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Abstract

Equivariant Adaptive Separation via Independence (EASI) is one of the most suc-
cessful algorithms for Blind Source Separation (BSS). However, the user has to
choose nonlinearities, and usually simple (but non optimal) cubic polynomials are
applied. In this paper, the optimal choice of these nonlinearities is addressed. We
show that this optimal nonlinearity is the output Score Function Difference (SFD).
Contrary to simple nonlinearities usually used in EASI (such as cubic polynomials),
the optimal choice is neither component-wise nor fixed: it is a multivariate func-
tion which depends on the output distributions. Finally, we derive three adaptive
algorithms for estimating the SFD and achieving “quasi-optimal” EASI algorithms,
whose separation performance is much better than “standard” EASI and which
especially converges for any sources.

1 Introduction

Blind Source Separation (BSS) is an ongoing research topic, which has been
considered extensively since mid 80’s [1,2]. The goal of BSS is to recover un-
observed independent mixed signals from mixtures of them, assuming there is
information neither about the original signals, nor about the mixing matrix.

1 This work has been partially funded by Sharif University of Technology, by
French Embassy in Tehran, and by Center for International Research and Col-
laboration (ISMO).
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BSS has received attention because of its theoretical interest and of its po-
tential applications in signal processing such as in speech recognition systems,
telecommunications and medical signal processing.

The simplest BSS model is the linear instantaneous model, in which the mix-
ture is supposed to be of the form x = As, where s = (s1, . . . , sn)

T is the
source vector with independent components, x = (x1, . . . , xn)

T is the observa-
tion vector, and A is the (constant) mixing matrix which is supposed to be an
unknown full rank matrix. The basic problem of BSS is to estimate the source
components si from the observations xi or, equivalently, to estimate the sepa-
rating matrix B, which leads to independent estimated sources via y = Bx. A
well-known restriction of this model is that we can only estimate non-Gaussian
independent components (in fact, at most one independent component can be
Gaussian) [3]. Moreover, the BSS solutions are not unique: neither the ener-
gies nor the signs of the independent components can be estimated. In fact,
any constant multiplying an independent component could be cancelled by
dividing the corresponding column of the mixing matrix A by the same con-
stant and thus leads to the same observations. Note that no order is defined
between independent components [3].

The problem of BSS has been first introduced by Ans, Hérault and Jutten [4]
for linear instantaneous mixtures. Then, many researchers have been attracted
by the subject, and many other works appeared (see [1,2] for a review and
many references).

The BSS algorithms can be divided into two categories: batch algorithms and
adaptive algorithms. In batch methods, all the observation samples are first
recorded, and then the separation algorithm uses all the recorded data. Con-
versely, adaptive algorithms update the estimation of the separating system
after receiving each new sample (observation), and produce the output imme-
diately. Consequently, adaptive methods are well-suited to real-time applica-
tions and allows to track the solution when the mixtures is slowly varying, for
instance when the sources are moving.

Among the adaptive BSS methods, the Equivariant Adaptive Separation via
Independence (EASI) algorithm [5] has a particular place, due to its equiv-
ariant performance, that is, its performance does not depend on the mixing
matrix (and consequently on the “hardness” of the mixture). The EASI algo-
rithm consists of two stages: the first stage is a whitening stage, which only
provides decorrelated signals; the second stage, modeled by an orthogonal
matrix, uses high order statistics for completing the separation. The EASI
algorithm is related to a serial updating idea, which requires the computation
of the so-called natural or relative gradient [5,6].

The standard EASI algorithm requires nonlinearities whose choice is let to the
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user. Usually cubic polynomials are used, but it can be noted that the non-
linear function influences the algorithm stability. In this paper, we propose
an optimal choice of these nonlinearities. We show that the optimal nonlinear
functions depends on the output distributions and that even simple estimation
of this optimal nonlinearities results in a much better separation performance
than the usual choice. In the following, the EASI algorithms with standard
(and fixed) functions (with optimal functions, respectively) will be called stan-
dard (optimal, respectively) EASI algorithms.

The paper is organized as follows. In section 2 we review the standard EASI
algorithm. Section 3 reviews the essential materials of the optimal EASI algo-
rithm, based on mutual information minimization. The adaptive implementa-
tion of the algorithm is developed in Section 4.1. In Section 4.2, we explain why
proposed algorithm can be viewed as an optimal version of EASI . In Section 5
three “quasi-optimal” EASI algorithms based on the adaptive estimation of
SFD are proposed and their performances are compared with performance of
“standard” EASI.

