
1

Iterative Sparsification-Projection (ISP): Fast and
Robust Sparse Signal Approximation

Mostafa Sadeghi, Student Member, IEEE, Massoud Babaie-Zadeh, Senior Member, IEEE

Abstract—In this paper, we address recovery of sparse signals
from compressed measurements, and sparse signal approxima-
tion, which have received considerable attention over the last
decade. First, we revisit smoothed L0 (SL0), a well-known sparse
recovery algorithm, and give some insights into it that have
not been noticed previously. Specifically, we re-derive the SL0
algorithm based on proximal methods, and using recent results in
solving non-convex problems by proximal algorithms, we provide
a convergence guarantee for it. In addition, inspired by this
derivation, we propose a general family of algorithms, which
we call iterative sparsification-projection (ISP), having SL0 as
a special member. Our algorithmic framework starts with an
initial guess for the unknown sparse vector, and then iteratively
sparsifies it (using a fixed threshold) followed by projecting the
result onto the admissible solution set. The threshold is then
decreased and the same process is repeated. The algorithm
terminates when the threshold becomes sufficiently small, or
another stopping criterion is satisfied. We also propose a ro-
bust projection to handle the situations with observation noise
or model uncertainties. Our extensive simulations confirm the
promising performance of the ISP algorithms compared with
some well-known algorithms.

Index Terms—Sparse signal approximation, compressed sens-
ing, SL0, proximal algorithms, gradient projection, ADMM

I. INTRODUCTION

A. Sparse signal recovery

Solving least squares problems under some sparsity con-
straints has been extensively studied over the last decade.
This problem arises in, for example, sparse signal approx-
imation [1] and regression and variable selection [2], with
many applications, including compressed sensing (CS) [3],
image enhancement and compression [1], signal separation [4],
medical image reconstruction [5], and pattern recognition [6].

In sparse signal approximation or representation, given a
signal y ∈ Rm and a dictionary D ∈ Rm×n, which is a
collection of n atoms with n > m, the goal is to represent y
as a linear combination of the atoms of D in a parsimonious
way; i.e., by using as few atoms as possible. On the other hand,
in CS, it is intended to recover a sparse signal from a number
of linear measurements, far fewer than the signal dimension.
In both cases, the main task is to find the sparsest solution of
the underdetermined system of linear equations y = Dx. To

Copyright c© 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
This work has been supported by the Center for International Scientific Studies
and Collaboration (CISSC).

The authors are with the Electrical Engineering Department, Sharif
University of Technology, Tehran, Iran (e-mail: m.saadeghii@gmail.com;
mbzadeh@yahoo.com).

this end, the following problem has to be solved

(P0) : min
x
‖x‖0 s.t. y = Dx,

where ‖.‖0 is the so-called `0 (pseudo) norm, defined as
the number of non-zero entries. The `0 norm function is
highly discontinuous and non-differentiable, making the above
problem hard to solve1. To remedy this issue, alternative
sparsity promoting functions have been introduced. The most
well-known approximating function is the `1 norm, which is
the closest convex norm to the `0 function [1]. Using the `1
norm, the sparse signal recovery problem becomes

(P1) : min
x
‖x‖1 s.t. y = Dx·

In practical applications, where there is usually observation
noise or model mismatch, the noise-aware variants of the
above problems are used [8], [9], in which, the equality
constraint is replaced with ‖y−Dx‖2≤ ε, where ε is an upper-
bound on the noise power. We denote the robust versions of
P0 and P1 by P ε0 and P ε1 , respectively.

Numerous algorithms have been proposed for solving the
above-mentioned sparse recovery problems; see e.g. [10]. One
broad family of algorithms targets the P1 and P ε1 problems,
due to their convexity. Well-known examples of this group
include iterative shrinkage-thresholding (IST) [11], [12] and
its variants [13], [14], message passing algorithms [15], [16],
[17], gradient projection for sparse reconstruction (GPSR)
[18], spectral projection gradient method (SPGL1) [19], and
NESTA [20], to name only a few. Greedy algorithms, such as
orthogonal matching pursuit (OMP) [21], generalized OMP
(GOMP) [22], and compressive sampling matching pursuit
(CoSAMP) [23] are another family of algorithms. These
algorithms do not directly solve any optimization problem,
such as P0, but they sequentially select appropriate atoms out
of the dictionary that result in the lowest residual in sparsely
representing the target signal.

Although using the `1 norm leads to a convex problem,
which is favorable in optimization, it has been shown that
better results are achieved by using non-convex functions, such
as `p (pseudo) norms for 0 ≤ p < 1. For instance, in a recent
work, Zheng et al. [24] considered the following `p-penalized
least squares problem:

min
x

{
1

2
‖y −Dx‖22+λ‖x‖pp

}
(1)

and showed that in the noiseless setting and with an optimal
λ, all values of p ∈ [0, 1) have the same performance, which

1In fact, it has been shown that P0 is NP-hard [7], [1].

MBZadeh
Text Box
This is very close to the final official version of the paper.

2

is better than the choice p = 1. Moreover, it has been shown
that p = 0 and p = 1 outperform the other values of p for
very small and very large amounts of noise, respectively [24].

