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Abstract—This letter is concerned with designing unit-norm
incoherent frames, i.e., a set of vectors in a finite dimensional
Hilbert space with unit norms and very low absolute pair-
wise correlations. Due to their widespread use in a variety of
applications, including compressed sensing and coding theory,
incoherent frame design has received considerable attention, and
many algorithms have been proposed to this aim. In this letter, a
new algorithm is presented which constructs incoherent frames
by minimizing the maximum absolute pair-wise correlations
(mutual coherence) of the frame vectors. Our strategy is based
on an alternating minimization penalty method which admits
efficient solvers using proximal algorithms. Experimental results
on designing incoherent frames of various dimensions show that
our algorithm outperforms some recent methods in the literature.

Index Terms—Equiangular tight-frames, mutual coherence,
incoherent frame design, proximal algorithms

I. INTRODUCTION

FRAME theory [1], [2] arises in many signal processing
problems, including sparse signal representation [3], [4],

compressed sensing [5], source coding, robust transmission,
and code division multiple access (CDMA) systems [2].
Frames are a generalization of basis vectors of an inner-
product space in the sense that they allow a redundancy in the
set of vectors. In fact, a frame may contain much more vectors
than needed for describing and representing other vectors of
the associated space. Therefore, compared to bases, frames
provide a more stable and efficient way of representing signals
[1].

Mutual coherence [6] is a simple yet fundamental metric for
evaluating the goodness of a frame, which is defined as the
maximum absolute pair-wise inner-products between the frame
vectors. Performance guarantees for sparse signal recovery
algorithms indicate that incoherent frames, i.e., those having
mutual coherences as low as possible, are highly desirable [3],
[7]–[9] (for a detailed discussion, refer to [4]). In addition
to sparse signal processing, incoherent frames are also of
great importance in communications and coding theory for
designing robust and decodable codes [2], [10]. The need
for incoherent frames and their attractive properties have led
to development of practical algorithms for constructing them
[11]–[21].
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In this letter, a new algorithm is introduced for designing
incoherent frames. This is achieved by solving a mutual coher-
ence minimization problem through an alternating minimiza-
tion penalty method. A number of numerical experiments were
performed to evaluate the performance of our algorithm in
designing incoherent frames of various dimensions. The results
demonstrate that compared with some recent algorithms in the
literature, our proposed one has a better overall performance.

The rest of the letter is structured as follows. Section II
reviews some terminologies related to frames along with
a summary of the previous works on designing incoherent
frames. Our proposed algorithm is introduced in Section III.
Finally, Section IV is devoted to numerical results.

II. BACKGROUND

A. Frame theory

We briefly review the frame theory from [22]. A collection
of m vectors {f i}mi=1 constitutes a frame for Rn if ∀v ∈ Rn

α‖v‖22 ≤
m∑
i=1

|fTi v|2 ≤ β‖v‖22, (1)

where α and β, with 0 < α ≤ β < ∞, are called the lower
and the upper frame bounds, respectively. The frame synthesis
operator, F, is defined as the matrix that has the frame vectors
as its columns, i.e., F = [f1, · · · fm]. When referring to a
frame, one usually means its synthesis operator, F. A unit-
norm frame F is a frame for which ∀i : ‖fi‖2 = 1. Moreover,
when α = β, the frame is called an α-tight frame. For a unit-
norm frame F, its mutual coherence is defined as

µ(F) = max
i,j: i 6=j

|fTi fj |, (2)

or equivalently

µ(F) = ‖FTF− I‖∞, (3)

in which, ‖X‖∞ , maxi,j |xij | and I denotes the identity
matrix. For a given frame F, its Gram matrix is defined as G =
FTF, which is a symmetric and positive semidefinite matrix of
rank n. Note that the diagonal entries of G correspond to the
squared `2 norms of the frame vectors, which are all equal to 1
for unit-norm frames, while its off-diagonal entries are inner-
products between distinct frame vectors. Frames with very low
mutual coherences are referred to as incoherent frames. While
complete frames (n = m) can be arbitrarily incoherent (µ = 0
for an orthonormal basis), the mutual coherence for a general
n×m frame is lower bounded by

µ(F) ≥
√

m− n
n(m− 1)

, (4)
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which is known as the Welch bound (WB) [22]. This bound is
achievable for a frame F ∈ Rn×m only when m ≤ n(n+1)/2.
Among all unit-norm frames of the same dimension, those
with the minimum mutual coherence are called Grassmannian
frames [22]. Furthermore, when this minimum value coincides
with WB, they are called optimal Grassmannian frames or
equiangular tight frames (ETFs) [22].

