
EE364a: Convex Optimization I S. Boyd
March 13–14 or March 14–15, 2015

Final Exam

This is a 24 hour take-home final. Please turn it in at Bytes Cafe in the Packard building,
24 hours after you pick it up.

You may use any books, notes, or computer programs, but you may not discuss the exam
with anyone until March 16, after everyone has taken the exam. The only exception is that
you can ask us for clarification, via the course staff email address. We’ve tried pretty hard
to make the exam unambiguous and clear, so we’re unlikely to say much.

Please make a copy of your exam, or scan it, before handing it in.

Please attach the cover page to the front of your exam. Assemble your solutions in
order (problem 1, problem 2, problem 3, . . .), starting a new page for each problem. Put
everything associated with each problem (e.g., text, code, plots) together; do not attach code
or plots at the end of the final.

We will deduct points from long needlessly complex solutions, even if they are

correct. Our solutions are not long, so if you find that your solution to a problem goes on
and on for many pages, you should try to figure out a simpler one. We expect neat, legible
exams from everyone, including those enrolled Cr/N.

When a problem involves computation you must give all of the following: a clear discussion
and justification of exactly what you did, the source code that produces the result, and the
final numerical results or plots.

Files containing problem data can be found in the usual place,

http://www.stanford.edu/~boyd/cvxbook/cvxbook_additional_exercises/

Please respect the honor code. Although we allow you to work on homework assignments in
small groups, you cannot discuss the final with anyone, at least until everyone has taken it.

All problems have equal weight. Some are easy. Others, not so much.

Be sure you are using the most recent version of CVX, CVXPY, or Convex,jl. Check your
email often during the exam, just in case we need to send out an important announcement.

Some problems involve applications. But you do not need to know anything about the
problem area to solve the problem; the problem statement contains everything you need.

1

1. Optimal evacuation planning. We consider the problem of evacuating people from
a dangerous area in a way that minimizes risk exposure. We model the area as a
connected graph with n nodes andm edges; people can assemble or collect at the nodes,
and travel between nodes (in either direction) over the edges. We let qt ∈ Rn

+ denote
the vector of the numbers of people at the nodes, in time period t, for t = 1, . . . , T ,
where T is the number of periods we consider. (We will consider the entries of qt as real
numbers, not integers.) The initial population distribution q1 is given. The nodes have
capacity constraints, given by qt � Q, where Q ∈ Rn

+ is the vector of node capacities.

We use the incidence matrix A ∈ Rn×m to describe the graph. We assign an arbitrary
reference direction to each edge, and take

Aij =

+1 if edge j enters node i

−1 if edge j exits node i

0 otherwise.

The population dynamics are given by qt+1 = Aft+ qt, t = 1, . . . , T − 1 where ft ∈ Rm

is the vector of population movement (flow) across the edges, for t = 1, . . . , T − 1.
A positive flow denotes movement in the direction of the edge; negative flow denotes
population flow in the reverse direction. Each edge has a capacity, i.e., |ft| � F , where
F ∈ Rm

+ is the vector of edge capacities, and |ft| denotes the elementwise absolute
value of ft.

An evacuation plan is a sequence q1, q2, . . . , qT and f1, f2, . . . , fT−1 obeying the con-
straints above. The goal is to find an evacuation plan that minimizes the total risk
exposure, defined as

Rtot =
∑T

t=1

(

rT qt + sT q2t
)

+
∑T−1

t=1

(

r̃T |ft|+ s̃Tf 2
t

)

,

where r, s ∈ Rn
+ are given vectors of risk exposure coefficients associated with the

nodes, and r̃, s̃ ∈ Rm
+ are given vectors of risk exposure coefficients associated with the

edges. The notation q2t and f 2
t refers to elementwise squares of the vectors. Roughly

speaking, the risk exposure is a quadratic function of the occupancy of a node, or
the (absolute value of the) flow of people along an edge. The linear terms can be
interpreted as the risk exposure per person; the quadratic terms can be interpreted as
the additional risk associated with crowding.

