
Dictionary Learning with Low Mutual Coherence
Constraint

Mostafa Sadeghi, Massoud Babaie-Zadeh∗

Electrical Engineering Department, Sharif University of Technology, Tehran, Iran

Abstract

This paper presents efficient algorithms for learning low-coherence dictio-

naries. First, a new algorithm based on proximal methods is proposed to solve

the dictionary learning (DL) problem regularized with the mutual coherence of

dictionary. This is unlike the previous approaches that solve a regularized prob-

lem where an approximate incoherence promoting term, instead of the mutual

coherence, is used to encourage low-coherency. Then, a new solver is proposed

for constrained low-coherence DL problem, i.e., a DL problem with an explicit

constraint on the mutual coherence of the dictionary. As opposed to current

methods, which follow a suboptimal two-step approach, the new algorithm di-

rectly solves the associated DL problem. Using previous studies, convergence

of the new schemes to critical points of the associated cost functions is also

provided. Furthermore, it is shown that the proposed algorithms have lower it-

eration complexity than existing algorithms. Our simulation results on learning

low-coherence dictionaries for natural image patches as well as image classifi-

cation based on discriminative over-complete dictionary learning demonstrate

the superiority of the proposed algorithms compared with the state-of-the-art

method.
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1. Introduction

1.1. Sparse signal approximation

Sparsity has been a key concept in a wide range of signal processing and

machine learning problems over the last decade [1]. In particular, sparse sig-

nal approximation has been extensively utilized in a variety of applications,5

including image enhancement [2, 1]. To be more precise, let y ∈ Rn denote the

target signal, and {di}Ni=1 be a number of N atoms collected as the columns of

a so-called dictionary D = [d1, · · · ,dN ]. For more flexibility, the dictionary is

usually chosen to be overcomplete, i.e., N > n. Then, the approximation of y

over D is written as y ≈
∑N
i=1 xidi = Dx, where x ∈ RN is called the sparse10

representation vector, with most of its entries being zero. The sparse approx-

imation problem is to find the sparsest x. To this end, the following problem

has to be solved:

min
x
‖x‖0 s.t. ‖y −Dx‖2 ≤ ε, (1)

where ‖.‖0, the so-called `0 (pseudo) norm, returns the number of non-zero

entries, and ε ≥ 0 is an error tolerance. Various sparse recovery algorithms have15

been proposed, which are summarized in [3].

1.2. Traditional dictionary learning

Dictionary has an important role in sparse approximation problems. There

exist some predefined choices for the dictionary, including discrete cosine trans-

form (DCT) for natural images and Gabor dictionaries for speech signals [4].20

Nevertheless, it has been shown that learned dictionaries optimized over a set of

training signals outperform predefined ones in many applications [1, 4, 5, 6, 7].

This process is known as dictionary learning (DL) [4]. In DL, given a training

data matrix Y = [y1, · · · ,yM ], a dictionary D is learned from Y, in such a

way that it provides sparse enough representations for yi’s. This task can be25

formulated as the following problem

min
D∈D,X∈X

1

2
‖Y −DX‖2F , (2)
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where ‖.‖F is the Frobenius norm, and D and X are admissible sets of D and X,

respectively. D is usually defined as D ,
{
D ∈ Rn×N | ∀i, ‖di‖2 = 1

}
, which

will be also considered in this paper. Furthermore, the set X constrains X to

have sparse columns.30

Numerous DL algorithms have been proposed [8], which follow an alternating

minimization approach to solve the DL problem in (2). That is, starting with

an initial estimate for the dictionary, most DL solvers alternate between the

following two stages:

1. Sparse approximation (SA): The training signals are sparsely approx-35

imated over the current estimate of D.

2. Dictionary update (DU): The dictionary is updated by minimizing the

approximation error of the SA stage.

1.3. Low-coherence dictionary learning

To ensure computational tractability and successful performance of sparse40

approximation algorithms, the dictionary must satisfy certain properties. In

fact, substantial efforts in investigating the theoretical aspect of the sparse ap-

proximation problem have revealed that the uniqueness and stability of sparse

approximation are directly related to the dictionary [9, 10]. Mutual coherence

(MC) [11] and restricted isometry property (RIP) [9] are two fundamental tools45

for evaluating the goodness of a dictionary. The MC for a dictionary D with

normalized columns is defined as

µ(D) , max
i 6=j

|〈di,dj〉|· (3)

MC simply measures the similarity between distinct atoms of a dictionary. For

n×N dictionaries, the MC is lower bounded via

µ ≥

√
N − n
n(N − 1)

, (4)

which is known as the Welch bound [12]. In addition, D is said to satisfy RIP50

of order s with constant δs if for any s-sparse signal x we have [13]

(1− δs)‖x‖22 ≤ ‖Dx‖22 ≤ (1 + δs)‖x‖22· (5)
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The existing RIP-based performance guarantees for sparse approximation algo-

rithms show that smaller values for δs are favorable. Intuitively, according to

(5), when δs → 0 the dictionary behaves as an orthonormal basis and, so, the

stability and uniqueness of the approximation are better satisfied. Evaluating55

the RIP for a dictionary, however, is an NP-hard problem [14]. Nevertheless, it

can be roughly verified using MC. In fact, it has been shown that RIP and MC

for a dictionary are linked via δs ≤ µ(s− 1) [13]. Furthermore, it can be shown

that δ2 = µ [1]. Consequently, MC as a practical measure of performance has

received much attention [15, 16, 17].60

Besides the sole sparse approximation problem, recent work indicates that

MC and RIP play effective roles in theoretical investigations of the DL problem

as a whole. For instance, it is argued in [18, 19] that a ground truth dictionary

would be a local minimum to the DL cost function with an `1 norm as the

sparsity measure, provided that it is sufficiently incoherent along with some65

other assumptions on the problem parameters. In this case, the dictionary is

said to be locally identifiable [18]. Moreover, Wu and Yu [19] showed recently

that, under some conditions, the local identifiability is possible with sparsity

level s to the order O(µ−2) for a complete dictionary (n = N) with the MC

value of µ. Also, in [20], RIP has been used as a determining assumption in70

providing local linear convergence for the alternating minimization approach

used to solve the DL problem.

The importance of MC, explained by the above discussions, has inspired

some work to propose algorithms for learning low-MC dictionaries. These work

can be classified into two main groups: regularized and constrained approaches.75

The first group [21, 22, 23] targets the following problem to update the dictio-

nary

min
D∈D

1

2
‖Y −DX‖2F + λR(D), (6)

where λ ≥ 0 is a regularization parameter, and

R(D) , ‖DTD− I‖2F · (7)

The use of R as an incoherence promoting term is motivated by the following
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relation80

R(D) =
∑
i6=j

|〈di,dj〉|2 +
∑
i

(〈di,di〉 − 1)2, (8)

where the first term is responsible for minimizing the average squared inner-

products between distinct atoms, and the last term encourages the atoms to

have unit norms.