2 The standard EASI algorithm

In linear instantaneous mixtures x = As, where s = (s1, . . . , sN)
T denotes

the source vector, x = (x1, . . . , xN )
T is the observation vector, and A is the

regular mixing matrix. Then the objective of a source separation algorithm is
estimating a separating matrix B such that the outputs y = Bx be the same
as source signals s. It is well-known [3] that, if there is at most one Gaussian
source, then the independence of the outputs insures separation of the sources
up to a scale and a permutation indeterminacy.

The EASI algorithm [5] is achieved by minimizing a contrast function 2 φ(B) =
E{f(y)} with respect to B. This leads to the following serial updating algo-
rithm:

Bn+1 =
(

I− µ∇φ(Bn)
)

Bn (1)

where ∇φ(B) denotes the relative (or natural) gradient [5,6]:

∇φ(B) = ∇E {f(y)} = E
{

f ′(y)yT
}

(2)

Consequently, the stochastic version of (1) becomes:

Bn+1 =
(

I− µg(y)yT
)

Bn (3)

where g , f ′.

2 See [3] for the definition of contrast functions.
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Implementing EASI requires then to chose a “component-wise” and “fixed”
g(·) (e.g. cubic polynomials). Moreover, for avoiding trivial solution y = 0, a
normalization term (I − yyT ) is added in equation (3). This makes the final
EASI equation more complicated than (3).

3 Mutual Information and its “gradient”

3.1 Mutual Information

Mutual information [7] of the random vector y = (y1, . . . , yn)
T is one of the

widely-used criteria for measuring the independence of random variables yi.
Mutual information (MI) of y is defined as:

I(y) = D

(

py(y) ‖
∏

i

pyi
(yi)

)

=
∫

y
py(y) ln

py(y)
∏

i pyi
(yi)

dy

= E

{

ln
py(y)

∏

i pyi
(yi)

}

(4)

where py and pyi
stands for the Probability Density Function (PDF) of y and

yi, respectively, and D denotes the Kullback-Leibler divergence. I(y) can also
be expressed as [7]:

I(y) =
∑

i

H(yi)−H(y), (5)

where H(yi) and H(y) denote the marginal and joint differential entropies,
respectively.

Mutual information is always non-negative, and is zero if and only if the yi’s are
statistically independent [7]. Consequently, the parameters of the separating
system may be computed in such a way that the mutual information of the
outputs is minimized. This approach has been shown [8] to be asymptotically
equivalent to a Maximum Likelihood (ML) estimation of the source signals.

For minimizing the MI, gradient based algorithms can be used. For instan-
taneous linear mixtures, the gradient of the output mutual information (MI)
with respect to the parameters of the separating system is usually computed
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from the simplified form of I(y) 3 :

I(y) =
∑

i

H(yi)−H(x)− log | detB|. (6)

Consequently, since H(x) does not depend on the separating system, minimiz-
ing I(y) (with respect of the parameters of the separating system) is theoret-
ically equivalent to minimizing J(y) = I(y) +H(x) =

∑

iH(yi)− log | detB|.
It is much simpler to use J(y) than I(y) since J(y) does not require the es-
timation of joint probability density functions. However, as explained in [9],
the gradient of I(y) leads to unbiased gradient estimation, contrary to J(y).
Moreover, it is much simpler to extend the methods based on minimizing I(y)
to more complicated mixtures (e.g. convolutive mixtures) than the methods
based on minimizing J(y).

For this reason, we suggest to compute the gradient of the complete mutual
information (5). Instead of computing the gradient of the MI with respect
to the parameters of the separating structure, one can derive the differential
of MI, i.e. its variation according to a small deviation of its argument (as
a non-parametric differential for MI). Such an expression has been recently
proposed [10] and requires the definition of multivariate score functions.

3.2 Multivariate Score Functions

In statistics, the score function of a random variable y is the function ψy(y)
defined as ψy(y) = −p

′
y(y)/py(y), where py(y) is the probability density func-

tion (PDF) of y. For an N -dimensional random vector y = (y1, . . . , yN )
T , two

types of score functions are defined in [10]:

Definition 1 (MSF) The Marginal Score Function (MSF) of y is the vector
of score functions of its components, i.e.:

ψy(y) = (ψ1(y1), . . . , ψN(yN))
T (7)

where:

ψi(y) = −
d

dyi
ln pyi

(yi) = −
p′yi

(yi)

pyi
(yi)

(8)

and pyi
(yi) is the marginal PDF of yi.