B. Incoherent frame design

From our discussion in Section I it follows that ETFs are
ideal choices in applications where incoherent frames are
desirable. However, their construction is difficult in practice,
especially for large n and m [16], [22]. In addition, they
do not exist for arbitrary dimensions; see the existence table
of ETFs in [23]. Some approaches, including [11], [17]–
[21], aim at constructing ETFs, using, e.g., algebraic and
geometric schemes. In spite of having significant performance
in some applications, these approaches usually impose cer-
tain restrictions on frame characteristics. Another family of
algorithms, including [12]–[16], [24]–[26], solve convex/non-
convex optimization problems to design incoherent frames. In
contrary to the previously mentioned ETF design schemes,
optimization-based approaches try to construct frames as close
as possible to ETFs. So, they do not impose any restriction on
frames and are able to construct incoherent frames of arbitrary
dimensions. In this letter, we focus on optimization-based
techniques.

Earlier incoherent frame design methods are based on an
alternating projection approach [14], [15], in which, an initial
frame F is refined by iteratively shrinking the large off-
diagonal entries of its Gram matrix G, reducing the rank of G
back to n, and then factorizing G to get the new estimate of
F. This procedure is repeated until convergence. Subsequent
works include [12], [13], [16], [24]–[26]. Specifically, a novel
approach has been proposed in [12] that constructs incoherent
frames by minimizing the mutual coherence as follows

min
F∈F

max
i,j: i 6=j

|fTi fj |, (5)

where F , {F ∈ Rn×m | ∀i : ‖fi‖2 = 1}. The strategy
used in [12] to solve this non-convex problem consists of a
sequential convex programming framework that approximates
the solutions to (5) by solving a series of locally convex
optimization problems inside a defined trust region [12]. More
precisely, the i-th frame vector fi is updated through

min
fi

max
j: j 6=i

|hTj fi| s.t. ∀i : ‖fi − hi‖2 ≤ Ti, (6)

in which, hi’s are the previous estimates of the frame vectors,
and Ti’s are positive constants characterizing the search re-
gions. The above convex problem is then solved for each frame
vector using the generic convex optimization solver CVX [27].
This approach has been further improved in [13]. The new
algorithm, which is called sequential iterative decorrelation by
convex optimization (SIDCO), has a better performance than
the previous optimization-based algorithms [13].

III. OUR WORK

A. Proposed algorithm

We target the same cost function (5) used by SIDCO to
construct incoherent frames, but we make use of proximal
algorithms [28] to solve it. To this end, let us rewrite (5) into
the following equivalent problem

min
F∈F

‖FTF− I‖∞· (7)

In order to solve the above problem, we define a new variable
Q , FTF−I, which converts (7) into the following alternative
form

min
F∈F,Q

‖Q‖∞ s.t. Q = FTF− I. (8)

This new problem is then solved via penalty methods [29],
leading to

{Qα,Fα} = argmin
F∈F,Q

{
‖Q‖∞ +

1

2α
‖Q− FTF+ I‖2F

}
,

(9)
where, α > 0 is a penalty parameter. Note that when α→ 0,
the solutions of (9) coincide with those of (8). Let F∗ be an
optimal solution1 of (7). Then, considering the equivalence of
(8) and (7), it follows that Fα → F∗ (up to a rotation) when
α→ 0.

We solve (9) using alternating minimization, in which, the
cost function is iteratively minimized over one variable while
the other one is fixed. Starting with an initial Fα0 , the whole
process consists of iteratively solving (k ≥ 0)

Qα
k+1 = argmin

Q

{
‖Q‖∞ +

1

2α
‖Q− FαTkF

α
k + I‖2F

}
,

(10)
followed by

Fαk+1 = argmin
F∈F

1

2
‖Qα

k+1 − FTF+ I‖2F . (11)

Before proceeding further, let us introduce the notion of
proximal mapping [28], which will be used for solving the
above subproblems.