The second group of methods aims at solving the following constrained prob-

lem85

min
D∈D

1

2
‖Y −DX‖2F s.t. µ(D) ≤ µ0, (9)

in which, µ0 > 0 is a fixed target MC level. Incoherent K-SVD (INK-SVD)

[24] and iterative projection-rotation DL (IPR-DL) [25] are sample algorithms

of this group. INK-SVD solves (9) by first finding the minimizer (denoted by

D̄) ignoring the MC constraint and, then, solving the following matrix nearness

problem to reach the desired mutual coherence:90

min
D

1

2
‖D− D̄‖2F s.t. µ(D) ≤ µ0· (10)

To solve (10), the authors of [24] proposed a decorrelation step in which sub-

dictionaries of highly correlated atoms are iteratively identified and pairs of

atoms are decorrelated until the desired MC, namely µ0, is reached. A dis-

advantage of this approach, as pointed out in [25], is that, the approximation

error, i.e., ‖Y−DX‖F , is not explicitly taken into account during the decorre-95

lation process. To overcome this problem, Barchiesi et al. [25] proposed a novel

decorrelation scheme, consisting of two steps. In the first step, called atoms

decorrelation, an iterative projection algorithm is performed that ensures that

the mutual coherence constraint is satisfied. This step is then followed by a

dictionary rotation in which the dictionary is rotated to minimize the approx-100

imation error, without affecting its mutual coherence. This algorithm shows

state-of-the-art performance, as confirmed by the simulations of [25].

1.4. Our contributions

In this paper, we propose new algorithms for learning low-coherence dictio-

naries. Our motivation is that the previous work cannot efficiently compromise105

5



between the representation ability of the learned dictionary and its MC. More

precisely, as will be seen later in Section 2, the term R used in (6) is a very

rough approximation to MC. In fact, as its definition in (8) implies, using this

term only the average squared inner-products between distinct atoms are pe-

nalized. Therefore, it is not particularly effective to minimize the maximum110

absolute inner-products between any two atoms, i.e., the MC. Furthermore,

when λ→∞, problem (6) reduces to

min
D∈D

R(D), (11)

whose solutions are unit-norm tight-frames (UNTFs) [26, 27] which are not

guaranteed to have small enough MCs compared to what one would expect in

this extreme scenario. In other words, a UNTF may have a large MC. So, one115

would need to further optimize it to achieve a small enough MC [28].

To address this issue, we introduce a new algorithm based on proximal meth-

ods [29] to solve the regularized (unconstrained) low-coherence DL problem that

directly uses the MC definition in (3) instead of the approximate term R. Our

simulations reveal that the new algorithm is able to learn dictionaries with MCs120

far smaller than what the algorithms targeting problem (6) achieve. Addition-

ally, it makes much better compromise between adapting the dictionary to the

training set and minimizing the MC.

On the other hand, IPR-DL, as the state-of-the-art algorithm, does not

solve (9) directly. Moreover, singular value decomposition (SVD) and eigen-125

value decomposition (EVD) are used in its structure, which are expensive oper-

ations from computational load and memory usage points of view, especially in

high-dimensional data settings. Our next algorithm solves the constrained low-

coherence DL problem (9) directly, without resorting to a suboptimal approach

as in INK-SVD and IPR-DL. In addition, the proposed algorithm does not use130

SVD or EVD. As will be seen in Section 5, compared with IPR-DL, our pro-

posed unconstrained algorithm is able to efficiently minimize the approximation

error while satisfying the target level of MC.

Our proposed regularized low-coherence DL algorithm has already been in-
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troduced in a conference paper [30]. However, the algorithm proposed in the135

current work is different from the one presented in [30]. More precisely, in [30]

an atom-by-atom approach is taken that updates the atoms sequentially. How-

ever, in this work, we consider updating all the atoms at once. Moreover, here,

we consider the constrained low-coherence DL problem, too, and in addition

to presenting a new solver for the constrained case, we provide convergence140

guarantees for the dictionary update steps of both regularized and constrained

problems based on previous studies.

1.5. Organization of the paper

The rest of the paper is presented in the following order. In Section 2,

our new regularized low-coherence DL algorithm is introduced. The proposed145

constrained low-coherence DL algorithm is introduced in Section 3. Some dis-

cussions concerning the implementations of our new algorithms and a compu-

tational complexity analysis are given in Section 4. Simulation results will be

reported in Section 5.

1.6. Notations and preliminaries150

Throughout the paper, small and capital bold face characters are used for

vector- and matrix-valued quantities, respectively. The (i, j)-th entry of a ma-

trix X is denoted by xij , while xi designates its i-th column. The superscript

T stands for matrix transposition. The identity matrix is denoted by I. For a

vector x, its `p norm (p ≥ 1) is defined via ‖x‖p , (
∑
i |xi|p)1/p. For a matrix155

X, we denote its `∞ norm1 by ‖X‖∞ and define it as ‖X‖∞ , maxi,j |xij |.

An `p norm-ball of radius r in Rn and centered around the origin is defined

as Brp , {x ∈ Rn | ‖x‖p ≤ r}. The same notation is used for `p matrix norm-

ball. For two vectors u and v in Rn, their inner-product is represented as

〈u,v〉 ,
∑
i uivi. The indicator function of a set S is denoted by IS(x) which160

1Note that the definition given here is different from the usual `∞ (induced) matrix norm,

defined as the maximum absolute row sum of a matrix.
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takes a value of 0 when x ∈ S, and ∞ otherwise. The vectorization operator is

denoted by vec(.), which converts its matrix argument to an equivalent column

vector by stacking its columns on top of each other. The inverse vectorization

operator is also denoted by vec−1(.). Moreover,

Definition 1 ([29]). The Euclidean projection of a point x ∈ Rn to a non-empty165

set S ⊆ Rn is defined as

PS(x) , argmin
u∈S

1

2
‖x− u‖22·

Definition 2 ([29]). The proximal mapping of a convex function g : domg −→

R is defined as

proxg(x) , argmin
u∈domg

{
1

2
‖x− u‖22 + g(u)

}
·

For g(x) = IS(x), the proximal mapping is simply the projection onto S

[29]. That is,170

proxIS (x) = PS(x)· (12)

2. Proposed regularized algorithm

In this section, a new regularized low-coherence DL algorithm, called RINC-

DL, for regularized incoherent DL, is introduced which tries to minimize the

general DL cost function augmented with the MC term. To start, notice the

following equivalent definition of MC for unit-norm dictionaries175

µ(D) = ‖DTD− I‖∞· (13)

Using this formula, the regularized problem that we target is expressed as

min
D∈D,X∈X

1

2
‖Y −DX‖2F + λ‖DTD− I‖∞· (14)

Note that the regularization term does not depend on the coefficient matrix X.

