
Maximizing Non-monotone Submodular Set Functions Subject to

Different Constraints: Combined Algorithms

Salman Fadaei1

Faculty of Engineering, University of Tehran, Tehran, Iran.

MohammadAmin Fazli 2

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

MohammadAli Safari 3

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

Abstract

We study the problem of maximizing constrained non-monotone submodular functions and
provide approximation algorithms that improve existing algorithms in terms of either the
approximation factor or simplicity. Our algorithms combine existing local search and greedy
based algorithms. Different constraints that we study are (exact) cardinality and knapsack
constraints. For the multiple-knapsack constraints we achieve a (0.25− ε)-factor algorithm.

We also show, as our main contribution, how to use the continuous greedy process for
non-monotone functions and, as a result, obtain a 0.13-factor approximation algorithm
for maximization over any down-monotone polytope. The continuous greedy process has
been previously used for maximizing smooth monotone submodular function over a down-
monotone polytope [CCPV08]. It appears that that our approach could be combined with
pipage rounding or randomized swap rounding and provide approximation algorithms for
various constrained maximization problems over non-monotone submodular functions. As
an application of this technique we get a 0.13-approximation for maximizing non-monotone
submodular functions subject to both matroid and multiple knapsacks.

Keywords:
non-monotone submodular set functions, approximation algorithms, continuous greedy
process, matroid, knapsack, cardinality

1. Introduction

We study the problem of maximizing non-monotone non-negative submodular functions
with respect to some constraints: packing polytope constraint, knapsack constraint and

1Email: fadaeis@ut.ac.ir
2fazli@ce.sharif.edu
3msafari@sharif.edu

Preprint submitted to Nuclear Physics B February 19, 2011

cardinality constraints. Although these problems are extensively studied, we either propose
simple algorithms or improve the existing approximation factors.

Definition 1. A function f : 2X → R+ is called submodular if and only if ∀A,B ⊆ X,
f (A)+f (B) ≥ f (A ∩B)+f (A ∪B). An alternative definition is that the marginal values of
items should be non-increasing, i.e., ∀A,B ⊆ X, A ⊆ B ⊆ X and x ∈ X \B, fA(x) ≥ fB(x),
where fA(x) = f(A∪ {x})− f(A); fA(x) is called the marginal value of x with respect to A.

The Submodular Maximization Problem is a pair (f,∆) where f is a submodular
function and ∆ is the search domain. Our aim is to find a set A∗ ∈ ∆ whose value, f(A∗),
is maximum. Our focus is on non-monotone submodular functions, i.e., are not necessarily
monotone. That is, we do not require that f(A) ≤ f(B) for A ⊆ B ⊆ X.

Definition 2. A packing polytope is a polytope P ⊆ [0, 1]X that is down-monotone: If
x, y ∈ [0, 1]X with x � y and y ∈ P , then x ∈ P . A polytope P is solvable if we can maximize
linear functions over P in polynomial time [Dug09]. A Packing Polytope Constraint
binds the search domain (∆) to a packing polytope.

Definition 3. Suppose that we are given a ground set X = {a1, a2, ..., an} and also a set of
knapsacks K = {K1, ..., Kk}. The capacity of each knapsack is one and the weight of ai in
Kj is given by some parameter ci,j. A set V ⊆ X is called packable if we can find a mapping
g : V → K such that for all Ki,

∑
v∈V,g(v)=Ki

cv,i ≤ 1. k-Knapsack Constraint forces us
to bind search domain to packable subsets of X.

Definition 4. Consider a ground set X. In the Cardinality Constraint, ∆ = {S| |S| ≤ k}
and in the Exact Cardinality Constraint, we have ∆ = {S| |S| = k}.

Background.. Submodularity is the discrete analogous of convexity. Submodular set func-
tions naturally arise in several different important problems including cuts in graphs [IFF01,
GW94], rank functions of matroids [E70], and set covering problems [F98]. The problem of
maximizing a submodular function is NP-hard as it generalizes many important problems
such as Max Cut [FG95], Maximum Facility Location [B03, AS99], and the Quadratic Cost
Partition Problem with non-negative edge weights [GG05].

The problem of maximizing non-monotone submodular functions, with or without some
constraints, has been extensively studied in literature. In [FMV07] a 0.4-factor approxi-
mation algorithm was developed for maximizing general (non-negative, non-monotone) sub-
modular functions subject to no constraints. The approximation factor was very recently
improved to 0.41[OV10].

For the cases that we have constraints, Lee et al. [LMNS09], Vondrák [V09], and Gupta
et al. [GRST10] have provided most outstanding approximation algorithms. In [LMNS09]
a 0.2-approximation was developed for the problem subject to a constant number of knap-
sack constraints, followed by a 0.25-approximation for cardinality constraint and a 0.15-
approximation the exact cardinality constraint. The latter two approximation factors were
later improved in [V09] to 0.309, and 0.25, respectively. As a new way of tackling these
problems, [GRST10] provides greedy algorithms that achieve the approximation factor of
0.17. This technique is more common for maximizing monotone submodular functions.

