu = 0,

1Tv = 0. (Several variations on this idea will work.)

• We have found that expressing the terms in the objective as elogBij+ui+vj leads to
fewer numerical problems.
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7. Colorization with total variation regularization. A m × n color image is represented
as three matrices of intensities R,G,B ∈ Rm×n, with entries in [0, 1], representing the
red, green, and blue pixel intensities, respectively. A color image is converted to a
monochrome image, represented as one matrix M ∈ Rm×n, using

M = 0.299R + 0.587G+ 0.114B.

(These weights come from different perceived brightness of the three primary colors.)

In colorization, we are given M , the monochrome version of an image, and the color val-
ues of some of the pixels; we are to guess its color version, i.e., the matrices R,G,B. Of
course that’s a very underdetermined problem. A very simple technique is to minimize
the total variation of (R,G,B), defined as

tv(R,G,B) =
m−1∑
i=1

n−1∑
j=1

∥∥∥∥∥∥∥∥∥∥∥∥


Rij −Ri,j+1

Gij −Gi,j+1

Bij −Bi,j+1

Rij −Ri+1,j

Gij −Gi+1,j

Bij −Bi+1,j



∥∥∥∥∥∥∥∥∥∥∥∥
2

,

subject to consistency with the given monochrome image, the known ranges of the
entries of (R,G,B) (i.e., in [0, 1]), and the given color entries. Note that the sum
above is of the norm of 6-vectors, and not the norm-squared. (The 6-vector is an
approximation of the spatial gradient of (R,G,B).)

Carry out this method on the data given in image_colorization_data.*. The file
loads flower.png and provides the monochrome version of the image, M, along with vec-
tors of known color intensities, R_known, G_known, and B_known, and known_ind, the
indices of the pixels with known values. If R denotes the red channel of an image, then
R(known_ind) returns the known red color intensities in Matlab, and R[known_ind] re-
turns the same in Python and Julia. The file also creates an image, flower_given.png,
that is monochrome, with the known pixels colored.

The tv function, invoked as tv(R,G,B), gives the total variation. CVXPY has the tv

function built-in, but CVX and CVX.jl do not, so we have provided the files tv.m and
tv.jl which contain implementations for you to use.

In Python and Julia we have also provided the function save_img(filename,R,G,B)

which writes the image defined by the matrices R, G, B, to the file filename. To view
an image in Matlab use the imshow function.

The problem instance is a small image, 75 × 75, so the solve time is reasonable, say,
under ten seconds or so in CVX or CVXPY, and around 60 seconds in Julia.

Report your optimal objective value and, if you have access to a color printer, attach
your reconstructed image. If you don’t have access to a color printer, it’s OK to just
give the optimal objective value.
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8. Computing market-clearing prices. We consider n commodities or goods, with p ∈ Rn
++

the vector of prices (per unit quantity) of them. The (nonnegative) demand for the
products is a function of the prices, which we denote D : Rn → Rn, so D(p) is the
demand when the product prices are p. The (nonnegative) supply of the products (i.e.,
the amounts that manufacturers are willing to produce) is also a function of the prices,
which we denote S : Rn → Rn, so S(p) is the supply when the product prices are p.
We say that the market clears if S(p) = D(p), i.e., supply equals demand, and we refer
to p in this case as a set of market-clearing prices.

Elementary economics courses consider the special case n = 1, i.e., a single commodity,
so supply and demand can be plotted (vertically) against the price (on the horizontal
axis). It is assumed that demand decreases with increasing price, and supply increases;
the market clearing price can be found ‘graphically’, as the point where the supply
and demand curves intersect. In this problem we examine some cases in which market-
clearing prices (for the general case n > 1) can be computed using convex optimization.

We assume that the demand function is Hicksian, which means it has the form D(p) =
∇E(p), where E : Rn → R is a differentiable function that is concave and increasing
in each argument, called the expenditure function. (While not relevant in this prob-
lem, Hicksian demand arises from a model in which consumers make purchases by
maximizing a concave utility function.)

We will assume that the producers are independent, so S(p)i = Si(pi), i = 1, . . . , n,
where Si : R → R is the supply function for good i. We will assume that the supply
functions are positive and increasing on their domain R+.

(a) Explain how to use convex optimization to find market-clearing prices under the
assumptions given above. (You do not need to worry about technical details like
zero prices, or cases in which there are no market-clearing prices.)

(b) Compute market-clearing prices for the specific case with n = 4,

E(p) =

(
4∏

i=1

pi

)1/4

,

S(p) = (0.2p1 + 0.5, 0.02p2 + 0.1, 0.04p3, 0.1p4 + 0.2).

Give the market-clearing prices and the demand and supply (which should match)
at those prices.

Hint : In CVX and CVXPY, geo_mean gives the geometric mean of the entries
of a vector argument. Julia does not yet have a vector argument geom_mean

function, but you can get the geometric mean of 4 variables a, b, c, d using
geomean(geomean(a, b), geomean(c, d)).
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