Consequently, the SA stage in the general DL problem remains unchanged and

any sparse approximation algorithm can be employed. So, let us focus on the

DU stage180

min
D∈D

1

2
‖Y −DX‖2F + λ‖DTD− I‖∞· (15)
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Notice the difference between (13) and (7). It is observed that the regularization

term R used in previous work is an approximation to MC in which the `∞ norm

has been replaced with the Frobenius norm.

Similarly to (6), problem (15) is non-convex. However, solving (15) is more

challenging due to the non-smoothness of the `∞ norm, which makes it dif-185

ficult to directly apply optimization algorithms such as steepest descent. To

circumvent this difficulty, we utilize proximal mappings. To reach this goal, an

auxiliary variable is first defined: G , DTD. Then, problem (15) is reformu-

lated as

min
D∈D,G

1

2
‖Y −DX‖2F + λ‖G− I‖∞ s.t. G = DTD· (16)

By this trick, the quadratic term DTD is taken out of the non-smooth part of190

the objective function, which facilitates application of proximal algorithms [29].

We solve the above equality-constrained problem using penalty methods [31].

To this end, the following problem has to be solved

min
D,G

{
H(D,G) , F (D,G) + rd(D) + rg(G)

}
, (17)

in which,

F (D,G) ,
1

2
‖Y −DX‖2F +

1

2α
‖G−DTD‖2F , (18)

α > 0 is a penalty parameter, rd , ID is the indicator function of D, and195

rg(G) , λ‖G − I‖∞. When α → 0, the constraint violations are penalized

with increasing severity and the solution of (17) approaches that of (16). Sim-

ilar to a general penalty method, we consider a sequence {αi} with αi → 0,

and find approximate minimizers of (17) for each i. The obtained minimizers,

corresponding to αi, are then used as initial points to perform the minimiza-200

tion corresponding to αi+1. It should be mentioned that if the exact global

minimizers are computed for each i, then every limit point of the sequence of

global minimizers is a solution of (16), and thus, the original problem (15) (see

Theorem 17.1 of [31]).

In order to solve (17) for each αi, an alternating minimization approach is205

employed. In this way, the cost function is iteratively minimized, each time over
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one variable while the other is fixed. The update problems for D and G are

discussed in the following subsections.

2.1. Updating G

After simple rearrangements, the update problem for G is converted to2210

Gk+1 = I + argmin
G

{
1

2
‖G−Mk‖2F + η‖G‖∞

}
, (19)

where Mk , DT
kDk − I, and η , λ · α. The second term in the right-hand side

of (19) is, by definition, the proximal mapping of the `∞ matrix norm, which

has a closed-form solution characterized by the following lemma.

Lemma 1. Let g denote the function η‖.‖∞ : RN×N → R. The proximal

mapping of g is given by215

proxg(U) = U− vec−1(PBη1 (vec(U))), (20)

where, PBη1 (.) : RN2×1 → RN2×1 is the projection onto the `1 norm-ball of

radius η.

Proof: See Appendix A.

So, the update formula for G is220

Gk+1 = I + Mk − vec−1(PBη1 (vec(Mk))), (21)

or equivalently,

Gk+1 = DT
kDk − vec−1(PBη1 (vec(DT

kDk − I))). (22)

The proximal mapping in (22) requires column projection onto the `1 norm-ball

which can be efficiently performed using the method proposed in [32].

2We have removed the subscript of αi for simplicity.
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2.2. Updating D

The dictionary update problem is225

min
D∈D

{f(D) + rd(D)} , (23)

where f(D) , F (D,Gk+1). This problem is very similar to (6), and it does

not have a closed-form solution in general. Alternatively, we use a linearized

proximal gradient method [29] to solve it. This is achieved, by replacing f with

its quadratic approximation around the previous estimate of D. Doing so, the

update problem is230

Dk+1 = argmin
D

{
f(Dk) +∇T f(Dk)(D−Dk) +

1

2µd
‖D−Dk‖2F + rd(D)

}
,

(24)

in which

∇f(D) = (DX−Y)XT +
2

α
D(DTD−Gk+1) (25)

is the gradient of f , and µd > 0. Problem (24) can be equivalently written as

Dk+1 = argmin
D

{
1

2
‖D− D̃k‖F + rd(D)

}
= PD(D̃k), (26)

with D̃k , Dk − µd∇f(Dk). In short, using this approach the dictionary is

updated by performing one-step gradient descent followed by a projection onto

D. The step-size parameter, µd, is determined by the Lipschitz constant of ∇f ,235

denoted by L. It is first shown that ∇f is Lipschitz continuous. To do so, let

us define

f1(D) ,
1

2
‖Y −DX‖2F , f2(D) ,

1

2
‖DTD−Gk+1‖2F · (27)

So, ∇f(D) = ∇f1(D) + 1
α∇f2(D). It is already known [1] that ∇f1 is Lips-

chitz with constant L1 = ‖XTX‖, where ‖.‖ denotes the matrix spectral norm,

defined as the maximum singular value. For ∇f2, we have the following lemma:240

Lemma 2. The gradient of f2, as defined in (27), is Lipschitz continuous over

D. That is, there exists a constant L2 > 0 such that for all D1,D2 ∈ D

‖∇f2(D2)−∇f2(D1)‖F ≤ L2‖D2 −D1‖F · (28)
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Proof: See Appendix B.

The final alternating minimization approach for solving (17) consists of it-245

erating between (22) and (26). The following theorem based on [33] establishes

the convergence of the generated sequence.

Theorem 3. Let {Dk,Gk} be the sequence generated by (26) and (22). Assume

further that µd ∈ (0, 1/L]. Then, any accumulation point of {Dk,Gk} converges

to a critical point of H(D,G) defined in (17).250

Proof : See Appendix C.

3. Proposed constrained algorithm

Our next algorithm, called CINC-DL, for constrained incoherent DL, aims

at directly solving (9). As already discussed, this is in contrast to the approach

of IPR-DL which first updates the dictionary neglecting the MC constraint and255

then iteratively optimizes the result to satisfy the MC constraint. By replacing

µ(D) with its equivalent definition in (13), problem (9) becomes

min
D∈D

1

2
‖Y −DX‖2F s.t. ‖DTD− I‖∞ ≤ µ0· (29)

Our strategy for solving the above problem is the same as the one used in

RINC-DL. To this end, as before, let us define the auxiliary variable G , DTD.