A subset of nodes have zero risk (ri = si = 0), and are designated as safe nodes. The
population is considered evacuated at time t if rT qt + sT q2t = 0. The evacuation time
tevac of an evacuation plan is the smallest such t. We will assume that T is sufficiently
large and that the total capacity of the safe nodes exceeds the total initial population,
so evacuation is possible.

Use CVX* to find an optimal evacuation plan for the problem instance with data
given in opt_evac_data.*. (We display the graph below, with safe nodes denoted as
squares.)

2

1

2

3

4

5

7

6

8

1

2

3
4

5

6

7 8

9

Report the associated optimal risk exposure R⋆
tot. Plot the time period risk

Rt = rT qt + sT q2t + r̃T |ft|+ s̃Tf 2
t

versus time. (For t = T , you can take the edge risk to be zero.) Plot the node
occupancies qt, and edge flows ft versus time. Briefly comment on the results you see.
Give the evacuation time tevac (considering any rT qt + sT q2t ≤ 10−4 to be zero).

Hint. With CVXPY, use the ECOS solver with p.solve(solver=cvxpy.ECOS).

3

2. Convexity of products of powers. This problem concerns the product of powers function
f : Rn

++ → R given by f(x) = xθ11 · · · xθnn , where θ ∈ Rn is a vector of powers. We are
interested in finding values of θ for which f is convex or concave. You already know
a few, for example when n = 2 and θ = (2,−1), f is convex (the quadratic-over-linear
function), and when θ = (1/n)1, f is concave (geometric mean). Of course, if n = 1,
f is convex when θ ≥ 1 or θ ≤ 0, and concave when 0 ≤ θ ≤ 1.

Show each of the statements below. We will not read long or complicated proofs,
or ones that involve Hessians. We are looking for short, snappy ones, that (where
possible) use composition rules, perspective, partial minimization, or other operations,
together with known convex or concave functions, such as the ones listed in the previous
paragraph. Feel free to use the results of earlier statements in later ones.

(a) When n = 2, θ � 0, and 1T θ = 1, f is concave.

(b) When θ � 0 and 1T θ = 1, f is concave. (This is the same as part (a), but here it
is for general n.)

(c) When θ � 0 and 1T θ ≤ 1, f is concave.

(d) When θ � 0, f is convex.

(e) When 1T θ = 1 and exactly one of the elements of θ is positive, f is convex.

(f) When 1T θ ≥ 1 and exactly one of the elements of θ is positive, f is convex.

Remark. Parts (c), (d), and (f) exactly characterize the cases when f is either convex
or concave. That is, if none of these conditions on θ hold, f is neither convex nor
concave. Your teaching staff has, however, kindly refrained from asking you to show
this.

4

3. Minimum time maneuver for a crane. A crane manipulates a load with mass m > 0
in two dimensions using two cables attached to the load. The cables maintain angles
±θ with respect to vertical, as shown below.

load

θ θ

The (scalar) tensions T left and T right in the two cables are independently controllable,
from 0 up to a given maximum tension Tmax. The total force on the load is

F = T left

[

− sin θ
cos θ

]

+ T right

[

sin θ
cos θ

]

+mg,

where g = (0,−9.8) is the acceleration due to gravity. The acceleration of the load is
then F/m.

We approximate the motion of the load using

pi+1 = pi + hvi, vi+1 = vi + (h/m)Fi, i = 1, 2, . . . ,

where pi ∈ R2 is the position of the load, vi ∈ R2 is the velocity of the load, and
Fi ∈ R2 is the force on the load, at time t = ih. Here h > 0 is a small (given) time
step.

The goal is to move the load, which is initially at rest at position pinit to the position
pdes, also at rest, in minimum time. In other words, we seek the smallest k for which

p1 = pinit, pk = pdes, v1 = vk = (0, 0)

is possible, subject to the constraints described above.

