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Introduction
Systems Biology

“However, many things have a plurality of parts and are not merely a
complete aggregate but instead some kind of a whole beyond its parts.”

Aristotle, Metaphysics 8.6

A metabolic network from KEGG pathway database
Mojtaba Tefagh | Second National Conference on Biomathematics
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Introduction
COnstraint-Based Reconstruction and Analysis

I Genome-scale metabolic
network: N = (M,R,S, I)

I Metabolites:M = {Mi}m
i=1

I Reactions: R = {Ri}n
i=1

I Stoichiometric matrix: S
I Irreversible reactions: I ⊆ R
I Flux distribution: v ∈ Rn

I Mass balance condition: Sv = 0
I Thermodynamic directionality:

vI < 0
I Steady-state flux cone:
C = {v ∈ Rn | Sv = 0, vI < 0}

I We call Ri ∈ R a blocked
reaction if vi = 0, ∀v ∈ C.

Source: [Kim et al., 2012]
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Consistency Checking
The Naive Approach

Definition ([Schuster and Hilgetag, 1994])
A metabolic network with no blocked reactions is called a flux consistent
metabolic network.

By ni + 2nr LP’s:
I The forward direction:

maximize vi

subject to v ∈ C
vi ≤ 1

I The reverse direction:

minimize vi

subject to v ∈ C
vi ≥ −1
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Consistency Checking
SWIFTCC

I Identifying irreversible blocked
reactions by,

maximize 1T min(vI , 1)
subject to v ∈ C.

I Equivalently,

maximize 1T u
subject to Sv = 0

vI < u
1 < u < 0.

I Requires one LP.

I Identifying reversible blocked
reactions by,{

Sx = 0

eT
i x = 1

I Requires one QR
decomposition.
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Consistency Checking
Benchmark

SWIFTCC is more than 8× faster than FASTCC on average over 29 iterations of varying
sizes for the Recon3D model.

Mojtaba Tefagh | Second National Conference on Biomathematics
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QFCA
Flux Coupling Analysis

FCA [Burgard et al., 2004]
Let (Ri ,Rj) be an arbitrary pair of unblocked reactions.

Directional Coupling: Ri −→ Rj if

vi 6= 0⇒ vj 6= 0, ∀v ∈ C.

Partial Coupling: Ri ←→ Rj if

vi 6= 0⇔ vj 6= 0, ∀v ∈ C.

Full Coupling: Ri ⇐⇒ Rj if there exists a constant c 6= 0 such that

vi = cvj , ∀v ∈ C.
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QFCA
Feasibility-based Flux Coupling Analysis

Problem
Given the stoichiometric matrix S and the subset of irreversible reactions I,
identify all the blocked reactions and the pairs of reactions which are
directional, partially, or fully coupled.

FFCA [David et al., 2011]
By n(ni + 2nr ) + 2np LP’s:

maximize vi

subject to v ∈ C
vj = 0
vi ≤ 1.

maximize vi

subject to v ∈ C
vj = 1.

minimize vi

subject to v ∈ C
vj = 0
vi ≥ −1.

minimize vi

subject to v ∈ C
vj = 1.
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QFCA
Directional Coupling Equation

I For Ri1 ,Ri2 , . . . ,Ril ∈ I, there
exists ci1 , ci2 , . . . , cil > 0, such
that

vj = ci1 vi1 + ci2 vi2 + · · ·+ cil vil .

I There exists c′il+1
6= 0,

vj = c′i1 vi1 +c′i2 vi2 + · · ·+c′il+1
vil+1 .

I

(1+
1
c
)vj = (ci1+

c′i1
c
)vi1+(ci2+

c′i2
c
)vi2+· · ·+(cil+

c′il
c
)vil+

c′il+1

c
vil+1

For t = 2, 3, 4, Rt −→ R1 can be inferred
from the DCE corresponding to M1.
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QFCA
Directional Coupling Equation

Theorem ([Tefagh and Boyd, 2018])
Suppose that N = (M,R,S, I) has no irreversible blocked reactions. Let
Rj be an arbitrary unblocked reaction, and Dj ⊆ I denote the set of all the
irreversible reactions which are directionally coupled to Rj excluding itself.
Then, Dj 6= ∅ if and only if there exists cd > 0 for each Rd ∈ Dj , such that
the following directional coupling equation (DCE)

vj =
∑

d:Rd∈Dj

cd vd ,

holds for all v ∈ C. Moreover, for any unblocked Ri /∈ I, we have Ri −→ Rj if
and only if there exists an extended directional coupling equation (EDCE)

vj =
∑

d:Rd∈Dj

c′d vd + c′i vi c′i 6= 0,

which holds for all v ∈ C.
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QFCA
Flux Coupling Equations

(a) the original metabolic network (b) the transformed metabolic network

R2 −→ R4 can be inferred from the EDCEs corresponding to M1 and M2.
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QFCA
Flux Coupling Equations

M1 and M1 + M3 provide EDCEs, M2 and M2 + M3 provide DCEs, and M3 provides an
FCE.
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QFCA
Fictitious Metabolites

Definition
We call λ ∈ Rn a fictitious metabolite if there exists ν ∈ Rm such that
λ = STν.