In a recent work, [V08] and [CCPV08] used the idea of multilinear extension of submod-
ular functions and achieved good approximation algorithms for the problem of maximizing a

2

Constraint [LMNS09] [V09] [GRST10] Our Result Claim

Exact Cardinality 0.15 0.25 0.17 0.25 Simpler
k-Knapsacks 0.2 - - 0.25 Better ratio*
Packing Polytope - - - 0.13 New ratio*

Table 1: Comparison of our results with the existing ones. ∗ - A 0.325-approximation algorithm has been
achieved in [CVZ10] very recently.

monotone submodular function subject to a matroid. Using this technique, they first make
the problem continuous, obtain a fractional solution using greedy algorithm, and finally
round the fractional solution using randomized pipage rounding.

1.1. Our Results

We consider the problem subject to different constraints. Our results are summarized
in Table 1. They are also compared with existing works. We obtain simple algorithms
for cardinality constraint (maximum or exact), multiple knapsack constraints, and a new
approximation factor for the packing polytope constraint.

1.2. Preliminaries

In this section we introduce the concepts and terms that we often use throughout this
paper.

Multilinear Extension. For a submodular function f : 2X → R+, the multilinear extension of
f can be defined as follows [CCPV07]: F : [0, 1]X → R+ and

F (x) = E[f(x)] =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
i∈X\S

(1− xi).

We use the concept of multilinear extension of a submodular function which is used frequently
in recent works [CCPV07, CCPV08, KST09, LMNS09, V09].
A function F : [0, 1]X → R is smooth submodular if

• F has second partial derivatives everywhere.

• For any i, j ∈ X (possibly equal), ∂2F
∂xi∂xj

≤ 0 everywhere (submodularity).

The multilinear extension of every submodular function is a smooth submodular function
[CCPV08]. The gradient of F is defined as ∇F = (∂F

∂x1
. . . ∂F

∂xn
).

Matroid. A matroid is a pair M = (X, I) where I ⊆ 2X and

• ∀B ∈ I, A ⊂ B ⇒ A ∈ I

• ∀A,B ∈ I; |A| < |B| ⇒ ∃x ∈ B\A;A+ x ∈ I

If I = 2X , we call M a free matroid.

3

Matroid Polytopes. A matroid polytope is a solvable packing polytope with special proper-
ties. Given a matroid M = (X, I), we define the matroid polytope as

P (M) = {x ≥ 0: ∀S ⊆ X;
∑
j∈S

xj ≤ rM(S)}

where rM(S) = max{|I| : I ⊆ S; I ∈ I} is the rank function of matroid M. This definition
shows that the matroid polytope is a packing polytope.

Randomized Pipage Rounding. Pipage rounding was first introduced by Ageev and Sviri-
denko [AS04] for bipartite matching polytopes. Later, Calinescu et al. [CCPV07] adapted
the technique to matroid polytopes. The adapted pipage rounding technique in [CCPV07]
is a determinstic procedure. The randomized variant of the technique was later introduced
and used in [CCPV08]. The randomized pipage rounding converts a fractional point in the
matroid base polytope, y ∈ B(M) into a random base B ∈ M such that E[f(B)] ≥ F (y),
where F is the multilinear extension of the submodular function f . Later, Vondrák [V09]
extended the technique and showed that the starting point does not require to be inside the
matroid base polytope and is enough to be inside a matroid polytope, y ∈ P (M). Note that
- as mentioned in [V09] - the submodular function does not need to be necessarily monotone.

It is proven in [CVZ09] that this rounding technique has some useful property called
negative correlation, i.e., indicator vector variables Xi (which are the result of rounding xi’s)
have expectation xi and are negatively correlated.

2. Cardinality Constraint

In this section we propose very simple algorithms for some cardinality constraint problems
whose approximation factor is either close or matches the best existing one, yet it is much
simpler and easy to implement. Our algorithm is a simple combination of existing local
search or greedy based algorithms. Our main tool is the following Theorem from Gupta et
al. [GRST10].

Lemma 1. ([GRST10]). Given sets C, S1 ⊆ X, let C ′ = C \ S1, and S2 ⊆ X \ S1. Then
f(S1 ∪ C) + f(S1 ∩ C) + f(S2 ∪ C ′) ≥ f(C).

2.1. Cardinality Constraint

Theorem 1. There is a 0.25-factor approximation algorithm for maximizing a non-monotone
submodular function subject to a cardinality constraint.

Proof. Lee et al. [LMNS09] use a local search approach and compute a local optimal set S1

such that 2f(S1) ≥ f(S1 ∪ C) + f(S1 ∩ C) for any C with |C| ≤ k. Gupta et al. [GRST10]
propse a greedy based algorithm that computes a set S2 such that for any C with |C| ≤ k,
f(S2) ≥ 0.5f(S2 ∪ C). Let C be the true optimum and C ′ = C\S1. Therefore,

2f(S1) + 2f(S2) ≥ f(S1 ∪ C) + f(S1 ∩ C) + f(S2 ∪ C ′) ≥ f(C) = OPT

Thus, an algorithm that returns the better of S1 and S2 has approximation factor 0.25

The approximation factor 0.25 is slightly smaller that the 0.309 factor of [V09], though
our algorithm is simpler and straight forward to implement.