3 The result remains true for instantaneous nonlinear mixtures, replacing B in (6)
by the Jacobian matrix of the nonlinear separating system.
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Definition 2 (JSF) The Joint Score Function (JSF) of y is the vector func-
tion ϕy(y), such that its i-th component is:

ϕi(y) = −
∂

∂yi
ln py(y) = −

∂
∂yi
py(y)

py(y)
(9)

where py(y) denotes the joint PDF of y.

Definition 3 (SFD) The Score Function Difference (SFD) of y is the dif-
ference between its MSF and JSF, i.e.:

βy(y) = ψy(y)−ϕy(y) (10)

A few useful properties of SFD have been shown in [11], and are listed below
without proof.

Property 1 The components of a random vector y = (y1, . . . , yN)
T are inde-

pendent if and only if βy(y) ≡ 0, that is:

ϕy(y) = ψy(y) (11)

The above property shows that SFD contains all the information about the
independence of the components of a random vector.

Property 2 For a random vector y = (y1, . . . , yN )
T we have:

βi(y) =
∂

∂yi
ln p(y1, . . . , yi−1, yi+1, . . . , yN |yi) (12)

where βi(y) denotes the i-th component of the SFD of y.

Property 3 Let y be a random vector with a density py and a JSF ϕy. More-
over, let f(y) be a multivariate function with continuous partial derivatives
and:

lim
yi→±∞

∫

y1,...,yi−1,yi+1,...,yN

f(y)py(y) dy1 · · · dyi−1 dyi+1 · · · dyN = 0 (13)

Then we have:

E {f(y)ϕi(y)} = E

{

∂f

∂yi
(y)

}

(14)
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The previous property is, in fact, a generalization of a similar property for the
score function of a scalar random variable [12,13]. Note that the condition (13)
is not restrictive for usual sources: for most physical signals, py(y) decreases
rapidly when ‖y‖ goes to infinity. Especially, (13) holds for bounded signals.

Corollary 1 For any bounded random vector y:

E {ϕi(y) yj} =











1 ; if i = j

0 ; if i 6= j
(15)

or equivalently:

E
{

ϕy(y)y
T
}

= I (16)

where I denotes the identity matrix.

Corollary 2 Suppose we would like to estimate ϕi(y) by a parametric func-
tion f(y;w), where w = (w1, . . . , wK)

T denotes the parameter vector, then:

argmin
w

E
{

(

ϕi(y)− f(y;w)
)2
}

= argmin
w

{

E
{

f 2(y;w)
}

− 2E

{

∂f

∂yi
(y,w)

}}

(17)

This corollary shows a nice property of JSF: even without knowledge about
ϕi(y), we can design a Minimum Mean Square Error (MMSE) estimator of
the JSF.

Property 4 For a random vector y = (y1, . . . , yN )
T we have:

ψi(y) = E {ϕi(y) | yi = y} (18)

where ϕi and ψi denote the i-th component of JSF and MSF of y, respectively.

For clarifying the above property, consider ϕi as a function 4 of yi, denoted
by ϕi(yi). If yi is independent of the other variables, then ϕi(yi) = ψi(yi).
However, if the other variables depend on yi, ϕi(yi) is no longer equal to ψi(yi),
but the above property claims that its “mean” will be still equal to ψi(yi) [11].
In other words, the statistical dependence can introduce some fluctuations in
ϕi(yi), but only around its constant “mean”.

4 Strictly speaking, it is a “relation” and not a “function”, because for each value
of yi we have several values for ϕi.
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Therefore, we can conclude that the SFD is, in fact, a measure of the variations
of JSF (around its smoothed value).

Property 5 Let y = Bx, where y and x are random vectors and B is a
non-singular square matrix. Then:

ϕy(y) = B−Tϕx(x). (19)

3.3 Differential of the mutual information

The “differential” of the mutual information is given by the following theo-
rem [10].

Theorem 1 Let ∆ be a ‘small’ random vector, with the same dimension as
x. Then:

I(x+∆)− I(x) = E
{

∆Tβx(x)
}

+ o(∆) (20)

where o(∆) denotes higher order terms in ∆.

This theorem points out that SFD can be called the “stochastic gradient” of
mutual information [10].