Definition 1 (proximal mapping [28]). The proximal mapping
of a proper and lower semicontinuous function g : Rm −→
(−∞,+∞] at x ∈ Rm is defined as

proxg(x) , argmin
u∈Rm

{
g(u) +

1

2
‖x− u‖22

}
·

Now, let us focus on the Q-update problem given in (10).
Define the vectorization operator vec(·) : Rm×m → Rm2

which converts its matrix argument to a vector by stacking the
columns of the matrix on top of one another, and let vec−1(·)
denote the inverse operator. It is then straightforward to show
that (10) can be rewritten as

qαk+1 = argmin
q

{
‖q‖∞ +

1

2α
‖q− pαk‖22

}
, (12)

1Note that problem (7) has infinitely many solutions with the same cost
value. In other words, if F∗ is an optimal solution, the same is UF∗, for any
unitary matrix U.
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in which, qαk+1 , vec(Qα
k+1) and pαk , vec(Pαk ), with Pαk ,

FαTkF
α
k − I. Note that (12) is, by definition, the proximal

mapping of α‖.‖∞ at pαk . Direct computation of this proximal
mapping would be tricky. Alternatively, we use the following
lemma to solve (12).

Lemma 1 (Moreau decomposition [28]). Let f : Rm −→
(−∞,+∞] be a proper and lower semicontinuous convex
function whose conjugate is denoted by f∗. Then, the following
relation holds for any x ∈ Rm and β > 0:

x = proxβf (x) + β · proxf∗/β(x/β). (13)

To utilize the above lemma, define f(x) = ‖x‖∞. The
convex conjugate of f is the indicator function of the `1 unit-
norm ball [30]. So, the solution of (12) is obtained via

qαk+1 = proxαf (p
α
k ) = pαk − α · proxf∗/α(x/α). (14)

Furthermore, it is straightforward to show that

∀x : proxf∗/α(x/α) =
1

α
PBα1 (x), (15)

where, Bα1 is the `1 norm ball of radius α, and PBα1 denotes
the projection onto Bα1 . Finally, Qα

k+1 in (10) is computed as

Qα
k+1 = Pαk − vec−1

(
PBα1

(
vec(Pαk )

))
· (16)

There exist a number of algorithms for computing PBα1 (pk);
see, e.g., [31]. To accelerate the algorithm, we use an extrap-
olation scheme as follows

Pαk = FαTkF
α
k − I

Rα
k = Pαk + w1(P

α
k −Pαk−1)

Qα
k+1 = Rα

k − vec−1
(
PBα1

(
vec(Rα

k )
)) , (17)

where, w1 ≥ 0 is a weighting constant.
Now, consider the F-update in (11). We solve this problem

using an accelerated proximal algorithm proposed in [32]. This
amounts to{

S(t) = F(t) − 2ηF(t)(F
T
(t)F(t) −Qα

k+1 − I)

F(t+1) = PF
{
S(t)

}
+ w2(F(t) − F(t−1))

, (18)

where, t denotes the iteration index, η > 0 is a step-size, w2 ≥
0 is a weighting constant, and PF {.} performs the projection
onto F , which is computed by simply normalizing the columns
of its argument. This iterative process is repeated for a few
iterations. Under appropriate selection of η, it is guaranteed
[32] that the iterative algorithm in (18) converges to a critical
point of the cost function in (11). The final estimate obtained
in (18) provides an approximation to Fαk+1. The overall solver
of (9) iterates between the update of Qα

k+1 through (17), and
performing a few iterations of (18) to update Fαk+1.

Following the same approach used in a general penalty
method [29], we consider a decreasing sequence of {αi},
in which, αi → 0, and find approximate minimizers of (9)
for each i. Moreover, the final solutions corresponding to αi
are used as the initialization points to start the minimization
process corresponding to αi+1. This is called warm-starting.

The overall procedure for solving (9) has been summarized
in Algorithm 1. We call this algorithm IFD-AMPM, for
incoherent frame design via alternating minimization penalty
method. The parameters involved in the algorithm are dis-
cussed in the following subsection.