Problem (29) is then equivalent to260

min
D∈D,G

1

2
‖Y −DX‖2F s.t. ‖G− I‖∞ ≤ µ0, G = DTD· (30)

Using the penalty method, the final problem to be solved is the same as (17)

with the difference that, here, rg(G) , IĜµ0 , where

Ĝµ0 , {G | ‖G− I‖∞ ≤ µ0} · (31)

Now, let us focus on the update problem of G, which can be expressed as

Gk+1 = I + argmin
G∈Bµ0∞

1

2
‖G− G̃k‖2F , (32)
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where G̃k , DT
kDk−I. The second term in the right-hand side of (32) is clearly

the projection of G̃k onto the `∞ matrix norm-ball of radius µ0. The projection265

is unique, because the constraint set Bµ0
∞ is convex. To perform this projection,

we use the following lemma:

Lemma 4. The projection of a matrix U0 onto the `∞ matrix norm-ball Br∞,

denoted by Up , PBr∞(U0), is characterized by

upij =

sgn(u0ij) · r |u0ij | > r

u0ij otherwise

(33)

Proof: See Appendix D.270

Therefore, the final update formula for Gk+1 is

Gk+1 = I + PBµ0∞ (DT
kDk − I)· (34)

The update problem for Dk+1 is the same as (23). So, we omit the details. Iter-

ating between (34) and (26) yields approximate solutions to (30). Convergence

of the generated sequence is guaranteed by the following theorem, whose proof275

is very similar to that of Theorem 1.

Theorem 5. Let {Dk,Gk} be the sequence generated by (26) and (34). Assume

further that µd ∈ (0, 1/L]. Then, any accumulation point of {Dk,Gk} converges

to a critical point of H(D,G) defined in (17).

A detailed description of the proposed algorithms is given in Algorithm 1.280

In this algorithm, SA(Y,D, τ) stands for the sparse representation matrix of

Y over D obtained via a sparse approximation algorithm with parameter τ .

This parameter may be the maximum allowed number of atoms to be used in

representations, an upper-bound on approximation error, or regularization pa-

rameter of sparsity promoting function. Note that the main difference between285

RINC-DL and CINC-DL lies in the G-update step, i.e., line 12 of Algorithm 1.
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Algorithm 1 Proposed algorithms (RINC-DL and CINC-DL)

1: Require: Y, D0, µ0 or λ, τ , c, L2, ε, I, J

2: Initialization: D = D0, G = 0

3: while stopping criterion for DL not met do

4: 1. Sparse approximation: X = SA(Y,D, τ)

5: 2. Dictionary update:

6: L1 = ‖XTX‖

7: α = 3 · ‖DTD− I‖∞
8: i = 1

9: while i ≤ I and ‖G−DTD‖F > ε do

10: µd = 1/(L1 + α−1L2)

11: for j = 1, 2, · · · , J do

12:

G = DT
kD− vec−1(PBη1 (vec(DTD− I))) (RINC-DL)

G = I + PBµ0∞ (DTD− I) (CINC-DL)

13: D = PD(D− µd∇f(D))

14: end for

15: αi+1 = c · αi
16: i← i+ 1

17: end while

18: end while

19: Output: D, X

4. Discussion

Similar to IPR-DL, CINC-DL is designed to be used in situations where a

fixed upper-bound on µ(D) is desired. On the other hand, RINC-DL targets290

applications in which the goal is to make a certain trade-off between minimizing

the approximation error and µ(D). Compared with CINC-DL and IPR-DL,

RINC-DL can be reduced to a plain DL, i.e., without the MC constraint, by

simply setting λ = 0. An advantage of CINC-DL (and also RINC-DL) over IPR-

DL is that, by directly solving the constrained low-coherence DL problem in an295

14



iterative fashion, CINC-DL benefits from warm-start during the DL iterations.

That is, the previous estimate of D is used as the initialization point for the

next DL iteration. In this way, the MC values are gradually decreased along

DL iterations. In contrast, due to the non-iterative nature of IPR-DL, the

dictionary has to be optimized in every DL iteration to satisfy the target level300

of MC.

In what follows, we compare the iteration complexity of the proposed al-

gorithms and that of IPR-DL. The complexity is evaluated according to the

number of required floating-point operations (flops). Note that since the SA

stage is common to all the algorithms, only the DU stage is considered.305

As discussed in [25], the iteration complexity of IPR-DL is dominated by

computation of the EVD of the Gram matrix DTD which requires O(N3) op-

erations, computation of the covariance matrix C = (DX)YT needing O(n2M)

operations, and computation of the SVD of the covariance matrix which costs

O(n3) operations. For our proposed algorithms, the iteration complexity is310

determined by the G-update stages and the inner DU loops. Every column

projection onto the `1 norm-ball costs O(N) operations according to [32]. So,

the full projection performed in line 12 of the RINC-DL algorithm costs O(N2)

operations. The G-update for the CINC-DL algorithm is a simple thresholding

which costs O(N2) operations. The inner DU stage for the two algorithms has315

a computational complexity of O(nNM + nN2). The full investigation of the

iteration complexity of the algorithms, neglecting constant numbers and after

some simplifications, are outlined in Table 1. From this table, it is concluded

that for all the algorithms the computational complexity is linear in M , the

number of training signals. Also, CINC-DL and RINC-DL have the same order320

of computations. More importantly, the computational complexity of IPR-DL

has a cubic growth in both n (signal dimension) and N (number of atoms),

while it is linear in n and square in N for our proposed algorithms. This makes

our proposed algorithms favorable for high-dimensional data settings.
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Table 1: Iteration complexity of the algorithms.

Algorithm Complexity

IPR-DL O(nNM +MN2 + 3n2N + 2n3 + 2N3)

CINC-DL O(nNM + nN2)

RINC-DL O(nNM + nN2)

5. Simulation results325

The promising performance of low-coherence DL algorithms has already been

verified in many applications, including face recognition, object classification,

image denoising [23], functional magnetic resonance imaging (fMRI) [22], and

sparse approximation of musical signals [24, 25]. In this section, we are going

to compare the performance of our proposed algorithms with those of existing330

low-coherence DL algorithms, to see how well they can make a balance between

reducing representation error and the mutual coherence of dictionary. To this

end, we did an experiment on learning low mutual coherence dictionaries for

natural image blocks. Furthermore, as another experiment, we considered the

problem of discriminative dictionary learning for image classification. From the335

first group, the algorithm proposed in [21] was chosen, which we call bounded

self-coherence DL (BSC-DL). BSC-DL uses the limited-memory BFGS (l-BFGS)

algorithm [34] to solve (6). From the constrained low-coherence DL algorithms,

IPR-DL was chosen, which is the state-of-the-art. To have a rough measure of

the computational loads of the algorithms, their runtimes are reported. Our340

simulations were carried out in MATLAB environment on a 64 bit Windows 7

operating system with 8 GB RAM and an Intel core i7 CPU.