Theorem

Suppose that in a given metabolic network specified by S and I, there are no
irreversible blocked reactions. Then for any λ ∈ Rn, λ is a fictitious
metabolite if and only if

λT v = 0, ∀v ∈ C.

Lemma

Suppose that in a given metabolic network specified by S and I, there are no
irreversible blocked reactions. Then for any λ ∈ Rn,

λT v = 0, ∀v ∈ C ⇔ λT u = 0, ∀u ∈ ker(S).
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QFCA
Fictitious Metabolites

M =4 × 13dpg[c] + 2 × 2pg[c] + 2 × 3pg[c]

+ 4.8756 × 6pgc[c] + 3.8756 × 6pgl[c] + 2 × actp[c]

− 2 × adp[c] − 4 × amp[c] + 2 × dhap[c]

− 1.8756 × e4p[c] + 2 × f6p[c] + 4 × fdp[c]

+ 2 × g3p[c] + 2 × g6p[c] + 2 × pep[c]

+ 2 × pi[c] + 1 × pi[e] − 5.7513 × r5p[c]

+ 5.8756 × ru5p − D[c] − 1.8756 × s7p[c]

+ 5.8756 × xu5p − D[c]

I 3-Phospho-D-glyceroyl-phosphate

I D-Glycerate-2-phosphate

I 3-Phospho-D-glycerate

I 6-Phospho-D-gluconate

I 6-phospho-D-glucono-1-5-lactone

I Acetyl-phosphate

I ADP

I AMP

I Dihydroxyacetone-phosphate

I D-Erythrose-4-phosphate

I D-Fructose-6-phosphate

I D-Fructose-1-6-bisphosphate

I Glyceraldehyde-3-phosphate

I D-Glucose-6-phosphate

I Phosphoenolpyruvate

I Phosphate (pi[c])

I Phosphate (pi[e])

I alpha-D-Ribose-5-phosphate

I D-Ribulose-5-phosphate

I Sedoheptulose-7-phosphate

I D-Xylulose-5-phosphate

Mojtaba Tefagh | Second National Conference on Biomathematics
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QFCA
Positive and Negative Certificates

Table: a bird’s eye view of QFCA

positive certificates negative certificates A

BR

(S(A))T x = e(A)i

S(A)u = 0

e(A)i

T
u = 1

∅
EDCE Dj ∪ {Rj}
FCE {Rj}

BI maximize 1T min(λ(A), 1)
subject to STν = λ

λi = 0, i /∈ I
λi ≥ 0, i ∈ I \ A

maximize 1T min(vI , 1)
subject to v ∈ C

vA = 0

∅
DCE {Rj}

I Certificates as potential differences
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QFCA
Final Algorithm

QFCA

Input: M,R,S, I
Output: A, b

identifying and removing the blocked reactions from the metabolic network
aggregating all the isozymes and removing the newly blocked reactions
identifying the fully coupled pairs of reactions and merging each pair
computing the set of fully reversible reactions and reversibility type pruning
finding the directional and partial coupling relations by positive certificates
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QFCA
Benchmark

(a) YEASTNET v3.0 with 2292 reversible
and 49 irreversible reactions

(b) Recon3D with 5238 reversible and 5362
irreversible reactions

QFCA average runtime is 7% and 68% of F2C2 average runtime, respectively.
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QFCA
Applications

I A quantitative approach to FCA

vj ≥ cvi

Equivalently the optimal value of the following LP is zero.

minimize vj − cvi

subject to v ∈ C
Deriving the dual,

maximize 0
subject to STν + ej − cei = λ

λi = 0, i /∈ I
λi ≥ 0, i ∈ I

As a result,
(1− λ?j )vj = (c + λ?i )vi +

∑
d 6=i,j

λ?d vd ,

I Sensitivity analysis
I The metabolic gap-filling problem
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Metabolic Network Reductions
A Toy example

N = (M,R,S, I)

M = {M1,M2,M3}

R = {R1,R2,R3,R4,R5}

I = R

S =

 +1 −1 0 +2 0
0 +1 −1 0 0
0 0 0 +1 −1


the original metabolic network

v =


v1

v2

v3

v4

v5

 =


v1

v3

v3

v4

v5

 =


+1 0 0 0
0 +1 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1




v1

v3

v4

v5

 .
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Metabolic Network Reductions
A Toy example
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]
R̃1

r1−→ {R1}
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R̃5

r1−→ {R5} the reduced metabolic network
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Metabolic Network Reductions
QFCA Reductions

I First, we eliminate all the
blocked reactions.

I Second, we merge all the fully
coupled reactions.

I Third, we remove the eligible
reactions by the DCE-induced
reductions.

N φ1,r1←−−− Ñ1
φ2,r2←−−− · · · φn−ñ,rn−ñ←−−−−−− Ñn−ñ

S̃ = SPA

φn−ñ(ṽ) = PAṽ

Mojtaba Tefagh | Second National Conference on Biomathematics



23
Metabolic Network Reductions
QFCA Reductions

I First, we eliminate all the
blocked reactions.