Algorithm 1 IFD-AMPM

1: Objective: Constructing an incoherent frame F.
2: Inputs: initial frame F0, step-size η > 0, weighting

constants w1 ≥ 0 and w2 ≥ 0, initial value for the penalty
parameter α0, decreasing factor of the penalty parameter
c ∈ [0.5, 1), maximum number of outer- and inner-loop
iterations, No and Ni, maximum number of F-update
iterations T .

3: Initialization: i = 0, α = α0, Fα0
0 = F0

4: while i < No do
5: for k = 0, · · · , Ni − 1 do
6: Update Qαi

k+1 through (17)
7: for t = 0, · · · , T − 1 do
8: Compute F(t+1) through (18)
9: end for

10: Fαik+1 = F(T )

11: end for
12: αi+1 = c · αi
13: i = i+ 1
14: end while
15: Output: F

B. Parameter settings

We initialize our algorithm with a unit-norm tight frame
(UNTF) generated using the approach proposed in [33], [34].
The step-size η should be small enough to avoid divergence.
For our experiments, we found that η = 0.05 works well.
Moreover, w1 = w2 = 0.85 results in a good performance.
The initial value for the penalty parameter, α0, should be
sufficiently large. We set it as α0 = 500 × ‖Pα0

0 ‖∞. The
decreasing factor, c, of α should be in [0.5, 1). We found that
c = 0.9 is an appropriate choice. The parameters No and Ni,
denoting the number of outer- and inner-loop iterations, are
set according to the desired precision.

For the F-update problem in lines 7–9 of Algorithm 1, a few
iterations, say T = 3, suffices to reach a good solution. In fact,
one advantage of our proposed algorithm is that, it benefits
from warm-starting. That is, the iterations corresponding to
each particular value of α (lines 5–11) and also, the iterations
along the sequence of α’s (lines 4–14) help reduce the works
needed for updating Q and F.

IV. NUMERICAL RESULTS

This section compares the performance of our proposed
algorithm with those of SIDCO [13] and another optimization-
based approach, dubbed LZYCB [26], which designs incoher-
ent UNTFs using an alternating minimization approach.

For SIDCO and LZYCB, we used the MATLAB imple-
mentations provided by their authors. To perform projection
onto the `1 norm ball in IFD-AMPM, we used the algorithm2

proposed in [31]. The total number of iterations for all the
algorithms was set to 200. Moreover, for IFD-AMPM we set
Ni = 15. Its remaining parameters were set as suggested
in Subsection III-B. As a rough measure of computational
complexity, runtimes of the algorithms are reported. Our

2MATLAB code: http://stanford.edu/∼jduchi/projects/DuchiShSiCh08.html
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TABLE I: Mutual coherence values reached by SIDCO [13],
LZYCB [26], and IFD-AMPM for frames F ∈ Rn×120 with
different values of n.

m SIDCO LZYCB IFD-AMPM WB
15 0.3502 0.4146 0.3225 0.2425
20 0.2775 0.3409 0.2605 0.2050
25 0.2303 0.2766 0.2183 0.1787
30 0.1977 0.2358 0.1879 0.1588
35 0.1727 0.2037 0.1649 0.1429
40 0.1529 0.1815 0.1468 0.1296
45 0.1371 0.1610 0.1319 0.1183
50 0.1236 0.1467 0.1193 0.1085
55 0.1120 0.1337 0.1086 0.0997
60 0.1019 0.1209 0.0991 0.0917
100 0.1421 0.0666 0.0449 0.0410
110 0.0840 0.0986 0.0315 0.0276
115 0.0452 0.0464 0.0219 0.0191
119 0.0084 0.0230 0.0084 0.0084
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Fig. 1: Mutual coherence values along iterations of SIDCO
[13], LZYCB [26], and IFD-AMPM for designing incoherent
frames of dimensions: (a) 15× 120, and (b) 25× 120.

simulations were carried out on a 64 bit Windows 7 operating
system with 8 GB RAM and an Intel core i7 CPU.

First, the algorithms are compared in designing incoherent
frames of dimensions n× 120 for different values of n. The
minimum mutual coherences reached by the algorithms over
100 realizations are shown in Table I. As can be seen, the
final mutual coherences reached by IFD-AMPM are lower than
the ones corresponding to LZYCB and SIDCO. In addition,
LZYCB has inferior performance to the other algorithms.