The rest of this section is organized as follows. Section 5.1 presents the exper-

iments and results on image patch representation. The effects of the parameters

of our proposed algorithms are studied in Subsection 5.1.2. Subsections 5.1.3345

and 5.1.4 evaluate and compare the performance of our proposed algorithms

with those of BSC-DL and IPR-DL. Finally, the experimental results on im-
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age classification based on discriminative over-complete dictionary learning are

discussed in Section 5.2.

5.1. Image patches representation350

5.1.1. Setup

We consider learning low-coherence dictionaries for natural image patches.

A number of M = 50, 000 blocks of size 8 × 8 were randomly extracted from

some benchmark images. The blocks were then converted to equivalent column

vectors of length 64. We subtracted the mean from all vectors, and then nor-355

malized them. The resulting set of vectors were then used to form the training

data matrix Y. For all the competing algorithms, the initial dictionary was set

as a DCT matrix of size 64 × 256, and OMP was used to implement the SA

stages. In addition, the maximum number of participating atoms in the repre-

sentations of all training signals was set to s = 10 (τ = 10 in Algorithm 1). All360

the algorithms were run for 300 iterations (i.e., the number of iterations between

sparse approximation and dictionary update). To measure the quality of the

learned dictionaries, mean square error (MSE) was used which is computed as

‖Y −DX‖F /(n ·M).

The parameters of the algorithms were set as follows. For the l-BFGS al-365

gorithm used in BSC-DL the parameters suggested by the authors of [21] were

used. For IPR-DL, the maximum number of iterations in its decorrelation step

was set to 100. For our proposed algorithms, outlined in Algorithm 1, we set

I = 100, J = 3, L2 = 20, c = 0.85, and ε = 0.05, which resulted in promising

performances. The effects of these parameters are explored in the next subsec-370

tion.

5.1.2. Effects of parameters

In this subsection, the effects of the parameters of our proposed algorithms

(i.e., c, J , ε, and L2) on their performances are experimentally demonstrated. To

test the effect of each parameter, the others have been set to their default values,375

stated in the previous subsection. Moreover, the incoherence regularization
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Figure 1: Plots of the final approximation errors and mutual coherences achieved by RINC-

DL and CINC-DL versus different values of their parameters. The default values for the

parameters are c = 0.85, J = 3, ε = 0.05, and L2 = 20. To test the effect of each parameter,

the others were set to their default values.

parameter λ in RINC-DL, and the target MC in CINC-DL were set to λ = 50

and µ0 = 0.25, respectively. For all the parameters, final MSEs together with the

mutual coherences of the learned dictionaries are plotted in Fig. 1, while Fig. 2

shows the corresponding runtimes. With these results in mind, the following380

conclusions are inferred concerning the role of each parameter:

• c: As demonstrated in Fig. 1 (a), the resulting MSE of CINC-DL de-

creases with increasing c, while its final MC remains approximately fixed

at the target value. Moreover, the mutual coherence of the learned dictio-

nary by RINC-DL decreases as c increases up to c = 0.95. On the other385

hand, larger values for c result in decreasing the convergence speeds of the

algorithms, as confirmed by Fig. 2 (a).
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Figure 2: Runtimes of RINC-DL and CINC-DL versus different values of their parameters.

The setting is the same as Fig. 1.

• J : Due to the inherent warm-starting in our proposed algorithms, a few it-

erations are sufficient for updating G and D in lines 11–14 of Algorithm 1.

This is illustrated by Figs. 1 (b) and 2 (b). As clearly demonstrated, in-390

creasing J does not improve the performance of the algorithms too much.

• ε: As shown in Figs. 1 (c) and 2 (c), smaller values for the stopping

tolerance, ε, lead to better performance in our proposed algorithms. This,

however, increases the runtimes.

• L2: Figures 1 (d) and 2 (d) show the performance of our algorithms for395

different values of L2. It is observed that both of the algorithms have good

performances for L2 ' 20.
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Figure 3: Final approximation errors and the mutual coherences of the learned dictionaries

achieved by BSC-DL and RINC-DL as functions of the regularization parameter, λ. The

Welch bound is also depicted as µmin.

5.1.3. Unconstrained algorithms

The performance of BSC-DL and RINC-DL, as two unconstrained algo-

rithms, are compared in this subsection to see how well they make a trade-400

off between minimizing the mutual coherences of the learned dictionaries, and

adapting the atoms to the training signals by reducing the associated approxi-

mation errors.

Figure 3 depicts plots of the final MCs and MSEs versus different values of

the regularization parameters of the algorithms. Considering these results, it405

can be concluded that:

• As expected, for both algorithms increasing the incoherence regularization

parameter, λ, results in a dictionary with low MC but with a worse ap-

proximation error (except for relatively small values of λ, which result in

large MCs). In addition, while BSC-DL exhibits a highly variable behavior410

as λ increases, with its MC curve oscillating, RINC-DL has a more clear

and monotonic trend. The oscillating behavior of BSC-DL might be due

to the fact that this algorithm does not minimize the mutual coherence di-

rectly, as explained in Subsection 1.4. Moreover, the approximation errors

reached by RINC-DL are considerably lower than those of BSC-DL.415
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• The minimum MC achieved by BSC-DL is about 0.54. On the other

hand, RINC-DL achieves a minimum MC of 0.1296, which is quite close

to µmin = 0.1085. This further confirms the inefficiency of the existing

regularization term, R(D), in imposing incoherency.

5.1.4. Constrained algorithms420

In this subsection, the ability of the constrained algorithms, CINC-DL and

IPR-DL, to upper-bound the MC while adapting the dictionary to the training

data is evaluated.