(a) Explain how to solve this problem using convex (or quasiconvex) optimization.

(b) Carry out the method of part (a) for the problem instance with

m = 0.1, θ = 15◦, Tmax = 2, pinit = (0, 0), pdes = (10, 2),

with time step h = 0.1. Report the minimum time k⋆. Plot the tensions versus
time, and the load trajectory, i.e., the points p1, . . . , pk in R2. Does the load move
along the line segment between pinit and pdes (i.e., the shortest path from pinit and
pdes)? Comment briefly.

5

4. Portfolio rebalancing. We consider the problem of rebalancing a portfolio of assets over
multiple periods. We let ht ∈ Rn denote the vector of our dollar value holdings in n
assets, at the beginning of period t, for t = 1, . . . , T , with negative entries meaning short
positions. We will work with the portfolio weight vector, defined as wt = ht/(1

Tht),
where we assume that 1Tht > 0, i.e., the total portfolio value is positive.

The target portfolio weight vector w⋆ is defined as the solution of the problem

maximize µTw − γ

2
wTΣw

subject to 1Tw = 1,

where w ∈ Rn is the variable, µ is the mean return, Σ ∈ Sn
++ is the return covariance,

and γ > 0 is the risk aversion parameter. The data µ, Σ, and γ are given. In words,
the target weights maximize the risk-adjusted expected return.

At the beginning of each period t we are allowed to rebalance the portfolio by buying
and selling assets. We call the post-trade portfolio weights w̃t. They are found by
solving the (rebalancing) problem

maximize µTw − γ

2
wTΣw − κT |w − wt|

subject to 1Tw = 1,

with variable w ∈ Rn, where κ ∈ Rn
+ is the vector of (so-called linear) transaction

costs for the assets. (For example, these could model bid/ask spread.) Thus, we
choose the post-trade weights to maximize the risk-adjusted expected return, minus
the transactions costs associated with rebalancing the portfolio. Note that the pre-
trade weight vector wt is known at the time we solve the problem. If we have w̃t = wt,
it means that no rebalancing is done at the beginning of period t; we simply hold our
current portfolio. (This happens if wt = w⋆, for example.)

After holding the rebalanced portfolio over the investment period, the dollar value of
our portfolio becomes ht+1 = diag(rt)h̃t, where rt ∈ Rn

++ is the (random) vector of

asset returns over period t, and h̃t is the post-trade portfolio given in dollar values
(which you do not need to know). The next weight vector is then given by

wt+1 =
diag (rt)w̃t

rTt w̃t

.

(If rTt w̃t ≤ 0, which means our portfolio has negative value after the investment period,
we have gone bust, and all trading stops.) The standard model is that rt are IID random
variables with mean and covariance µ and Σ, but this is not relevant in this problem.

(a) No-trade condition. Show that w̃t = wt is optimal in the rebalancing problem if

γ |Σ(wt − w⋆)| � κ

holds, where the absolute value on the left is elementwise.

6

Interpretation. The lefthand side measures the deviation of wt from the target
portfolio w⋆; when this deviation is smaller than the cost of trading, you do not
rebalance.

Hint. Find dual variables, that with w = wt satisfy the KKT conditions for the
rebalancing problem.

(b) Starting from w1 = w⋆, compute a sequence of portfolio weights w̃t for t =
1, . . . , T . For each t, find w̃t by solving the rebalancing problem (with wt a known
constant); then generate a vector of returns rt (using our supplied function) to
compute wt+1 (The sequence of weights is random, so the results won’t be the
same each time you run your script. But they should look similar.)

Report the fraction of periods in which the no-trade condition holds and the
fraction of periods in which the solution has only zero (or negligible) trades,
defined as ‖w̃t − wt‖∞ ≤ 10−3. Plot the sequence w̃t for t = 1, 2, . . . , T .