4

2.2. Exact Cardinality Constraint

An almost identical algorithms works for the exact cardinality problem. Let k be the
cardinality number.

Theorem 2. There is a 0.25-factor approximation algorithm for maximizing a non-monotone
submodular function subject to an exact cardinality constraint.

Proof. First, we use the local search algorithm of [LMNS09] and compute a set S1 whose
size is k and 2f(S1) ≥ f(S1 ∪ C) + f(S1 ∩ C) for any C with |C| = |S1| = k. Next, we used
the greedy algorithm of [GRST10] and compute a set S2 ⊆ X\S1 of size k such that for any
C ′ with |C ′| ≤ k, f(S2) ≥ 0.5f(S2 ∪ C ′).

Again, the better of S1 and S2 gives an approximation factor 0.25. Here, we have assumed
that k ≤ |X|

2
. If not, we can alternatively solve the problem for the derived submodular

function g(S) = f(X \ S) subject to cardinality constraint k′ = |X| − k.

The approximation factor 0.25 matches that of [V09], though our algorithm is simpler
and straight forward to implement.

3. Multiple Knapsack Constraints

Lee et al. [LMNS09] poropose an 0.2-factor approximation algorithm for the problem.
They basically divide the elements into two sets of heavy and light objects and then solve
the problem separately for each set and return the maximum of the two solutions.

We improve their result by considering both heavy and light elements together. Our
algorithms finds a fractional solution and then integrates it by using pipage rounding. Our
algorithms (shown as Algorithm 1 below) is based on the algorithm of Chekuri et al. [CVZ09]
for maximizing monotone submodular functions subject to one matroid and multiple knap-
sack constraints. We have made some modifications to use it for non-monotone functions.

5

Input: Elements’ weights {ci,j}, parameter 0 < ε < 1/(4k2), and a non-monotone
submodular function f

D ← ∅.
foreach subset A of at most 1/ε4 elements do

0. Set D ← A if f(A) > f(D);
1. Redefine Cj = 1−

∑
i∈A cij for 1 ≤ j ≤ k.;

2. Let B be the set of items i /∈ A such that either fA(i) > ε4f(A) or cij > kε3Cj
for some j;
3. Let x∗ be the fractional solution of the following problem:

max{G(x) : x ∈ P (M);∀j
∑

cijxi ≤ (1− ε)Cj} (1)

where M is the free matroid over the ground set X \ (A ∪B), and G(x) is the
multilinear extension of g(S) = fA(S), S ⊆ X \ (A ∪B).;
4. Let RA be the result of randomized pipage rounding applied to x∗ with respect
to the matroid polytope P (M). Set D ← A ∪RA if f(A ∪RA) > f(D);

end
Return D.
Algorithm 1: Non-Monotone Maximization Subject to Multiple Knapsacks

. The following theorem shows how good our algorithms is.

Theorem 3. Algorithm 1 returns a solution of value at least (0.25 − 3ε)OPT with hight
probability.

Proof. The proof follows the line of proofs of [CVZ09] with major changes to adapt it for
non-monotone case. Let O be the optimal solution with OPT = f(O). Assume |O| ≥ 1

ε4
;

otherwise, our algorithm finds the optimal solution in Line 0. Sort the elements of O by
their decreasing marginal values, and let A ⊆ O be the first 1

ε4
elements. Consider the

iteration in which this set A is chosen. Since A has 1
ε4

elements, the marginal value of its
last element and every element not in A is at most ε4f(A) ≤ ε4OPT . So, throwing away
elements whose marginal value is bigger than ε4f(A) does not hurt. We also throw away the
set B ⊆ N \ A of items whose size in some knapsack is more then kε3Cj. In O \ A, there
can be at most 1/(kε3) such items for each knapsack, i.e. 1/ε3 items in total. Since their
marginal values with respect to A are bounded by ε4OPT , these items together have value
g(O \ B) = fA(O \ B) ≤ εOPT . The set O′ = O \ (A ∪ B) is still a feasible set for the
maximization problem, and using submodularity, its value is Let O′ = O \ (A∪B). We have

g(O′) = g((O \ A) \ (O \B)) ≥ g(O \ A)− g(O ∩B) ≥ OPT − f(A)− εOPT.

The indicator vector (1− ε)1O′ is a feasible solution for the problem 1 (specified at step 3 of
algorithm 1). Using the concavity of G(x) along the line from the origin to 1O′ , we have
G((1− ε)1O′) ≥ (1− ε)g(O′) ≥ (1− 2ε)OPT − f(A). Using Theorem 4 of [LMNS09] we can
compute in polynomial time a fractional solution x∗ of value:

G(x∗) ≥ 1

4
G((1− ε)1O′) ≥ (

1

4
− 2ε)OPT − f(A).