The final approximation errors versus different mutual coherence levels for all

the algorithms, including also BSC-DL and RINC-DL, are depicted in Fig. 4 (a).425

The associated runtimes are illustrated in Fig. 4 (b). By investigating the re-

sults shown in these figures, several conclusions can be reached. First, as can be

noted, CINC-DL has the best overall performance, in terms of both approxima-

tion error (MSE) and runtime. However, RINC-DL shows a better performance

in learning incoherent dictionaries with MCs near the WB. IPR-DL, on the other430

hand, has inferior performance to both CINC-DL and RINC-DL. Its runtime is

also dependent on the mutual coherence level, in the way that it takes longer to

learn dictionaries with MCs near the WB. This is due to the iterative projection

that is used in the decorrelation step of IPR-DL. Projection onto matrices with

very low-mutual coherences takes a lot of iterations. Finally, BSC-DL exhibits435

the worst performance, both in approximation errors and runtimes. Further-

more, the minimum mutual coherence it can reach (0.54) does not compare well

with those of the other algorithms. Nevertheless, its approximation errors are

slightly better than the ones achieved by the other algorithms for MCs larger

than 0.9. Indeed, for these values of MCs, all the algorithms behave roughly as440

plain DL algorithms, without any MC penalty, and since BSC-DL uses a more

advanced dictionary update algorithm, it slightly outperforms the others.
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Figure 4: Comparison of the all competing algorithms, in terms of: (a) the final approxima-

tion errors, and (b) the runtimes, versus the corresponding mutual coherences of the learned

dictionaries.

5.2. Image classification

In this section, we consider a face recognition task by learning a discrimi-

native over-complete dictionary on some labeled training data. To this end, we445

follow the approach proposed in [35], consisting of solving the following problem:

min
D∈D,X,W

‖Y −DX‖2F + γ‖H−WX‖2F + α‖W‖2F , (35)

subject to the constraint that each column of X contains at most T non-zeros

entries. Here, Y ∈ Rn×M is the matrix of labeled training data, belonging to C

different classes, H ∈ RC×M is the label matrix, W ∈ RC×N is a linear classifier,450

and γ and α are some trade-off parameters. This way, a linear classifier on the

sparse coefficients is jointly trained with a sparsifying dictionary. An efficient

algorithm, called discriminative K-SVD (DK-SVD), is proposed in [35] which

extends the K-SVD algorithm to solve (35).

To learn a low-mutual coherence discriminative dictionary, we modify (35)455

by including the constraint µ(D) ≤ µ. To solve the resulting problem, we follow

a simple alternating minimization approach over all the variables, namely D, X,

and W. This is similar to a standard DL problem except for the additional step

of updating W. To update X, we used the OMP algorithm, which is also used

by DK-SVD. To update the dictionary with the mutual coherence constraint,460
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we used IPR-DL and CINC-DL. Assuming that D and X have already been

updated, to update W the following problem needs to be solved:

min
W

γ‖H−WX‖2F + α‖W‖2F (36)

which admits a closed-form solution given by:

W = (HXT )(XXT +
α

γ
I)−1. (37)

At test time, once the dictionary and linear classifier are learned, the sparse

coefficients vector of a test sample is first computed over the trained dictionary465

and then passed to the linear classifier [35].

For this experiment, we considered two well-known face datasets, i.e., Ex-

tended YaleB and AR [35]. The Extended YaleB dataset contains about 2414

frontal face images of 38 individuals (1216 for training and 1198 for testing),

each of size 192×168. Similar to [35], each face image was transformed to a fea-470

ture vector of length 504 using a random projection. The AR dataset contains

over 4000 face images of 126 people, from which we chose 2600 images, as done

in [35]. This set was then randomly divided into a training set (2000 images)

and test set (600 images). Similar to the Extended YaleB dataset, a random

feature vector of length 540 was then obtained for each face image. The total475

number of iterations for all the competing algorithms, i.e., DK-SVD, IPR-DL,

and CINC-DL, was set to 50, which was enough for their convergence. For the

sparsity level, T , we chose T = 16 for Extended YaleB and T = 10 for AR, as

suggested in [35]. We also set α = γ = 1 in (35), following [35]. The parameters

of CINC-DL were set as c = 0.25, J = 1, I = 100, and ε = 0.005. We exper-480

imented with different number of atoms, i.e., N = 600, 800, 1000. To initialize

D, K-SVD was run over the training data, and then W was initialized using

(37). To alleviate the effect of initialization, each experiment was repeated five

times and the average results were reported.

The classification rates versus mutual coherence for different number of485

atoms are shown in Figs. 5 and 6. The mutual coherence of the learned dictio-

nary by DK-SVD in all the cases is around 0.98. By investigating these figures
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Figure 5: Classification rates versus mutual coherence of the learned dictionary on the AR

dataset. Each figure corresponds to a specific number of atoms N .
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Figure 6: Classification rates versus mutual coherence of the learned dictionary on the Ex-

tended YaleB dataset. Each figure corresponds to a specific number of atoms N .

we can see a clear advantage of constraining the mutual coherence of the dictio-

nary exhibited in the results of IPR-DL and CINC-DL. A consistent behavior

shown by DK-SVD is that the classification rate decreases by increasing the490

number of atoms. This may be explained by the fact that as the number of

atoms increases, so does the number of trainable parameters, and with a fixed

number of training samples, the chance of over-fitting increases. This effect is

not so significant in the case of IPR-DL and CINC-DL, as the mutual coherent

constraint acts as a regularizer, thus avoiding over-fitting. Considering higher495

dimensions (larger dictionary size) is also beneficial in the sense that the result-

ing sparse coefficients vectors become more discriminative. The performances

of IPR-DL and CINC-DL on the AR dataset are much better than that of DK-
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SVD. It is also noticeable that CINC-DL shows a much more consistent behavior

than IPR-DL across mutual coherence and number of atoms. In particular, in500

almost all the cases, especially for AR, the best performance of CINC-DL oc-

curs in small values of the mutual coherence, and it consistently outperforms

IPR-DL.

It should be noted that our algorithmic framework can be applied to other

variants of DK-SVD, e.g. [36] as well, by adding a mutual coherence constraint505

to the dictionary update step. The LC-KSVD algorithm proposed in [36], how-

ever, has been proven to be equivalent to DK-SVD up to a proper choice of

regularization parameters [37]. In our experiments, we also observed no consid-

erable difference between the results of DK-SVD and LC-KSVD.

6. Conclusion and future work510

In this paper, we addressed dictionary learning (DL) with mutual coherence

constraint. In this regard, we proposed an unconstrained algorithm which tar-

gets the regularized DL problem in which the mutual coherence function is used

as the regularizer. A new constrained algorithm was also proposed which solves

the DL problem under a mutual coherence constraint. Both algorithms are515

based on penalty methods and proximal approaches. Our computational analy-

sis revealed that, compared with the state-of-the-art algorithm of [25], our new

algorithms are more favorable for high-dimensional applications. In addition,

our experimental results on learning low-coherence dictionaries for natural im-

age patches as well as image classification based on discriminative over-complete520

dictionary learning confirmed the superiority of our new algorithms over the pre-

vious ones.