Remark. Equation (20) may be stated in the following form (which is similar
to what is done in [14]):

I(x+ Ey)− I(x) = E
{

(Ey)Tβx(x)
}

+ o(E) (21)

where x and y are bounded random vectors, E is a matrix with small entries,
and o(E) stands for a term that converges to zero faster than ‖E‖. This equa-
tion is mathematically more sophisticated, because in (20) the term ‘small
random vector’ is somewhat ad-hoc. Conversely, (20) is simpler, and easier
to be used in developing gradient based algorithms for optimizing a mutual
information.

4 BSS via Mutual Information Minimization

4.1 Optimal EASI

In the separating system y = Bx, minimizing I(y) with respect to B (where
I stands for mutual information), can be done using the steepest descent

8



algorithm:

Bn+1 = Bn − µ
∂I

∂B

∣

∣

∣

∣

∣

B=Bn

(22)

where µ is a small positive constant. However, to design an equivariant algo-
rithm [5], that is, an algorithm whose separation performance does not depend
on the conditioning of the mixing matrix, one must use the serial (multiplica-
tive) updating rule:

Bn+1 =
(

I− µ [∇BI]B=Bn

)

Bn (23)

where I denotes the identity matrix, and ∇BI , ∂I
∂B
BT is the relative (or

natural) gradient [5,6] of I(y) with respect to B.

Using theorem 1, ∇BI can be easily obtained [10]:

∇BI = E
{

βy(y)y
T
}

. (24)

Dropping the expectation operation, the stochastic version of (23) is obtained:

Bn+1 =
(

I− µβy(y)y
T
)

Bn (25)

For developing the above algorithm in adaptive form, an adaptive estimation
of SFD is required, which will be discussed in Section 5.

4.2 From standard to optimal EASI

A comparison between equations (3) and (25) shows that the algorithm (25)
is in fact a special case of EASI (3), in which the nonlinearity g(y) has been
chosen to be equal the SFD of the outputs, i.e. g(y) = βy(y).

Recall now that the mutual information is an optimal criterion for source sep-
aration, in the sense that it asymptotically results in an Maximum Likelihood
(ML) estimation of the source signals [8]. Consequently, the optimal choice (in
the ML sense) of the nonlinearity g(·) in EASI is the SFD of the outputs. Con-
trary to the “standard” EASI, where g(·) is a “component-wise” and “fixed”
function, here g(y) = βy(y) is a multivariate function and depends on the
distribution of y.

Moreover, in the “standard” EASI, one must take into account the necessity
of existence of a pre-whitening stage, and implement it in the algorithm. This
makes the final equation of standard EASI [5] more complicated than (3). On
the contrary, using (25), no pre-whitening is required.
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However, the above advantages are obtained at the expense of higher compu-
tational load: a multivariate nonlinear function (the output SFD) has to be
adaptively estimated from output samples.

4.3 Normalization of output variances

There is no scale constraint in the algorithm (25). Consequently, due to the
typical scale indeterminacy of BSS, the algorithm does not converge to a
unique solution. For overcoming this problem, one can enforce the algorithm to
converge to unit variance outputs. In this purpose, we can use some properties
of score functions. From the property 3, we can deduce that the diagonal
elements of E{βy(y)y

T} are zero. If we replace the i-th diagonal element of
βy(y)y

T by 1 − y2
i , we force the separating system to provide unit variance

outputs. This idea is similar to what is done in [15].

5 Adaptive SFD Estimation

In Section 4.1, we showed that the optimal choice for the nonlinearity g(·) in
EASI is the SFD of the outputs, but this function is usually not known and
it must be estimated from the data. Hence, due to this estimation, the final
algorithm will be no longer “optimal”, but “quasi-optimal”. Depending on the
accuracy of the SFD estimation, the “quasi-optimal” EASI algorithm achieves
various performances. However, in this section, we will show that even rela-
tively simple estimation of SFD in (25) improves the separation performance
of “standard” EASI in which g(·) is a cubic polynomial. Of course, since EASI
is an adaptive BSS algorithm, for implementing (25) adaptively, we need an
adaptive estimation of SFD.

In this Section, we consider polynomial models for JSF and MSF, with three
adaptive estimation algorithms of their parameters.