6

Finally, we apply randomized pipage rounding to x∗ and call the resulting set R. By the
construction of randomized pipage rounding, g(R) ≥ G(x∗). However, R might violate
some of the knapsack constraints. Consider a fixed knapsack constraint,

∑
i∈S cij ≤ Cj. Our

fractional solution x∗ satisfies
∑
cijx

∗
i ≤ (1−ε)Cj. Also we know that all sizes in the reduced

instance are bounded by cij ≤ kε3Cj. By scaling, c′ij = cij/(kε
3Cj), we use Chernoff bound

with µ = (1− ε)/(kε3):

Pr[
∑
i∈R

cij > Cj] ≤ Pr[
∑
i∈R

c′ij > (1 + ε)µ] ≤ e−µε
2/3 < e−1/4kε.

Therefore, Pr[∃j :
∑

j∈R cij > Cj] ≤ ke−1/4kε. For ε ≤ 1/(4k2) this probability is at most

ke−k < 1. Finally, we have a feasible solution of value f(R) = f(A)+g(R) ≥ f(A)+G(x∗)−
εOPT ≥ (1

4
− 3ε)OPT .

4. Packing Polytope Constraint

In this section, we show that the continuous greedy process could be adapted for non-
monotone submodular functions.As a result, we propose an algorithm for solving the opti-
mization problems with packing polytope constraint. As an application of the technique,
we then consider the problem of submodular maximization subject to both one matroid and
multiple knapsacks constraints. Finally, we will show how to replace this continuous process
with a polynomial time discrete process subject to an acceptable error.

4.1. Continuous greedy process for non-monotone functions

As stated in [CCPV08] the greedy process starts with y(0) = 0 and is increased over a
unit time interval as follows:

dy

dt
= vmax(y),

where vmax(y) = argmaxv∈P (v.∇F (y)).

We observe the following statement when F is not non-monotone.

Lemma 2. y(1) ∈ P and F (y(1)) ≥ (1− e−1)(F (x ∨ y(1))− FDMAX), where F is a smooth
submodular function, x ∈ P and FDMAX = max0≤t≤1 F (y(1)− y(t)).

Proof. The proof is essentially similar to that of [CCPV08] with some modifications to adapt
it for non-monotone functions. First of all, the trajectory for t ∈ [0, 1] is contained in P,
since

y(t) =

∫ t

0

vmax(y(τ))dτ

is a convex linear combination of vectors in P . To prove the approximation guarantee, fix
a point y. Consider a direction v∗ = (x ∨ y) − y = (x − y) ∨ 0. This is a non-negative
vector; since v∗ ≤ x ∈ P and P is down-monotone, we also have v∗ ∈ P . Consider the ray
of direction v∗ starting at y, and the function F (y + ξv∗), ξ ≥ 0. The directional derivative
of F along this ray is dF

dξ
= v∗.∇F . Since F is smooth submodular (that means, each entry

7

of ∇F , ∂F
∂yj

is non-increasing with respect to yj) and v∗ is nonnegative, dF
dξ

is non-increasing

too and F (y + ξv∗) is concave in ξ. By concavity:

F (y(1) + v∗)− F (y(t)) ≤ F (y(t) + v∗)− F (y(t)) + F (y(1)− y(t)) ≤ v∗.∇F (y(t)) + FDMAX .

Since v∗ ∈ P , and vmax(y) ∈ P maximizes v.∇F (y) over all vectors v ∈ P , we get

vmax(y).∇F (y) ≥ v∗.∇F (y) ≥ F (y(1) + v∗)− FDMAX − F (y). (2)

We now get back to the continuous process and analyse F (y(t)). By the chain rule and
using (1), we get

dF

dt
=

∑
j

∂F

∂yj

dyj
dt

= vmax(y(t)).∇F (y(t)) ≥ F (x ∨ y(1))− FDMAX − F (y(t)). (3)

This means that F (y(t)) dominates the solution of the differential equation

dφ

dt
= F (x ∨ y(1))− FDMAX − φ(t)

which means φ(t) = (1− e−t)(F (x∨ y(1))−FDMAX). This proves F (y(t)) ≥ (1− e−t)(F (x∨
y(1))− FDMAX).

4.2. Extending Smooth Local Search.

As our final tool for obtaining the main algorithm of this section, we propose an algorithm
for the following problem: A submodular function, f : 2X → R+ is given. F is the multilinear
extension of f . We have an uppper bound {ui ∈ [0, 1]}ni=1 for the variables. The problem is
defind over the region U := {0 ≤ yi ≤ ui ∀i ∈ X}:

max{F (y) : y ∈ U}

For this, we extend the 0.4-approximation algorithm (Smooth Local Search or SLS) of
[FMV07] as follows. We call our algorithm FMVY .

We define a discrete set of values in [0, 1] as ζ = {p.δ : 0 ≤ p ≤ 1/δ} where δ = 1
8n4

and p is integer. The result is a vector with the values selected from the discrete set ζ. We
show that such a discretization does not substantially harm our solution, yet it reduces the
running time.

First, we define a new function g : 2U → R+, g(∪i∈XTi) = F (. . . , |Ti|
si
, . . .) over the ground

set U . U contains si = b1
δ
uic copies of each element i ∈ X, and any subset T ⊆ U is declared

as T = ∪i∈XTi where each Ti cosists of all copies of i ∈ X from T . This function has
been previously introduced and used in [LMNS09]. It is easy to verify that g is submodular
[LMNS09]. Let B be the answer of running the the SLS algorithm to maximize g. B is a
representation of some vector y and y is returned as the result.