One interesting future research direction would be to investigate the appli-

cation of the proposed algorithms in learning discriminative sub-dictionaries for

classification tasks. As proposed in [38], for classification using dictionary learn-525

ing, a different dictionary is learned for each data class in such a way that the

dictionaries for different classes are as incoherent with each other as possible.
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This offers a different approach than the one discussed in Section 5.2. More pre-

cisely, assuming that the training data are arranged in Y as Y = [Y1, . . . ,YC ],

where Yi denotes training data belonging to class i, the following DL problem530

is proposed in [38]:

min
D∈D,X

1

2

C∑
i=1

{
‖Yi −DiXi‖2F + λ‖Xi‖1

}
+ η

∑
i 6=j

‖DT
i Dj‖2F , (38)

where X = [X1, . . . ,XC ], D = [D1, . . . ,DC ] and Di ∈ Rn×Ni is a dictionary

with Ni atoms associated with the i-th class. The last term in (38) is responsible

for decreasing the mutual coherence between any two distinct dictionaries. This

term, however, minimizes the average mutual coherence. With our proposed535

idea, the following problem should be solved:

min
D∈D,X

1

2

C∑
i=1

{
‖Yi −DiXi‖2F + λ‖Xi‖1

}
+ η ·max

i 6=j
‖DT

i Dj‖2F (39)

In this way, every two distinct dictionaries would be learned such that they

are as incoherent as possible and also matched to the training signals of their

own class. Designing an efficient algorithm to solve the above problem can be

pursued as a future work.540

Another idea to pursue as a future work is to use a Bregman iteration tech-

nique [39] to handle the equality constraints in (16) and (30). The advantage of

this technique over the penalty method is that instead of a decreasing sequence

for the penalty parameter, a fixed value is used. This would avoid the numerical

instability that occurs when the penalty parameter goes to zero [39]. Another545

advantage would be a faster convergence rate, thus reducing the computational

complexity of the overall algorithm [39].

Appendix A. Proof of Lemma 1

Consider the definition of proxg(.) given below

proxg(U) = argmin
Z

1

2
‖Z−U‖2F + η‖Z‖∞· (A.1)
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Defining u , vec(U) and z , vec(Z), it is straightforward to show that problem550

(A.1) can be expressed in the following vectorized form

vec(proxg(U)) = argmin
z

1

2
‖z− u‖22 + η‖z‖∞· (A.2)

We then use the Moreau decomposition [29] to derive the proximal mapping

of the `∞ norm. The Moreau decomposition states that the following relation

holds for any convex function f

x = proxf (x) + proxf∗(x), (A.3)

where555

f∗(y) , sup
x
{〈y,x〉 − f(x)} (A.4)

is the convex conjugate of f [40]. For ηf , using (A.4) it can be verified that the

following generalization of (A.3) holds

x = proxηf (x) + ηproxf∗/η(x/η)· (A.5)

For our problem, let f = ‖.‖∞. The convex conjugate of f is f∗ = IB1
1
, that

is, the indicator function of the unit `1 norm-ball [40]. Then, using (A.3) and

(12), it is verified that560

proxf (x) = x− PB1
1
(x). (A.6)

Finally, using (A.5) we have proxηf (x) = x−PBη1 (x), which by using vec(.) and

vec−1(.), the result in (20) is obtained.

Appendix B. Proof of Lemma 2

The proof is mainly based on the submultiplicativity property of the Frobe-

nius norm [41] which states that for any two matrices A and B of consistent565

dimensions the following inequality holds

‖AB‖F ≤ ‖A‖F · ‖B‖F . (B.1)

To begin the proof, first recall from (25) that the gradient of f2 is given by

∇f2(D) = 2D(DTD−Gk+1). It is then straightforward to verify the following
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equalities

∇f2(D1)−∇f2(D2) = 2

(
D1D

T
1 D1 −D1Gk+1 −D2D

T
2 D2+

D2Gk+1

)
= 2

(
(D1 −D2)DT

1 D1 + D2(D1 −D2)TD1+

D2D
T
2 (D1 −D2)− (D1 −D2)Gk+1

)
· (B.2)

Then, using the triangle inequality for matrix norms along with the application

of (B.1) results in

‖∇f2(D1)−∇f2(D2)‖F ≤ 2

(
‖D1‖2F + ‖D1‖F ‖D2‖F+

‖D2‖2F + ‖Gk+1‖F
)
· ‖D1 −D2‖F (B.3)

On the other hand, it is easy to show that

∀D ∈ D : ‖D‖F =
√
N, (B.4)

Finally, from (B.3) and (B.4) the inequality in (28) is readily followed with

L2 = 6N + 2‖Gk+1‖F · (B.5)

Appendix C. Proof of Theorem 3

To prove Theorem 3, we use existing results, especially the convergence proof570

provided in [33]. Before proceeding, notice the following necessary definitions

and useful lemmas:

Definition 3 (Subdifferential [42]). The subdifferential of a proper, lower semi-

continuous function g at x ∈ Rn is defined as

∂g(x) ,

{
ζ ∈ Rn| ∃ xk → x, g(xk)→ g(x), ζk → ζ, ζk ∈ ∂̂g(xk)

}
, (C.1)

in which, ∂̂g(x) is the Fréchet subdifferential of g at x ∈ Rn defined as575

∂̂g(x) ,

{
ζ ∈ Rn| lim inf

v→xv 6=x

1

‖x− v‖22
·
(
g(v)− g(x)−〈v−x, ζ〉

)
> 0

}
. (C.2)
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It is said that x∗ is a critical point of a proper, lower semi-continuous (PLSC)

function f if 0 ∈ ∂f(x∗) [42].

Lemma 6 ([33]). Let h = f + g, where f is continuously differentiable and g

is convex. Then, ∀x ∈ domh

∂h(x) = ∇f(x) + ∂g(x).

Using subdifferential properties [42] and invoking the above lemma, for the

subdifferential of H(D,G) defined in (17) we have

∂H(D,G) =
(
∂dH(D,G), ∂gH(D,G)

)
=(

∇dF (D,G) + ∂rd(D),∇gF (D,G) + ∂rg(G)
)
· (C.3)

Proposition 1 ([33]). Let {(xk,uk)}∞k=0 be a sequence in Graph(∂g) , {(z,v) | v ∈ ∂g(z)}580

that converges to (x,u) as k → ∞. By the definition of ∂g, if g(xk) converges

to g(x) as k →∞, then (x,u) ∈ Graph(∂g).