5.1 SFD estimation by steepest descent

For estimating SFD, one can estimate MSF and JSF independently and then
computing the difference. The MSF is simply obtained by estimating the score
functions of its components. For any function f with continuous first derivative
and random variable y such that limu→±∞ f(u)py(u) = 0 (where py(·) is the
PDF of y), we have [12,15]:

E {f(y)ψy(y)} = E {f ′(y)} (26)
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where ψy is the score function of the random variable y. Now, let the score
function ψy be modeled as a linear combination of some basis functions h1(y),
h2(y), . . . , hL(y):

ψ̂y(y,v) =
L
∑

i=1

vihi(y) = h(y)Tv (27)

where h(y) , (h1(y), . . . , hL(y))
T and v , (v1, . . . , vL)

T is the parameter
vector. For computing v, we minimize the mean square error:

E(ψ̂y(y,v)) , E
{

(

ψy(y)− ψ̂y(y,v)
)2
}

. (28)

Expanding the above expression and using (26), one deduces that minimizing
E is equivalent to minimizing:

ξ(ψ̂y(y,v)) ,
1

2
E
{

ψ̂y(y,v)
2
}

− E

{

∂

∂y
ψ̂y(y)

}

. (29)

For minimizing ξ(ψ̂y(y,v)) with respect to v, one can use a gradient descent
algorithm by dropping the expectation operation:

vn+1 = vn − µ
∂ξ(ψ̂y(yn,v))

∂v

∣

∣

∣

∣

∣

v=vn

(30)

where:
∂ξ(ψ̂y(yn,v))

∂v

∣

∣

∣

∣

∣

v=vn

= h(yn)h(yn)
Tvn −

∂h(y)

∂y

∣

∣

∣

∣

∣

y=yn

(31)

This method can be easily generalized for estimating JSF. Let ϕi(y) be the
i-th component of JSF, and denote ϕ̂i(y) its estimation based on the linear
model:

ϕ̂i(y,w) =
L
∑

i=1

wiki(y) = k(y)Tw (32)

where k1(y), ..., kL(y) are (multivariate) basis functions, and w is the param-
eter vector which is computed for minimizing the mean square error:

E(ϕ̂i(y,w)) = E
{

(ϕi(y)− ϕ̂i(y,w))2
}

. (33)

Applying Property 4 [10], i.e. E {f(y)ϕi(y)} = E
{

∂
∂yi
f(y)

}

to (33), one
proves that the mean square error JSF estimate can be obtained by mini-
mizing:

ξ(ϕ̂i(y,w)) =
1

2
E
{

ϕ̂i(y)
2
}

− E

{

∂

∂yi
ϕ̂i(y,w)

}

. (34)
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Computing the gradient of (34) and dropping the expectation operation, leads
to equations similar to (30) and (31):

wn+1 = wn − µ
∂ξ(ϕ̂i(yn,w))

∂w

∣

∣

∣

∣

∣

w=wn

(35)

where:
∂ξ(ϕ̂i(yn,w))

∂w

∣

∣

∣

∣

∣

w=wn

= k(yn)k(yn)
Twn −

∂k(y)

∂yi

∣

∣

∣

∣

∣

y=yn

(36)

Finally, SFD is estimated by calculating the difference of the estimated MSF
and JSF.

Polynomial basis functions. As a simple choice for basis functions in (27)
and (32), we use a 3rd-order polynomial model for MSF and JSF. In this
model, the MSF (ψ̂i(yi,v)) uses the basis functions:

h1(y) = 1, h2(y) = y, h3(y) = y2, h4(y) = y3 (37)

and the JSF (ϕi(y)) is estimated using the basis functions:

k1(y1, y2) = 1,

k2(y1, y2) = y1, k3(y1, y2) = y2
1, k4(y1, y2) = y3

1

k5(y1, y2) = y2, k6(y1, y2) = y2
2, k7(y1, y2) = y3

2

Using these polynomial estimations of MSF and JSF, the final “quasi-optimal”
EASI algorithm (using steepest descent estimation of SFD) is summarized in
Fig. 1.

Experiment. As an experiment, two zero mean and unit variance indepen-
dent sources, with normal and uniform distributions are mixed by:

A =







1 0.7

0.5 1





 . (38)

We compare the separation result of “quasi-optimal” EASI of Fig. 1 with
“standard” EASI. In both algorithms, the step sizes (of both SFD estimation
and separation algorithms) are 0.001. In “standard” EASI, the component-
wise nonlinear function gi(yi) = yi|yi|

2 has been used.