Figure 1 depicts the progress of µ(F) over the iterations
of the algorithms (averaged over 30 different realizations) for
frames of dimensions 15× 120 and 25× 120. It is observed
that SIDCO and IFD-AMPM converge faster than LZYCB.
Actually, in IFD-AMPM and SIDCO the mutual coherences
decrease significantly after about 10 iterations. Furthermore,
IFD-AMPM ends up with frames of lower mutual coherences
than the other two algorithms. From the aspect of runtime,
while each iteration of SIDCO takes approximately 18 seconds
in average, for LZYCB and IFD-AMPM the runtimes per
iteration are 0.023 and 0.041 seconds, respectively, which are
significantly lower than that of SIDCO.

The next experiment aims to see how the performance
of the algorithms compares with the numerically optimal
packings found by [35]. To this end, we run the algorithms
to construct frames F ∈ R3×m with increasing values of m.
The results are reported in Table II. As demonstrated by this

TABLE II: Mutual coherence values reached by SIDCO [13],
LZYCB [26], and IFD-AMPM together with those of the
numerically optimal packings reported in [35] for frames
F ∈ R3×m with increasing values of m.

m SIDCO LZYCB IFD-AMPM Num. Opt. WB
3 0 0 0 0 0
4 0.3333 0.3333 0.3333 0.3333 0.3333
5 0.4472 0.5393 0.4472 0.4472 0.4082
6 0.4472 0.4472 0.4472 0.4472 0.4472
7 0.5893 0.5777 0.5774 0.5774 0.4714
8 0.6480 0.7466 0.6478 0.6476 0.4880
9 0.6694 0.7471 0.6694 0.6694 0.5000

10 0.6870 0.6979 0.6861 0.6861 0.5092
11 0.7149 0.7565 0.7144 0.7144 0.5164
12 0.7559 0.9568 0.7445 0.7445 0.5222
13 0.7721 0.9631 0.7681 0.7681 0.5270
14 0.7828 1 0.7806 0.7806 0.5311
15 0.7888 1 0.7867 0.7866 0.5345
16 0.7969 1 0.7947 0.7947 0.5375
17 0.8204 1 0.8168 0.8168 0.5401
18 0.8283 1 0.8250 0.8250 0.5423
19 0.8388 1 0.8367 0.8367 0.5443
20 0.8447 1 0.8414 0.8414 0.5461
21 0.8488 1 0.8471 0.8460 0.5477
22 0.8609 1 0.8491 0.8490 0.5492
23 0.8632 1 0.8616 0.8616 0.5505
24 0.8724 1 0.8646 0.8646 0.5517
25 0.8779 1 0.8728 0.8725 0.5528
26 0.8818 1 0.8784 0.8770 0.5538
27 0.8851 1 0.8810 0.8809 0.5547
28 0.8869 1 0.8845 0.8842 0.5556
29 0.8944 1 0.8871 0.8868 0.5563
30 0.8956 1 0.8912 0.8910 0.5571

table, IFD-AMPM yields frames whose mutual coherences are
almost the same as those of the numerically optimal packings.
Additionally, while SIDCO follows the numerically optimal
results closely, it is not as good as IFD-AMPM for some
values of m. LZYCB, on the other hand, fails in designing
incoherent frames for m ≥ 14.

V. CONCLUSION

We addressed designing incoherent frames comprising a set
of vectors with very low mutual coherences. Many algorithms
have already been proposed to this aim. One family of
approaches offer schemes for constructing optimal incoherent
frames, known as equiangular tight-frames (ETFs), which have
been successfully applied in many applications [11], [17]–[21].
However, ETFs do not exist for arbitrary dimensions, and the
available algorithms for designing them usually impose certain
restrictions on frame dimensions.

In this letter, we focused on another family of algorithms,
including [12]–[16], [24]–[26] which do not target at designing
ETFs. Instead, they try to design frames as close as possible
to ETFs. In particular, we introduced a new algorithm, called
IFD-AMPM, which designs incoherent frames by minimizing
the mutual coherence among all unit-norm frames through
an alternating minimization penalty method. Our numerical
experiments on designing incoherent frames of various di-
mensions confirmed that IFD-AMPM outperforms some recent
optimization-based approaches.
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