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Metabolic reprogramming is a critical phenomenon in cellular processes associated with 

development, morphogenesis and cancer. In addition to the alteration of metabolites concentration, 

the method of dynamic optimization is capable of providing the dynamic profile of metabolic 

enzymes in the cells. However, the application of this method in the systems as large as metabolic 

networks suffers from drastic computational challenges. Here, we use techniques derived from 

distributed optimal control theory to set up a comprehensive landscape of metabolism during 

cellular reprogramming and differentiation. The proposed approach and the expected outputs 

introduce potential targets for controlling metabolic plasticity and help for directing cell-level 

evolution and engineering biological circuits.  

We introduce distributed optimal control (DOC) as a mathematical framework for dynamical 

control of large scale metabolic models. This approach tackles the network components as separate 

dynamic objects which stacked together in the shade of system objectives. DOC problems can be 

solved in the form of a nonlinear programming so that in each time step, the time-dependent 

probability density  function of the agents is optimized which determines the agent’s optimal 

feedback control based on the actual state of the system (the current agent distribution).  

Determination of an appropriate temporal objective function would be one of the key steps of the 

work. Finally, experimental data correspond to enzymes and metabolites concentrations should be 

used for evaluating the optimization model predictions. A verified model of E. coli kinetic model 

of metabolism can be used as model input and the outcomes would reveal some potential 

mechanisms of metabolic control in E. coli as a prokaryotic model organism. 

 

 



Integration of network dynamics in metabolic networks analysis 

Understanding the relationship between metabolism and key cellular processes such as 

environmental adaptation requires insights into the concept of optimization in the evolution of 

metabolic regulatory networks. While in the past the main focus of researches has been on 

regulating metabolic pathways based on steady state assumption, dynamic optimization has proven 

itself as an ideal tool for determining regulatory strategies for metabolic pathways in response to 

environmental changes. Numerous studies have been conducted to determine the optimal 

regulatory strategies and to identify the main control points in metabolic networks. (1) Wessely et 

al. Presented a dynamic optimization problem to determine the translational regulation program. 

In their approach, based on constraints such as reaction kinetics, growth rate, initial values of 

intermediate metabolites, concentrations of enzymes and a certain concentration range of products, 

the studied metabolic pathway are restricted and evolve. The objective function of the optimization 

problem is minimizing the cost of enzymes expression while metabolic goal can be reached (2). 

Hijas et al. used a dynamic optimization problem to study the feedback inhibition mechanism in 

the metabolic pathway regulation program. The constraints of their optimization problem include 

a competitive inhibition of certain enzymes by the metabolic pathway product. The existence of 

this competitive product affects reaction dynamics. The results of model simulations show that the 

control of enzymes at the branch of metabolic pathways has been selected during the evolution of 

pathways. (3) 

Cell growth can depend on the concentration of products of some metabolic pathways. With this 

biological justification, in the dynamic optimization problem proposed by Bartl, et al optimization 

of metabolic pathway products considered as the model objective function. In this study, in 

addition to the dynamics of reactions, including the biomass production reaction, cell potential for 

the synthesis of ribosomal free proteins and cellular capacity for the synthesis of enzymes were 

considered as system constraints. Simulations based on this problem show that increasing the 

synthesis capacity of free proteins leads to a simultaneous change in the expression of pathway 

enzymes, while increasing the synthesis rate of individual enzymes leads to regulating the 

expression of pathway enzymes in a stepwise manner. (4, Fig. 1) 

 

 

 

 

 

 

 

 

 

   

 

Figure 1 Dependence of metabolic pathway control enzyme control strategy on cellular protein synthesis 
capacity 



 

 

Dynamic optimization framework for modeling metabolic pathways has shown its potential in 

multi-objective optimization problems. One of such efforts aims for modeling the metabolic shift 

mechanism in Saccharomyces cerevisiae. This model is limited by optimizing cell life time and 

minimizing changes in the concentration of enzymes in the studied metabolic pathway with 

constraints such as upper bound concentration of metabolites. The modeling results show that 

minimizing the cost of controlling the expression of enzymes up to a threshold value will not 

significantly affect cell lifetime. (5) 