Figure 2 shows the averaged output signal to noise ratios (SNR) over 50 runs
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• Initialization:
· B(1) = I

· V =

(

0 1 0 1

0 1 0 1

)T

· W =

(

0 1 0 1 1 0 1

0 1 0 1 1 0 1

)T

• For n = 1, 2, . . . (by receiving new observation x(n))
(1) y(n) = B(n)x(n)
(2) Estimate β

y
(y(n)).

· Estimate ψ(y(n)).
For i=1 to 2:

hi =
(

1, yi(n), yi(n)2, yi(n)3
)T

, (where yi(n) is the i-th element of y(n))

h′
i
=
(

0, 1, 2yi(n), 3yi(n)2
)T

vi ← vi − µ(hih
T
i
vi − h′

i
), (where vi is the i-th column of V)

ψ̂i(yi(n)) = hT
i
vi

· Estimate ϕ(y(n)).

k =
(

1, y1(n), y1(n)2, y1(n)3, y2(n), y2(n)2, y2(n)3
)T

k′
1

=
(

0, 1, 2y1(n), 3y1(n)2, 0, 0, 0
)T

k′
2

=
(

0, 0, 0, 0, 1, 2y2(n), 3y2(n)2
)T

For i=1 to 2:
wi ← wi − µ(kkT wi − k′

i
), (where wi is the i-th column of W)

ϕ̂i(y(n)) = kT wi

· β̂
y
(y(n)) = ϕ̂

y
(y(n))− ψ̂

y
(y(n))

(3) Replace the i-th diagonal element of β̂
y

(

y(n)
)

y(n)T by 1− yi(n)2 and call it D.

(4) B(n+ 1) = (I− µD)B(n).

Fig. 1. Quasi-optimal EASI algorithm using steepest descent SFD estimation. In
the algorithm, k′i denotes the partial derivative ∂k/∂yi, yi(n) the i-th component
of y (i.e. the i-th output) at discrete time n, and B(n) the separation matrix at
discrete time n.

of the algorithms. SNR is defined as:

SNR = 10 log10

E {s2}

E {(y − s)2}
(39)

where y is the output corresponding to the source s. In this experiment, the
score function difference, which is estimated by using very simple basis func-
tions for MSF and JSF estimations, do not provide very good separation per-
formance.

This poor performance of the algorithm can be justified as follows. In fact, in
the algorithm, we have two different iterative algorithm working concurrently.
The first is (25), in which βy(y) is adaptively estimated using the second
iterative algorithm, that is, equations (27), (30), (32) and (35). However, after
each iteration of the first iterative algorithm (i.e. after each modification of
B), since the y is changed, the previous estimation of βy(·) is no longer valid.
This results in the poor performance of the proposed algorithm.
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Fig. 2. Output SNRs versus iteration for standard EASI and the quasi-optimal
EASI.

To overcome the above problem, two different solutions may be thought. The
first solution is to modify the old estimation of βy(·) after each modification
of the separating matrix B. The second solution is to use a faster converging
algorithm for estimating βy(·), e.g. using Newton like methods instead of
steepest descent method used in (30) and (35). In fact, since at each iteration
of (25), B is changed just a little bit, the fast convergence of the second
iterative algorithm (for estimating βy(·)) may solve the problem.

In the next two subsections, we are going to test these two ideas. Although
the first approach proposed in the above paragraph may seem better, it is not
practically easy to modify the estimation of βy(·) after changing B. In fact,
we will see that the second approach results in a better performance.

5.2 Improved steepest descent gradient method

To improve the old estimation of βy(·) after each modification ofB, Property 5
can be used. Let ϕ̂y(·) be the estimation of ϕy(·) after receiving xn (using
equations (32) and (35)) but before updating Bn to Bn+1 (using (25)). From
Property 5, after updating Bn to Bn+1, the estimated ϕ̂y(·) can be modified
as:

ϕ̂y(·)← B−Tn+1B
T
n ϕ̂y(·) (40)
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• Initialization:
· B(1) = I

· V =

(

0 1 0 1

0 1 0 1

)T

· W =

(

0 1 0 1 1 0 1

0 1 0 1 1 0 1

)T

• For n = 1, 2, . . . (by receiving new observation x(n))
(1) y(n) = B(n)x(n)
(2) Estimate β

y
(y(n)).