Note that based on [FMV07]: g(B) ≥ 0.4g(A), ∀A ∈ U , that means:

F (y) ≥ 0.4F (z), ∀z ∈ U ∩ ζn. (4)

8

Claim 1. For any x ∈ U , 2.5F (y) ≥ F (x)− fmax

4n2 , where fmax = max{f(i) : i ∈ X}.

Proof. Let z be the point in ζn ∩ U that minimizes
∑n

i=1(xi − zi). Based on Claim 3 of
[LMNS09], F (z) ≥ F (x) − fmax

4n2 . Therefore, by also considering inequality (4) we conclude

that F (y) ≥ 0.4(F (x)− fmax

4n2).

4.3. The Algorithm

Now we are ready to present our algorithm for maximizing a smooth submodular function
over a packing polytope:

Input: A packing polytope P , a smooth submodular function F
1. y1 ←− the result of running the continuous greedy process.
2. y′1 ←− argmax0≤t≤1F (y1 − y(t)).
3. ymax1 ←− The result of running FMVY on with upper bound y1.
4. y2 ←− the result of running the greedy process over the new polytope P ′ which is
built by adding constraints yi ≤ 1− y1 for any 1 ≤ i ≤ n to P . Note that P ′ is a
down-monotone polytope.
5. y′2 ←− argmax0≤t≤1F (y2 − y(t)).
6. Return argmax(F (y1), F (y2), F (y1max), F (y′1), F (y′2)).

Algorithm 2: Continuous greedy process for non-monotone functions

Theorem 4. The above algorithm is a 2e−2
13e−9

-approximation algorithm for the problem of
maximizing a smooth submodular function F , over a solvable packing polytope P .

Proof. Suppose x∗ ∈ P is the true optimum with F (x∗) = OPT . by lemma 2, F (y1) ≥
(1−e−1)(F (x∗∨y1)−F (y′1)). Also, we have F (y2) ≥ (1−e−1)(F (x′∨y2)−F (y′2)), where x′ =
x∗− (x∗∧ y1). Note that x′ ∈ P ′. Also, based on claim 1, F (y1max) ≥ 0.4(F (x∗∧ y1)− fmax

4n2).
Note that x∗ ∧ y1 � y1.
By adding up above inequalities we get

e
e−1

(F (y1) + F (y2)) + F (y′1) + F (y′2) + 2.5F (y1max)

≥ F (x∗ ∨ y1) + F (x′ ∨ y2) + F (x∗ ∧ y1)− fmax

4n2

≥ F (x∗)− fmax

4n2 = OPT − fmax

4n2 .

Therefore the approximation factor of the algorithm is at least 2e−2
13e−9

OPT

Remark.. Observe that the step 3 of the algorithm could be done with other existing smaller
approximations such as 0.25 or 0.3 instead of the 0.4.

Both one matroid and mutltiple knapsacks.. As a direct result of the above theorem, we
propose the first approximation algorithm for maximizing a submodular function subject
to both one matroid and mutltiple knapsack. This problem was solved (approximately) in
[CVZ09] for monotone submodular functions.

Theorem 5. There exists a 2e−2
13e−9

-approximation algorithm for the problem of maximizing a
non-monotone submodular function f subject to one matroid and multiple knapsacks.

9

Proof. It is enough to show that the intersection of the polytopes related to one matroid
and multiple knapsacks is still a solvable packing polytope which is easy. Therefore, we
can achieve a fractional solution by using Algorithm 2 besides the enumeration phase (as in
Algorithm 1), and then using randomized pipage rounding the integral solution is achieved.

4.4. Discrete Version

The main concern of this part is to propose a method for discretizing the continuos greedy
process described in previous subsection 4.1. For this purpose, we can assume that the time
interval is so small that the difference between the solution of differential inequality and
the finite version of the algorithm is insignificant. However, since discretizing the time scale
introduces some errors, here we describe the discrete version of the algorithm. The main
result of this subsection is theorem 6 which corresponds to lemma 2. This theorem shows
that our method could be discretized without producing any substantial error.

At first we mention the following useful lemma which may be the subject of independent
interest:

Lemma 3. For any x, z ∈ {0, 1}X and any y ∈ [0, 1]X such that y � z and let R denote a
random set corresponding to y with elements sampled independently according to yi then

F (x ∨ z) ≤ F (y) + max
I∈I

∑
j∈I

E[fR(j)] + FDMAX

where FDMAX = maxF (z − w), for any w ∈ [0, 1]X such that w � z.

Proof. Fix A,B ∈ I such that x = 1A and z = 1B. By submodularity f(A∪B) ≤ f(AUR)+
f(B − R) for any set R ⊆ B, Therefore, again by submodularity, f(A ∪ B) ≤ f(R) +∑

j∈A fR(j) + f(B −R). By taking the expectation over a random subset R,

F (x ∨ z) ≤ F (y) +
∑
j∈A

E[fR(j)] + F (z − y) ≤ F (y) + max
I∈I

∑
j∈I

E[fR(j)] + FDMAX .