The file portf_weight_rebalance_data.* provides the data, a function to gen-
erate a (random) vector rt of market returns, and the code to plot the sequence
w̃t. (The plotting code also draws a dot for every non-negligible trade.)

Carry this out for two values of κ, κ = κ1 and κ = κ2. Briefly comment on what
you observe.

Hint. In CVXPY we recommend using the solver ECOS. But if you use SCS you
should increase the default accuracy, by passing eps=1e-4 to the cvxpy.Problem.solve()
method.

7

5. Solving nonlinear circuit equations using convex optimization. An electrical circuit
consists of b two-terminal devices (or branches) connected to n nodes, plus a so-called
ground node. The goal is to compute several sets of physical quantities that characterize
the circuit operation. The vector of branch voltages is v ∈ Rb, where vj is the voltage
appearing across device j. The vector of branch currents is i ∈ Rb, where ij is the
current flowing through device j. (The symbol i, which is often used to denote an
index, is unfortunately the standard symbol used to denote current.) The vector of
node potentials is e ∈ Rn, where ek is the potential of node k with respect to the
ground node. (The ground node has potential zero by definition.)

The circuit variables v, i, and e satisfy several physical laws. Kirchhoff’s current law
(KCL) can be expressed as Ai = 0, and Kirchhoff’s voltage law (KVL) can be expressed
as v = AT e, where A ∈ Rn×b is the reduced incidence matrix, which describes the
circuit topology:

Akj =

+1 branch j enters node k
−1 branch j leaves node k
0 otherwise,

for k = 1, . . . , n, j = 1, . . . , b. (KCL states that current is conserved at each node, and
KVL states that the voltage across each branch is the difference of the potentials of
the nodes it is connected to.)

The branch voltages and currents are related by

vj = φj(ij), j = 1, . . . , b,

where φj is a given function that depends on the type of device j. We will assume that
these functions are continuous and nondecreasing. We give a few examples. If device
j is a resistor with resistance Rj > 0, we have φj(ij) = Rjij (which is called Ohm’s
law). If device j is a voltage source with voltage Vj and internal resistance rj > 0, we
have φj(ij) = Vj + rjij. And for a more interesting example, if device j is a diode, we
have φj(ij) = VT log(1 + ij/IS), where IS and VT are known positive constants.

(a) Find a method to solve the circuit equations, i.e., find v, i, and e that satisfy
KCL, KVL, and the branch equations, that relies on convex optimization. State
the optimization problem clearly, indicating what the variables are. Be sure to
explain how solving the convex optimization problem you propose leads to choices
of the circuit variables that satisfy all of the circuit equations. You can assume
that no pathologies occur in the problem that you propose, for example, it is
feasible, a suitable constraint qualification holds, and so on.

Hint. You might find the function ψ : Rb → R,

ψ(i1, . . . , ib) =
b

∑

j=1

∫ ij

0

φj(uj) duj,

useful.

8

(b) Consider the circuit shown in the diagram below. Device 1 is a voltage source
with parameters V1 = 1000, r1 = 1. Devices 2 and 5 are resistors with resistance
R2 = 1000, and R5 = 100 respectively. Devices 3 and 4 are identical diodes with
parameters VT = 26, IS = 1. (The units are mV, mA, and Ω.)

The nodes are labeled N1, N2, and N3; the ground node is at the bottom. The
incidence matrix A is

A =

−1 −1 0 0 0
0 1 −1 −1 0
0 0 0 1 −1

 .

(The reference direction for each edge is down or to the right.)

Use the method in part (a) to compute v, i, and e. Verify that all the circuit
equations hold.