· Estimate ψ(y(n)).
For i=1 to 2:

hi =
(

1, yi(n), yi(n)2, yi(n)3
)T

, (where yi(n) is the i-th element of y(n))

h′
i
=
(

0, 1, 2yi(n), 3yi(n)2
)T

vi ← vi − µ(hih
T
i
vi − h′

i
), (where vi is the i-th column of V)

ψ̂i(yi(n)) = hT
i
vi

· Estimate ϕ(y(n)).

k =
(

1, y1(n), y1(n)2, y1(n)3, y2(n), y2(n)2, y2(n)3
)T

k′
1

=
(

0, 1, 2y1(n), 3y1(n)2, 0, 0, 0
)T

k′
2

=
(

0, 0, 0, 0, 1, 2y2(n), 3y2(n)2
)T

For i=1 to 2:
wi ← wi − µ(kkT wi − k′

i
), (where wi is the i-th column of W)

ϕ̂i(y(n)) = kT wi

· β̂
y
(y(n)) = ϕ̂

y
(y(n))− ψ̂

y
(y(n))

(3) Replace the i-th diagonal element of β̂
y
(y(n))y(n)T by 1− yi(n)2 and call it D.

(4) B(n+ 1) = (I− µD)B(n).
(5) W = B(n+ 1)−T B(n)T W

Fig. 3. Quasi-optimal EASI algorithm using modified steepest descent SFD esti-
mation. In the algorithm, k′i denotes the partial derivative ∂k/∂yi, yi(n) the i-th
component of y (i.e. the i-th output) at discrete time n, and B(n) the separation
matrix at discrete time n.

Using this improvement, the final modified quasi-optimal EASI is shown in
Fig. 3. The only difference of this algorithm with the algorithm of Fig. 1 is
adding the 5th step.

Experiment. The algorithm of Fig. 3 has been applied using the same
signals and mixture as in the first experiment. The results obtained with this
new algorithm are shown in Figure 4. It points out that enhancing the JSF
estimation accuracy without enhancing the MSF estimation accuracy does not
improve the performance. Of course, because independence is achieved when
the score function difference vanishes, it requires an accurate estimation of
SFD, i.e. of both MSF and JSF. Moreover, since there is no simple relation
between MSF of observations and outputs (like Property 5 for JSF), improving
the estimation of MSF after updating B is not easy.
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Fig. 4. Output SNRs versus iteration for standard EASI and quasi-optimal EASI
with enhanced SFD estimation.

5.3 Newton’s method

The second idea mentioned at the end of Section 5.1 was speeding up the con-
vergence of the iterative algorithm of estimation of βy(·). To do this, we pro-

pose to use the Newton’s method for minimizing the cost functions ξ(ψ̂(y,v))
and ξ(ϕ̂i(y,w)) in equations (29) and (33).

The Newton’s method for minimizing ξ(ψ̂(y,v)) in (29) is written as:

v← v − µE

{

∂2ξ(ψ̂(y,v))

∂v2

}−1

E

{

∂ξ(ψ̂(y,v))

∂v

}

(41)

where:

∂ξ(ψ̂(y,v))

∂v
= h(y)h(y)Tv −

∂h(y)

∂y
(42)

and:

∂2ξ(ψ̂(y,v))

∂v2
= h(y)h(y)T . (43)

Like the steepest descent method, we simply ignore the second expectation
operation in (41). However, the first expectation operation cannot be ignored,
because the matrix hhT is not full-rank and hence is not invertible. To have
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a simple estimation of this expectation, we use:

Ê{hhT} ← αÊ{hhT}+ (1− α)hhT (44)

where 0 < α < 1.

This method can be easily generalized for estimating JSF, by minimizing
ξ(ϕ̂i(y,w)) (33). Following similar calculation as above, we obtain equations
similar to (41), (42) and (43), replacing ξ(ψ̂(y,v)) by ξ(ϕ̂i(y,w)), and the
basis h by k.

Finally, SFD is estimated by calculating the difference of the estimated MSF
and JSF.

The final algorithm is summarized in Fig. 5. It can be seen that the difference of
this algorithm with the algorithm of Fig. 1 is only in its second step (estimation
of SFD).

Experiment. We repeat the previous experiments with Newton’s method,
using same signals and mixtures. The step size of the Newton algorithm is
0.1 and the value of α in (44) is 0.9. Figure 6 shows that the “quasi-optimal”
EASI Newton algorithm has a better performance than the “standard” EASI.