Now we present the discrete version of the algorithm. We assume ζ represents the set
of different values which t (time) obtains: ζ = {p.δ : 0 ≤ p ≤ 1/δ}. We can change the
algorithm of [V08] for non-monotone submodular functions as follows:

10

.

Input: A matroid M, and a non-monotone submodular function f
1. Let δ = 1/n2, where n = |X|, and start with t = 0, y(0) = 0.
2. Let R(t) contains each j independently with probability yj(t). For each j ∈ X,
estimate by sampling

wj(t) = E[f(R(t) ∪ {j})− f(R(t))].

3. Let I(t) be a maximum-weight independent set in M according to the weights
wj(t). We can find this by the greedy algorithm for max-weight independent set with
weights wj(t) . Set

y(t+ δ) = y(t) + δ1I(t).

4. Increment t := t+ δ; if t < 1, go back to Step 2.
5. Let y′1 = argmaxF (y(1)− y(t)), for all t ∈ ζ.
6. Return y(1) and y′1.

Algorithm 3: Discrete algorithm for simulating the continuous process

Remark.. Note that for fully discretizing Algorithm 2, one has to run Algorithm 3 at first,
followed by running unconstrained submodular maximization (FMVY), and then running
Algorithm 3 again with new parameters. The steps should be in accordance with the steps
of Algorithm 2.

Before proceeding with the main theorem we mention some required lemmas. In the
following lemmas we have some assumptions as follows: f is a non-monotone submodular
function. y(t+δ) is the vector produced from y(t) at time t: y(t+δ) = y(t)+δ1I(t). I(t) is the
selected subset at time t by the Algorithm 3 at step 3. R(t) and R(t+ δ) are random subsets
corresponding to y(t) and y(t+δ), respectively. D(t) is a random set that contains each item
j independently with probability ∆j(t) = yj(t+δ)−yj(t), i.e. ∆(t) = y(t+δ)−y(t) = δ.1I(t).
so D(t) is a random subset of I(t) where each element appears independently with probability
δ. ζ is the set values which t obtains during the algorithm execution.

Now we continue with the presentation of required lemmas and the proof details.

Lemma 4. If there exists a 0 ≤ t ≤ 1 such that E[f(R(t + δ))] ≤ E[f(R(t) ∪ D(t))] then
E[f(R(t+ δ))] ≥ E[f(R(t) ∪D(t))]− (δ/n)OPT .

Proof. Let θ = E[f(R(t + δ))] − E[f(R(t) ∪ D(t))]. Let α(t) = R(t) ∪ D(t) and β(t) =
R(t+ δ) \ α(t). We observe that:

Pr[j ∈ β(t)] = Pr[j ∈ R(t+ δ)]− Pr[j ∈ α(t)]
= yj(t) + ∆j(t)− (1− (1− yj(t))(1−∆j(t)))
= ∆j(t).yj(t).

This means that, the elements of β(t) are independently selected from I(t) with the proba-
bility δyj(t). Therefore β(t), intuitively, has few elements, maybe zero or one, but, for the
completeness of the proof we consider the probability of all situations:

θ =
∑

j∈I(t) Pr(β(t) = {j})E[fα(t)({j})] +
∑

i,j∈I(t) Pr(β(t) = {i, j})E[fα(t)({i, j})] + . . .

=
∑

j∈I(t) δyj(t)
∏

i∈I(t)\{j} (1− δyj(t))E[fα(t)({j})] + . . .

≥ δd
∏

j∈I(t) yj(t)(
∑

j∈I(t) E[fα(t)({j})] +
∑

i,j∈I(t) E[fα(t)({i, j})] + . . .)

= δd
∏

j∈I(t) yj(t).S ≥ δn
∏

j∈I(t) yj(t).S

11

Where d = |I(t)|. The first inequality occurs since 1− δyj(t) ≥ δ.
Since θ ≤ 0, therefore

|θ| ≤ δn
∏

j∈I(t) yj(t).|S| ≤ δn.|S|
≤ δn(

∑
j∈I(t) |E[fα(t)({j})]|+

∑
i,j∈I(t) |E[fα(t)({i, j})]|+ . . .)

≤ δn(d1).OPT + (d2).OPT + . . .
≤ δn.2d.OPT ≤ δn.2n.OPT.
≤ (δ/n)OPT

Again since θ ≤ 0 we have θ ≥ −(δ/n)OPT , and therefore the lemma implies.

Lemma 5. γ ≥ −(δ/n)OPT , where

γ =
∑

i,j∈I(t) Pr(D(t) = {i, j})E[fR(t)({i, j})]+∑
i,j,k∈I(t) Pr(D(t) = {i, j, k})E[fR(t)({i, j, k})] + . . .+∑
I(t)=I(t) Pr(D(t) = I(t))E[fR(t)(I(t))].

Proof. If γ ≥ 0 then lemma implies. Therefore, we suppose γ < 0. Let |I(t)| = d.