Finally, efforts of Waldherr et al. to integrate the metabolic network with changes in biomass 

extent and composition, in addition to predicting changes in enzymatic expression and reaction 

flux, was able to predict the composition of biomass in a time-dependent manner. Reducing the 

computational cost of this method as an extension of the classical FBA method has made it possible 

to apply it to more complex networks. (6) 

 

Numerical methods for solving dynamic optimization problems in systems 

biology 

There are three approaches for numerical solution of nonlinear optimal control problems: dynamic 

programming, indirect and direct methods. Dynamic programming is not popular due to the curse 

of dimensionality, so the latter two are promising methods for complex problems. Indirect 

approaches take the advantage of Pontryagin’s necessary conditions to transform the original 

problem into a multi-point boundary value problem, Direct methods transform the optimal control 

problem into a nonlinear programming problem based on the discretization of either the control, 

or both the control and the states variables, the first known as the sequential strategy and the later 

as the simultaneous or complete strategy (7,8). 

Sequential strategy, also known as control vector parametrization, usually uses low order 

Lagrange polynomials, the coefficients of which are the control variables. This gives a problem 

including an outer non-linear programming (NLP) problem and an inner initial value problem 

(IVP) where the cost function evaluated iteratively and the control variables are approximated and 

the system is integrated for each time.  

Polynomial coefficients correspond to time invariant parameters that determine the controls. 

Therefore, we have a non-linear programming problem with dynamic (the model) and algebraic 

constraints, where the decision variables as unknown parameters (9). 

In complete parameterization, both states and controls are discretized by dividing the time into 

intervals. In the most popular approach the solution is transcribed into a non-linear programming 

by means of low-order polynomial approximations and a K-stage Runge-Kutta theorem is used for 

integration steps. Indeed this method transforms the infinite dimensional problem into a large NLP 

without requiring the system integration in each solution iteration (10). 



Bartl et al. (11) used quasi-sequential approaches for determination of optimal control variables 

and to investigate parameters of pathway activation model. While those deterministic  and gradient-

based methods enable a fast convergence to local optimal solutions of NLPs, global  methods 

identify the global optimum in more robust manner and stochastically investigate solution space 

however in the cost of computation time. De Hijas-Liste et al. (5,12) applied a hybrid of local and 

global models for dynamic optimization for more efficient multi objective optimization of 

metabolic networks. 

In a recent work, two phase strategy for numerical optimal control was used where in phase (I), a 

hybrid stochastic-deterministic method based on control vector parameterization used to reach the 

global solution and in phase (II), a complete discretization fast local method used for 

computational enhancement (8). 

 

The importance of numerical approach for the effects of constraints on optimal 

solution  

In optimal control the equivalent of the shadow price is the adjoint variable. The Lagrange 

multipliers are discrete approximation of the adjoint variables. 

Considering the original infinite-dimensional optimal control problem in the Lagrangian form: 

 

 

 

The transformed problem to a discretized (infinite-dimensional) NLP problem would be in the 

form of: 

 

 

 

The difference between to adjoint variables and lagrange multiplier in two Lagrangian forms (L & 

£) depends on how the numerical method for approximation of continuous variables (8).  

 

Distributed Optimal Control for dynamic optimization of metabolic network 

 
In distributed optimal control, the cost function can represent a more general form of objectives 

than other methods which can provide solutions with strong couplings between the agent behavior 

and control laws. Furthermore, DOC approach is applicable for the macroscopic descriptions, other 

than expectation of the agent distribution such as the agent probability density function and its 

moments, thereby covers a broad range of collaborative behaviors and objectives. It does not need 

for assigning the agent distribution a priori. Instead, optimizes system behavior that is constrained 



by microscopic dynamics thus needs for a precise macroscopic evolution equation and the 

corresponding restriction operator that characterize the multiscale system to reduce the 

computational complexity of the problem. 

As a result, coupled agent objectives and control laws can be considered over large spatial and 

time scales in feasible computational frame (13). 
 