6 Conclusion

In this paper, we proved that the optimal non-linearities of EASI algorithm are
related to the Score Function Difference (SFD). Although the theoretical al-
gorithm can be seen as an optimal version of the EASI algorithm, its adaptive
implementation requires adaptive implementation of score functions, and the
practical algorithm is only quasi-optimal. Three adaptive quasi-optimal algo-
rithms for blind separating linear instantaneous mixtures have been proposed,
each based on a different adaptive estimation of SFD, modeled by polynomi-
als. The experimental results show that quasi-optimal EASI can achieve better
performance than standard EASI, but requires an accurate SFD estimation.
However, the method has the great advantage to converge for any sources,
contrary to standard EASI whose convergence assumes a condition on the
source statistics [5].

We could improve the SFD estimation by estimating first the JSF and then
integrate the JSF for computing the MSF. Contrary to the three methods used
in this paper, which estimate independently SFD and JSF, this method leads
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• Initialization:
· B(1) = I

· V =

(

0 1 0 1

0 1 0 1

)T

· W =

(

0 1 0 1 1 0 1

0 1 0 1 1 0 1

)T

• For n = 1, 2, . . . (by receiving new observation x(n))
(1) y(n) = B(n)x(n)
(2) Estimate β

y
(y(n)).

· Estimate ψ(y(n)).
For i=1 to 2:

hi =
(

1, yi(n), yi(n)2, yi(n)3
)T

, (where yi(n) is the i-th element of y(n))

h′
i
=
(

0, 1, 2yi(n), 3yi(n)2
)T

Ê{hih
T
i
} ← αÊ{hih

T
i
}+ (1− α)hih

T
i

vi ← vi − µ
(

Ê{hih
T
i
}
)−1

(hih
T
i
vi − h′

i
), (where vi is the i-th column of

V)

ψ̂i(yi(n)) = hT
i
vi

· Estimate ϕ(y(n)).

k =
(

1, y1(n), y1(n)2, y1(n)3, y2(n), y2(n)2, y2(n)3
)T

k′
1

=
(

0, 1, 2y1(n), 3y1(n)2, 0, 0, 0
)T

k′
2

=
(

0, 0, 0, 0, 1, 2y2(n), 3y2(n)2
)T

Ê{kkT } ← αÊ{kkT }+ (1− α)kkT

For i=1 to 2:
wi ← wi − µ

(

Ê
{

kkT
})−1

(kkT wi − k′
i
), (where wi is the i-th column

of W)
ϕ̂i(y(n)) = kT wi

· β̂
y
(y(n)) = ϕ̂

y
(y(n))− ψ̂

y
(y(n))

(3) Replace the i-th diagonal element of β̂
y
(y(n))y(n)T by 1− yi(n)2 and call it D.

(4) B(n+ 1) = (I− µD)B(n).

Fig. 5. Quasi-optimal EASI algorithm using Newton SFD estimation. In the algo-
rithm, k′i denotes the partial derivative ∂k/∂yi, yi(n) the i-th component of y (i.e.
the i-th output) at discrete time n, and B(n) the separation matrix at discrete time
n.

to unbiased estimations [9]. The batch algorithm, proposed in [16], has to be
modified for providing an adaptive version.

Moreover, since SFD has been successfully used in separating convolutive and
non-linear mixtures [11,16], it can be conjectured that this method could be
generalized for separating more complicated (than linear instantaneous) mix-
ing models. Such a generalization is currently under study.

The main drawback of this method is that it requires the estimation of mul-
tivariate score functions (which are related to joint PDFs). This estimation
becomes too difficult, and requires a lot of data, when the dimension (i.e.
number of sources) grows. Practically, this method is suitable only up to 3
or 4 sources. However, it could be overcame, by decomposing the separation
matrix B = UW, where W is a whitening matrix and U is a rotation ma-
trix. Parameterizing U as a product of Givens’s rotation matrices, one should
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Fig. 6. Output SNRs versus iteration for standard EASI and quasi-optimal EASI
with Newton’s method for SFD estimation.

estimate the Givens’s matrices by pairwise independence, which should only
require bivariate SFD estimation. This idea is still under study.

References

[1] A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, John
Wiley & Sons, 2001.

[2] A. Cichocki, S.-I. Amari, Adaptive Blind Signal and Image Processing: Learning
Algorithms and Applications, John Wiley and Sons, 2002.

[3] P. Comon, Independent component analysis, a new concept?, Signal Processing
36 (3) (1994) 287–314.
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