γ =
∑

i,j∈I(t) δ
2(1− δ)d−2E[fR(t)({i, j})] +

∑
i,j,k∈I(t) δ

3(1− δ)d−3E[fR(t)({i, j, k})] + . . .

≥ δd(
∑

i,j∈I(t) E[fR(t)({i, j})] +
∑

i,j,k∈I(t) E[fR(t)({i, j, k})] + . . .)

= δdS ≥ δnS.

The first inequality occurs since 1− δ ≥ δ. We consider the value of S:

|S| ≤ (
∑

i,j∈I(t) |E[fR(t)({i, j})]|+
∑

i,j,k∈I(t) |E[fR(t)({i, j, k})]|+ . . .)

≤ (d2).OPT + (d3).OPT + . . .
≤ 2d.OPT ≤ 2n.OPT.

Since γ ≤ 0, therefore S ≤ 0 and S ≥ −2n.OPT therefore, γ ≥ −2n.δn.OPT .
Since, 2n.δn ≤ δ/n, the lemma implies.

Lemma 6. If E[f(R(t+ δ))] ≥ E[f(R(t) ∪D(t))]− β then
V AL − F (y(t + δ)) ≤ (1 − δ)(V AL − F (y(t))), where V AL = F (x ∨ y(1)) − FDMAX −
3/nOPT − β/δ, and FDMAX = maxF (y(1)− y(t)), for all t ∈ ζ.

Proof.

F (y(t+ δ))− F (y(t)) = E[f(R(t+ δ))]− E[f(R(t))]
≥ E[f(R(t) ∪D(t))]− E[f(R(t))]− β
=

∑
j∈I(t) Pr(D(t) = {j})E[fR(t)({j})]− β + γ

=
∑

j∈I(t) δ(1− δ)|I(t)|−1E[fR(t)({j})]− β + γ

≥ δ(1− nδ)
∑

j∈I(t) E[fR(t)({j})]− β + γ

where
γ =

∑
i,j∈I(t) Pr(D(t) = {i, j})E[fR(t)({i, j})]+∑
i,j,k∈I(t) Pr(D(t) = {i, j, k})E[fR(t)({i, j, k})] + . . .+∑
I(t)=I(t) Pr(D(t) = I(t))E[fR(t)(I(t))].

12

by Lemma 5, γ ≥ −(δ/n)OPT . Therefore,

F (y(t+ δ))− F (y(t)) ≥ δ(1− nδ)
∑
j∈I(t)

E[fR(t)({j})]− β − (δ/n)OPT.

We incur an error of at most OPT/n in computation of the maximum-weight independent
set. Then

F (y(t+ δ))− F (y(t)) ≥ δ(1− nδ)(maxI∈I
∑

j∈I E[fR(j)]−OPT/n)− β − (δ/n)OPT.

≥ δ(V AL− F (y(t))).

The second inequlity is achieved by using lemma 3, δ = 1/n2, setting V AL = F (x∨ y(1))−
FDMAX − 3/nOPT − β/δ, where FDMAX = maxF (y(1) − y(t)), for all t ∈ ζ, and by using
F (x ∨ y(1))− FDMAX ≤ OPT .
From here we have V AL− F (y(t+ δ)) ≤ (1− δ)(V AL− F (y(t))).

The main result of this part is to show that discrete Algorithm 3 has the same result as
the continuous greedy process described in subsection 4.1 (with a small amount of error).
For getting better intuition you can compare Theorem 6 by Lemma 2.

Theorem 6. y(1), y′1 ∈ P and F (y(1)) ≥ (1− e−1)(F (x∨ y(1))−F (y′1))− o(1)OPT , where
x ∈ P .

Proof. The proof is based on [V08]. They use the monotonocity of f , but since our function
is not necessarily monotone we adapt it for our case. We estimate the growth of F (y(t)) at
each step of the algorithm by starting from F (y(0)) = 0. We suppose R(t) is a random set
that corresponds to y(t). Also, we assume D(t) as a random set that contains each item j
independently with probability ∆j(t) = yj(t+ δ)− yj(t). The growth of F (y(t)) at time t is:

F (y(t+ δ))− F (y(t)) = E[f(R(t+ δ))]− E[f(R(t))]

We compare E[f(R(t+ δ))] with E[f(R(t) ∪D(t))]. When f is monotone E[f(R(t+ δ))] ≥
E[f(R(t) ∪ D(t))] [V08]. But, here the function is not necessarily monotone. However, as
shown by lemma 4 we have:

E[f(R(t+ δ))] ≥ E[f(R(t) ∪D(t))]− (δ/n)OPT. (5)

Inequlity (5) shows that if E[f(R(t+ δ))] is less than E[f(R(t) ∪D(t))] then the difference
will be a very small number. Therefore, we have:

E[f(R(t+ δ))]− E[f(R(t))] ≥ E[f(R(t) ∪D(t))]− E[f(R(t))]− (δ/n)OPT.

Then by lemma 6 we have V AL − F (y(t + δ)) ≤ (1 − δ)(V AL − F (y(t)), where V AL =
F (x ∨ y(1))− F (y′1)− (4/n)OPT .
By induction, V AL− F (y(kδ)) ≤ (1− δ)kV AL. For k = 1/δ, we get

V AL− F (y(1)) ≤ (1− δ)1/δV AL ≤ (1/e)V AL.