Lemma 7 (Descent lemma [43]). Let f : Rn → R be a C1-smooth function

with L-Lipschitz continuous gradient ∇f on domf . Then for any x,y ∈ domf

it holds that585

f(x) ≤ f(y) +∇f(y)T (x− y) +
L

2
‖x− y‖22· (C.4)

To prove Theorem 3, we borrow ideas from recent work on proximal algo-

rithms for non-convex problems [44, 43, 33]. To this end, first note that our

proposed algorithm performs the following iterations3, repeatedly, to update D

and G:

Gk+1 = argmin
G

{
F (Dk,Gk)+

∇Tg F (Dk,Gk)(G−Gk) +
1

2µg
‖G−Gk‖2F + rg(G)

}
(C.5)

3Here, by an abuse of notation and for simplicity, we define ATB as the inner-product

between the two matrices A and B.
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and

Dk+1 = argmin
D

{
F (Dk,Gk+1)+

∇Td F (Dk,Gk+1)(D−Dk) +
1

2µd
‖D−Dk‖2F + rd(D)

}
· (C.6)

Moreover, µg ∈ (0, 1/Lg] and µd ∈ (0, 1/Ld], with Lg and Ld being the Lipschitz

constants of ∇gF and ∇dF , respectively. It is straightforward to show that

Lg = 1/α. It was also shown in Lemma 2 that ∇dF is Lipschitz, and a Lipschitz

constant was derived.

To justify the equivalence of (C.5) and (19), note that the former can be590

written as

Gk+1 = argmin
G

1

2µg
‖G−

(
Gk − µg∇gF (Dk,Gk)

)
‖2F + rg(G)· (C.7)

Then, by letting µg → 1/Lg = α and

∇gF (Dk,Gk) =
1

α
(Gk −DT

kDk) (C.8)

together with a simple change of variable, it turns out that (C.7), and thus

(C.5), is equivalent to (19).

From (C.5) it follows that595

∇Tg F (Dk,Gk)(Gk+1−Gk) +
1

2µg
‖Gk+1−Gk‖2F + rg(Gk+1) ≤ rg(Gk)· (C.9)

On the other hand, using Lemma 7 we have

F (Dk,Gk+1) ≤ F (Dk,Gk) +∇Tg F (Dk,Gk)(Gk+1 −Gk) +
Lg
2
‖Gk+1 −Gk‖2F ·

(C.10)

Adding both sides of (C.9) and (C.10) results in

F (Dk,Gk) + rg(Gk) ≥ F (Dk,Gk+1) + rg(Gk+1)

(
1

2µg
− Lg

2
)‖Gk+1 −Gk‖2F · (C.11)

Similarly,

F (Dk,Gk+1) + rd(Dk) ≥ F (Dk+1,Gk+1) + rd(Dk+1)+

(
1

2µd
− Ld

2
)‖Dk+1 −Dk‖2F · (C.12)
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Adding both sides of (C.11) and (C.12), we obtain

H(Dk,Gk)−H(Dk+1,Gk+1) ≥ ρg‖Gk+1−Gk‖2F + ρd‖Dk+1−Dk‖2F , (C.13)

where, ρg , (2/µg − Lg/2) ≥ 0 and ρd , (2/µd − Ld/2) ≥ 0. The above

inequality shows that the sequence of objective values {H(Dk,Gk)} is non-

increasing. Moreover, H is bounded from below. So, the whole sequence is600

convergent. Summing (C.13) for k ≥ 0 results in

∞∑
k=0

{
ρg‖Gk+1 −Gk‖2F + ρd‖Dk+1 −Dk‖2F

}
≤ H0 −H∞, (C.14)

where, H0 , H(D0,G0) and H∞ , H(D∞,G∞). Noting that H0 −H∞ ≥ 0,

the above inequality implies that Dk+1 → Dk and Gk+1 → Gk. Moreover,

since in each iteration, D is projected onto D, which is a bounded set, so the

sequence {Dk}∞k=0 is bounded. Noting the update formula of G, this also results605

in boundedness of the G sequence. Therefore, the sequence {(Dk,Gk)}∞k=0 is

bounded. So, according to the Bolzano–Weierstrass theorem [45], there exists

a convergent subsequence
{

(Dkj ,Gkj )
}∞
j=0

that converges to an accumulation

point, say (D∗,G∗). We next prove that (D∗,G∗) is a critical point of H. Since

F is continuous and rg and rd are PLSC, we have H(Dkj ,Gkj ) → H(D∗,G∗)610

as j →∞. The optimality condition for (C.5) reads as

0 ∈ ∇gF (Dk,Gk) + ∂rg(Gk+1) +
1

µg
(Gk+1 −Gk)· (C.15)

Let us define

Agj , ∇gF (Dkj+1,Gkj+1)−∇gF (Dkj ,Gkj )−
1

µg
(Gkj+1 −Gkj ). (C.16)

Then, using (C.15) we can write

Agj ∈ ∇gF (Dkj+1,Gkj+1) + ∂rg(Gkj+1) = ∂gH(Dkj+1,Gkj+1)· (C.17)

Similar results can be obtained for D. So, we have

(Agj , A
d
j ) ∈ ∂H(Dkj+1,Gkj+1)· (C.18)
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In addition, using (C.16) together with the Lipschitz continuity of ∇gF we can615

write

‖Agj‖F ≤ (Lg +
1

µg
)‖Gkj+1 −Gkj‖F , (C.19)

which by considering Gk+1 → Gk, results in Agj → 0. For the D-update a

similar result holds. So, (Agj , A
d
j )→ (0,0), which together with H(Dkj ,Gkj )→

H(D∗,G∗), (C.18), and using Proposition 1 results in (0,0) ∈ ∂H(D∗,G∗).

Appendix D. Proof of Lemma 4620

First note that, by the definition of the `∞ norm, the following relation holds

{U ∈ Br∞} ≡ {∀i, j : |uij | ≤ r} · (D.1)

Then, consider the definition of PBr∞(.)

Up = argmin
U∈Br∞

1

2
‖U−U0‖2F , (D.2)

which is equivalent to

Up = argmin
|uij |≤r

1

2

∑
i,j

(uij − u0ij)2· (D.3)

The above problem is decomposable over uij ’s, resulting in625

∀i, j : upij = argmin
|u|≤r

1

2
(u− u0ij)2· (D.4)

But, this is a projection onto box constraints which is obtained by simply clip-

ping u0ij ’s when their absolute values exceed r, and keeping them unchanged

otherwise. This completes the proof.
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