We assumed that the metabolite cooperate toward cellular objectives by modifying enzymes 

expression as microscopic control such that, at large networks and in broad temporal scales, the 

metabolic system performance over a time interval (𝑻𝟎, 𝑻𝒇] can be expressed as an integral cost 

function of 𝒖𝒊 and a macroscopic state variable X(t) = p(𝒙𝒊, t): 

 

 
 
where p is chosen to be a time-varying PDF as a restriction operator. we suppose metabolites can 

be described by a small system of SDEs in the form: 

 

 
 
where 𝒙𝒊 and 𝒖𝒊 correspond to the microscopic agent state and control, respectively, in this 

paradigm an additive Gaussian disturbance vector and the constant matrix G are included for 

random variations of parameters (14). 

 

 

Discretization of Distributed Optimal Control problem 

 
Parameterization of metabolites PDF over the solution domain can represented as a mixture 

model of Gaussian distribution: 

 

 

 

 

 

 

 

Which provides an approximation as a superposition of z PDFs components, their corresponding  

proportions or weights, denoted by w. at any 𝑡 ∈ (𝑻𝟎, 𝑻𝒇] the optimal agent distribution can be 

represented as 

 

 

 

 

 



 

z is an arbitrary fixed parameter. time-varying optimal parameters of the model determines the 

agent distribution p. 

 

Determination of the parameters must hold the component densities positive and with summation 

equals 1 (normalization condition) for all times: 

 

 
 

 
As well, for state- space discretization we consider the metabolites PDF as a conserved quantity 

with temporal evolution which is governed by the advection-diffusion equation and ignoring the 

input noise we have: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using finite- volume  approach we divide the state-space X into FVs  by a constant interval Δx 

which centered about the points 𝒙𝒍 ,with l = 1, ...,L 

 

 
Where 

 



 

 

 

  

Therefor: 

 

 

 

Finally, the discretized DOC problem as the finite-dimensional NLP would be (13-14): 

 

 
 

Which is a finite dimensional NLP can be solved using an SQP algorithm by representing as a 

sequence of unconstrained quadratic programming subproblems (15, Fig. 2). 

 

 
Figure 2 Simplified flow chart of standard NLP solution 



 

Concluding remarks 

 
In this study, the integrative approaches of metabolic network dynamics and constraint based 

models was investigated in the closure of optimal control theory. The basis of the methods in this 

integrative paradgim is the use of kinetic models as additional constraints in the stoichiometric 

modeling of the metabolic network. Because of limited access to the kinetic information associated 

with reactions, including information on kinetics of enzymes and their concentrations, 

optimization of metabolic network dynamics often remains at the level of model metabolic 

pathways, including multiple reactions or, ultimately, limited and interconnected pathways. 

However, distributed optimal control introduced in this paper, seems to be able for analyzing wider 

networks compared to other methods due to the potential for using phenotypic information 

while tracing microscopic evolution of microscopic transitions. 

Therefore, unlike methods for integration of regulation in metabolic analysis (16-18), there is no 

need to know the regulatory interactions extensively, because the proposed model can use only, 

the metabolic cost minimization of enzymes production as cellular goal. In fact, there can be two 

different approaches for modeling metabolic gene regulation based on enzymes expression: 

reconstructing metabolic models using the transcriptional constraints which directly used in 

reconstruction algorithm, and using the constraints on the capacity and cost of production, the 

same method studied in this paper. 

 

A unique feature of DOC method is the prediction of temporal changes of gene expression based 

on optimization concepts, without the use of information based on regulatory interactions. This 

feature, along with the limited dependence on kinetic data, improves the computational efficiency 

of the model compared to other dynamic methods and makes the analysis of relatively complex 

networks possible. 

In general, the integration of appropriate constraints related to regulatory mechanisms in the 

optimization of metabolic networks is still an open issue in the modeling of these networks. 

However, DOC method along with other proposed models, shows a promising framework for 

tracing back the plasticity of the metabolic system in relation to environmental changes.  
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