V1

N1
R2 N2

D3

D4

N3

R5

−

+

9

6. Optimal material blending. A standard industrial operation is to blend or mix raw
materials (typically fluids such as different grades of crude oil) to create blended ma-
terials or products. This problem addresses optimizing the blending operation. We
produce n blended materials from m raw materials. Each raw and blended material is
characterized by a vector that gives the concentration of each of q constituents (such
as different octane hydrocarbons). Let c1, . . . , cm ∈ R

q
+ and c̃1, . . . , c̃n ∈ R

q
+ be the

concentration vectors of the raw materials and the blended materials, respectively. We
have 1T cj = 1T c̃i = 1 for i = 1, . . . , n and j = 1, . . . ,m. The raw material concen-
trations are given; the blended product concentrations must lie between some given
bounds, c̃min

i � c̃i � c̃max
i .

Each blended material is created by pumping raw materials (continuously) into a vat or
container where they are mixed to produce the blended material (which continuously
flows out of the mixing vat). Let fij ≥ 0 denote the flow of raw material j (say, in kg/s)
into the vat for product i, for i = 1, . . . , n, j = 1, . . . ,m. These flows are limited by
the total availability of each raw material:

∑n

i=1 fij ≤ Fj, j = 1, . . . ,m, where Fj > 0

is the maximum total flow of raw material j available. Let f̃i ≥ 0 denote the flow rates
of the blended materials. These also have limits: f̃i ≤ F̃i, i = 1, . . . , n.

The raw and blended material flows are related by the (mass conservation) equations

m
∑

j=1

fijcj = f̃ic̃i, i = 1, . . . , n.

(The lefthand side is the vector of incoming constituent mass flows and the righthand
side is the vector of outgoing constituent mass flows.)

Each raw and blended material has a (positive) price, pj, j = 1, . . . ,m (for the raw
materials), and p̃i, i = 1, . . . , n (for the blended materials). We pay for the raw
materials, and get paid for the blended materials. The total profit for the blending
process is

−
n

∑

i=1

m
∑

j=1

fijpj +
n

∑

i=1

f̃ip̃i.

The goal is to choose the variables fij, f̃i, and c̃i so as to maximize the profit, subject
to the constraints. The problem data are cj, c̃

min
i , c̃max

i , Fj, F̃i, pj, and p̃j.

(a) Explain how to solve this problem using convex or quasi-convex optimization.
You must justify any change of variables or problem transformation, and explain
how you recover the solution of the blending problem from the solution of your
proposed problem.

(b) Carry out the method of part (a) on the problem instance given in
material_blending_data.*. Report the optimal profit, and the associated val-
ues of fij, f̃i, and c̃i.

10

7. Graph isomorphism via linear programming. An (undirected) graph with n vertices
can be described by its adjacency matrix A ∈ Sn, given by

Aij =

{

1 there is an edge between vertices i and j
0 otherwise.

Two (undirected) graphs are isomorphic if we can permute the vertices of one so it
is the same as the other (i.e., the same pairs of vertices are connected by edges). If
we describe them by their adjacency matrices A and B, isomorphism is equivalent to
the existence of a permutation matrix P ∈ Rn×n such that PAP T = B. (Recall that
a matrix P is a permutation matrix if each row and column has exactly one entry 1,
and all other entries 0.) Determining if two graphs are isomorphic, and if so, finding a
suitable permutation matrix P , is called the graph isomorphism problem.

Remarks (not needed to solve the problem). It is not currently known if the graph
isomorphism problem is NP-complete or solvable in polynomial time. The graph iso-
morphism problem comes up in several applications, such as determining if two de-
scriptions of a molecule are the same, or whether the physical layout of an electronic
circuit correctly reflects the given circuit schematic diagram.

(a) Find a set of linear equalities and inequalities on P ∈ Rn×n, that together with
the Boolean constraint Pij ∈ {0, 1}, are necessary and sufficient for P to be a
permutation matrix satisfying PAP T = B. Thus, the graph isomorphism problem
is equivalent to a Boolean feasibility LP.