I Second, we merge all the fully
coupled reactions.

I Third, we remove the eligible
reactions by the DCE-induced
reductions.

N φ1,r1←−−− Ñ1
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Metabolic Network Reductions
Canonical Reductions

We say that the metabolic network Ñ = (M̃, R̃, S̃, Ĩ) is a reduction of
N = (M,R,S, I) if

1. there exists a surjection φ : C̃ → C,

2. there exists a reduction map r : R̃ → P(R) such that

r(R̃i) *
⋃
k 6=i

r(R̃k) ∀R̃i ∈ R̃,

3. and the following diagram commutes

where r̃ : P(R̃)→ P(R) is defined by

r̃({R̃i}i∈I) =
⋃
i∈I

r(R̃i).
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Metabolic Network Reductions
Canonical Reductions

φ1 ◦ φ2 : C̃2 → C is a surjection because the composition of surjective
functions is surjective,

r̃1 ◦ r2 : R̃2 → P(R) is a legitimate reduction map because for any R̃i ∈ R̃2

we have

∃R̃j ∈ r2(R̃i)\
⋃
k 6=i

r2(R̃k)⇒ ∃Rt ∈ r1(R̃j)\
⋃
k 6=j

r1(R̃k)⇒ Rt ∈ r̃1◦r2(R̃i)\
⋃
k 6=i

r̃1◦r2(R̃k),

and the following diagram commutes

because for any ṽ ∈ C̃2

supp(φ1 ◦ φ2(ṽ)) = r̃1(supp(φ2(ṽ))) = r̃1 ◦ r̃2(supp(ṽ)).
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Metabolic Network Reductions
Canonical reductions preserve EM’s

Definition ([Schuster and Hilgetag, 1994])
We call a nonzero feasible flux distribution 0 6= v ∈ C an elementary mode
(EM), if its support is minimal, or equivalently, if there does not exist any other
nonzero feasible flux distribution 0 6= u ∈ C such that supp(u) ⊂ supp(v).

Minimal conserved pool identification (MCPI)
Replace FCA by Metabolite concentration coupling analysis (MCCA) and
everything works!
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Metabolic Network Reductions
Canonical reductions are minimal

Theorem (The reduction theorem)

Suppose that Ñ = (M̃, R̃, S̃, Ĩ) is a metabolic network reduction of
N = (M,R,S, I) by the surjection φ : C̃ → C and the reduction map
r : R̃ → P(R). For each R̃i , R̃j ∈ R̃ such that R̃i −→ R̃j , any reaction in
r(R̃i) \

⋃
k 6=i r(R̃k) is directionally coupled to any reaction in r(R̃j).

Conversely, if there exists a reaction in r(R̃i) which is directionally coupled to
some reaction in r(R̃j) \

⋃
k 6=j r(R̃k), then R̃i −→ R̃j .

Remark

By setting i = j in the reduction theorem, any reaction in r(R̃i) \
⋃

k 6=i r(R̃k)

is directionally coupled to any reaction in r(R̃i).
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N = (M,R,S, I) by the surjection φ : C̃ → C and the reduction map
r : R̃ → P(R). For each R̃i , R̃j ∈ R̃ such that R̃i −→ R̃j , any reaction in
r(R̃i) \

⋃
k 6=i r(R̃k) is directionally coupled to any reaction in r(R̃j).

Conversely, if there exists a reaction in r(R̃i) which is directionally coupled to
some reaction in r(R̃j) \

⋃
k 6=j r(R̃k), then R̃i −→ R̃j .

Remark

By setting i = j in the reduction theorem, any reaction in r(R̃i) \
⋃

k 6=i r(R̃k)

is directionally coupled to any reaction in r(R̃i).
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28
Metabolic Network Reductions
Benchmark

SWIFTCORE runs more than 3× faster on the reduced BiGG universal model

m = 13249, n = 24311, nnz(S) = 95774

m̃ = 1278, ñ = 10255, nnz(S̃) = 56457
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Metabolic Network Reductions
Biological Intuition

The DCE reduced reactions are...

I essential reactions
I exchange reactions
I of older evolutionary age
I evolutionary more conserved
I essential in a wide range of conditions
I their associated genes are more expressed
I the reactions that produce biomass metabolites uniquely
I the reactions enriching the vital metabolic processes of the cell

Essential reactions are the symmetric counterpart of the blocked reactions.
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30Conclusions

I QFCA

I Flux coupling equations
I Fictitious metabolites
I Better worst-case complexity
I Faster in practice
I Biologically interpretable
I Providing lower bounds
I Robust to missing reactions
I Metabolic gap-filling problem

I Metabolic Network Reduction

I Decreasing the size
I Preserving sparsity
I Context-free reductions
I Preserving EM’s
I The first axiomatic framework
I Provable optimal efficiency
I Speed up analysis in practice
I Biologically interpretable
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31Further Topics

I Closure of a metabolic network

I SWIFTCC++
I SWIFTCORE

I SWIFTGAPFILL

I SPARSEQFCA
I Inhibition analysis
I Biological fidelity
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Thank You!



Any Questions?
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