Therefore, F (y(1)) ≥ (1− 1/e)V AL ≥ (1− 1/e)(F (x ∨ y(1))− F (y′1))− o(1)OPT .

Acknowledgement
The Authors are grateful to Dr. Vahab Mirrokni for his many helps in all the steps of

the preparation of this paper. The first author is also thankful to Dr. Ali moeini (his M.Sc.
advisor), Dr. Dara Moazzami, and Jasem Fadaei for their help and advice.

13

References

[AS99] A. A. Ageev and M. I. Sviridenko, An 0.828-approximation algorithm for the unca-
pacitated facility location problem. Discrete Appl. Math., 93, 149156, 1999.

[AS04] A. Ageev and M. Sviridenko. Pipage rounding: a new method of constructing algo-
rithms with proven performance guarantee. J. of Combinatorial Optimization, 8:307328,
2004.

[B03] S. Benati. An improved Branch & Bound method for the uncapacitated competitive
location problem. Annals of Operations Research 122,no. 1, 43-58, 2003.

[CCPV07] G. Calinescu, C. Chekuri, M. Pál and J. Vondrák. Maximizing a monotone sub-
modular function under a matroid constraint. Proc. of 12th IPCO, 182196, 2007.

[CCPV08] G. Calinescu, C. Chekuri, M. Pál and J. Vondrák. Maximizing a submodular set
function subject to a matroid constraint. To appear in SIAM Journal on Computing,
special issue for STOC 2008.

[CKP00] A. Caprara, H. Kellerer and U. Pferschy. Approximation Algorithms for Knapsack
Problems with Cardinality Constraints. European J. Oper. Res. 123, 333-345, 2000.

[CVZ09] C. Chekuri, J. Vondrák, R. Zenklusen. Dependent Randomized Rounding for Ma-
troid Polytopes and Applications, 2009.

[CVZ10] C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. Manuscript, 2010.

[Dug09] S. Dughmi. Submodular Functions: Extensions, Distributions, and Algorithms A
Survey. http://arxiv.org/abs/0912.0322, 2009.

[E70] J. Edmonds. Matroids, submodular functions, and certain polyhedra. Journal of Com-
binatorial Structures and Their Applications, 69-87, 1970.

[F98] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45(4):634652, 1998.

[FG95] U. Feige, and M.X. Goemans. Approximating the value of two prover proof systems,
with applications to MAX 2SAT and MAX DICUT Proceedings of the Third Israel
Symposium on Theory of Computing and Systems 388, 1995.

[FMV07] U. Feige, V.S.Mirrokni, and J. Vondrák. Maximizing non-monotone submodular
functions. In FOCS, 2007.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., 1979.

[GG05] B. Goldengorin and D. Ghosh. The multilevel search algorithm for the maximization
of submodular functions applied to the quadratic cost partition problem. Journal of
Global Optimization 32 (1), 6582, 2005.

14

[GRST10] A. Gupta, A. Roth, G. Schoenebeck, K. Talwar. Constrained Non-Monotone
Submodular Maximization: Offline and Secretary Algorithms, 2010.

[GW94] M. Goemans and P. Williamson. Improved Approximation Algorithms for Maximum
Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM
(JACM) 42(4), 1115-1145, 1994.

[HMS08] J. Hartline, V. Mirrokni, M. Sundararajan. Optimal marketing strategies over so-
cial networks. Proceeding of the 17th international conference on World Wide Web,
189-198, 2008.

[IFF01] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions Journal of the ACM (JACM) 48(4), 777,
2001.

[KS10] A. Kulik, H. Shachnai. Improved Approximations for Non-monotone Submodular
Maximization with Knapsack Constraints.
http://www.cs.technion.ac.il/∼hadas/PUB/non monotone submodular.pdf, 2010.

[KST09] A. Kulik, H. Shachnai and T. Tamir. Maximizing submodular set functions subject
to multiple linear constraints. Proc. of ACM-SIAM SODA, 545554, 2009.

[LMNS09] J. Lee, V. Mirrokni, V. Nagarajan, and M. Sviridenko. Maximizing non-monotone
submodular functions under matroid and knapsack constraints. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing (STOC), 2009.

[OV10] S. Oveis Gharan, J. Vondrák. Submodular Maximization by Simulated Annealing.
http://arxiv.org/abs/1007.1632, 2010.

[S04] M. Sviridenko. A note on maximizing a submodular set function subject to knapsack
constraint. Operations Research Letters 32, 4143, 2004.

[Sch03] A. Schrijver. Combinatorial optimization - polyhedra and efficiency. Springer, 2003.

[SU07] A. Schulz, and N. Uhan. Encouraging cooperation in sharing supermodular costs Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, 271-285, 2007.

[V08] J. Vondrák. Optimal approximation for the submodular welfare problem in the value
oracle model. In STOC, pages 67-74, 2008.

[V09] J. Vondrák. Symmetry and approximability of submodular maximization problems.
In Proc. of IEEE FOCS, 251270, 2009.

15