(b) Consider the relaxed version of the Boolean feasibility LP found in part (a), i.e.,
the LP that results when the constraints Pij ∈ {0, 1} are replaced with Pij ∈ [0, 1].
When this LP is infeasible, we can be sure that the two graphs are not isomorphic.
If a solution of the LP is found that satisfies Pij ∈ {0, 1}, then the graphs are
isomporphic and we have solved the graph isomorphism problem. This of course
does not always happen, even if the graphs are isomorphic.

A standard trick to encourage the entries of P to take on the values 0 and 1 is to
add a random linear objective to the relaxed feasibility LP. (This doesn’t change
whether the problem is feasible or not.) In other words, we minimize

∑

i,j WijPij ,
where Wij are chosen randomly (say, from N (0, 1)). (This can be repeated with
different choices of W .)

Carry out this scheme for the two isomorphic graphs with adjacency matrices A
and B given in graph_isomorphism_data.* to find a permutation matrix P that
satisfies PAP T = B. Report the permutation vector, given by the matrix-vector
product Pv, where v = (1, 2, . . . , n). Verify that all the required conditions on
P hold. To check that the entries of the solution of the LP are (close to) {0, 1},
report maxi,j Pij(1−Pij). And yes, you might have to try more than one instance
of the randomized method described above before you find a permutation that
establishes isomorphism of the two graphs.

11

8. Maintaining static balance. In this problem we study a human’s abil-
ity to maintain balance against an applied external force. We will
use a planar (two-dimensional) model to characterize the set of push
forces a human can sustain before he or she is unable to maintain bal-
ance. We model the human as a linkage of 4 body segments, which we
consider to be rigid bodies: the foot, lower leg, upper leg, and pelvis
(into which we lump the upper body). The pose is given by the joint
angles, but this won’t matter in this problem, since we consider a
fixed pose. A set of 40 muscles act on the body segments; each of
these develops a (scalar) tension ti that satisfies 0 ≤ ti ≤ Tmax

i , where
Tmax
i is the maximum possible tension for muscle i. (The maximum

muscle tensions depend on the pose, and the person, but here they
are known constants.) An external pushing force fpush ∈ R2 acts on
the pelvis. Two (ground contact) forces act on the foot: fheel ∈ R2

and f toe ∈ R2. (These are shown at right.) These must satisfy

|fheel
1 | ≤ µfheel

2 , |f toe
1 | ≤ µf toe

2 ,

where µ > 0 is the coefficient of friction of the ground. There are
also joint forces that act at the joints between the body segments,
and gravity forces for each body segment, but we won’t need them
explicitly in this problem.

fpush

fheel f toe

To maintain balance, the net force and torque on each each body segment must be
satisfied. These equations can be written out from the geometry of the body (e.g.,
attachment points for the muscles) and the pose. They can be reduced to a set of 6
linear equations:

Amusct+ Atoef toe + Aheelfheel + Apushfpush = b,

where t ∈ R40 is the vector of muscle tensions, and Amusc, Atoe, Aheel, and Apush are
known matrices and b ∈ R6 is a known vector. These data depend on the pose, body
weight and dimensions, and muscle lines of action. Fortunately for you, our biomechan-
ics expert Apoorva has worked them out; you will find them in static_balance_data.*
(along with Tmax and µ).

We say that the push force fpush can be resisted if there exist muscle tensions and
ground contact forces that satisfy the constraints above. (This raises a philosophical
question: Does a person solve an optimization to decide whether he or she should lose
their balance? In any case, this approach makes good predictions.)

Find F res ⊂ R2, the set of push forces that can be resisted. Plot it as a shaded region.

Hints. Show that F res is a convex set. For the given data, 0 ∈ F res. Then for
θ = 1◦, 2◦, . . . , 360◦, determine the maximum push force, applied in the direction θ,
that can be resisted. To make a filled region on a plot, you can use the command fill()

12

in Matlab. For Python and Julia, fill() is also available through PyPlot. In Julia,
make sure to use the ECOS solver with solver = ECOSSolver(verbose=false).

Remark. A person can resist a much larger force applied to the hip than you might
think.

13