Examples of the algorithms that use other sparsity promot-
ing functions than the `1 norm include iterative re-weighted
least squares (IRLS) [25], iterative hard thresholding (IHT)
[26], and smoothed `0 (SL0) [27]. Specifically, SL0 approx-
imates the non-smooth `0 norm by a differentiable function
equipped with a smoothing parameter (denoted by σ in [27]).
A smaller smoothing parameter results in a better approxi-
mation of `0 norm. The general idea of SL0 is then to use
gradient-projection. That is, starting with an initial guess, the
solution is iteratively updated by one-step gradient descent of
the approximating function (gradient step) followed by pro-
jecting the result onto the admissible solution set (projection
step). Moreover, noting that the non-convexity of the smooth
function increases by decreasing the smoothing parameter, a
continuation trick is used, in which, the smoothing parameter
is gradually decreased to avoid undesired local minima while
getting close to the `0 norm.

A noticeable remark regarding the sparse recovery algo-
rithms is that, most of them, including IST, IHT, and IRL1
solve the regularized (unconstrained) versions of P ε0 or P ε1
given in (1). It can be shown that under appropriate selection
of λ, the unconstrained problems become equivalent to their
constrained counterparts. Although solving the unconstrained
problems are easier, there is no exact recipe for choosing the
regularization parameter λ. Moreover, in most practical ap-
plications, including signal denoising and compression, there
exists a good estimate of ε. These findings have motivated
some researchers to propose algorithms for directly solving P ε0
or P ε1 . SPGL1, NESTA, and SL0 are well-known examples of
these attempts.

B. Contributions

In this paper, we consider the constrained sparse recovery
problem, and by focusing on the SL0 algorithm, we make the
following contributions:

1) We provide new insights into SL0 by developing it
using the idea of proximal algorithms [28]. This leads
to a better understanding of the algorithm. Alongside,
we establish a convergence guarantee for the sequence
generated by SL0, corresponding to any fixed σ. As
a by-product, the convergence bound for the step-size
parameter in the gradient step of SL0 is derived. We
also give some other insights into the final value and
the decreasing sequence of the smoothing parameter σ.

2) It is shown that the gradient-projection approach used in
SL0 is in fact equivalent to sparsification (thresholding)-
projection, based on which, we derive a family of
iterative sparsification-projection (ISP) algorithms that
work as follows. Starting with an initial guess, the two
steps of sparsification and projection are repeatedly per-
formed. The sparsification step can be realized using the
well-known hard/soft thresholding functions, or by one-
step gradient descent of a smooth sparsity promoting
function. Moreover, the threshold is gradually decreased

along iterations, similar to the σ parameter in SL0. This
is actually the idea used in deterministic annealing (DA)
methods in optimization, where for solving a non-convex
problem, a sequence of sub-problems are solved; each
in a lower temperature than its previous one. Here, the
threshold plays the role of temperature in DA methods2.

3) Although a robust version of SL0 has already been
proposed in [30], we experimentally show that it is sub-
optimal and its performance deteriorates dramatically in
some situations. To address this issue, we propose a new
algorithm to implement the projection step of the ISP
algorithms.

C. Structure of the Paper

The rest of the paper is organized as follows. In Section II,
the notations used throughout the paper are introduced. This
section is then followed by a review on the basics of proximal
algorithms. In Section III, we review the main steps of the SL0
algorithm. Section IV presents our own works, including the
new derivation of SL0, and the ISP algorithms. Section V is
devoted to simulation results, in which, the ISP algorithms are
compared with some well-known algorithms, including GOMP
[22], expectation-maximization Gaussian-mixture approximate
message passing (EM-GM-AMP) [17], and NESTA [20].

II. PRELIMINARIES AND NOTATIONS

Throughout the paper, small and capital bold face characters
are used for vector- and matrix-valued quantities, respectively.
The notation domf denotes the domain of the function f .
The superscript T denotes matrix or vector transposition. The
identity matrix is denoted by I.

In what follows, the basics of the proximal algorithms are
reviewed from [28]. First note the following definitions:

Definition 1. A function f : domf −→ R is called Lipschitz
continuous if there exists a constant L > 0 such that

∀x, y ∈ domf : |f(x)− f(y)|≤ L|x− y|·

L is referred to as a Lipschitz constant of f . The smallest
constant is sometimes called the (best) Lipschitz constant. A
Lipschitz continuous function is almost everywhere differen-
tiable and has a bounded derivative [31].

Definition 2 ([28]). The proximal mapping (prox-operator) of
a convex function g : domg −→ R is defined as

proxg(x) , argmin
u∈domg

{
1

2
‖u− x‖22+g(u)

}
·

As an example, which will be used in the remaining of
the paper, consider g(x) = λ‖x‖1. Its prox-operator is the
so-called soft-thresholding function [1]:

proxg(x) = argmin
u

{
1

2
‖u− x‖22+λ‖u‖1

}
= T sλ (x),

2It is worth mentioning that this idea is called graduated non-convexity
(GNC) in the vision literature [29].

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

T
h

λ
(x)

T
s

λ
(x)

Fig. 1: Soft vs. hard thresholdings (λ = 1).

where the component-wise soft-thresholding function T sλ is
defined as

T sλ (x) ,

x− λ x > λ

0 |x|≤ λ
x+ λ x < −λ

.

Another important example is the `0 norm: g(x) = λ‖x‖0,
whose prox-operator leads to hard-thresholding [1]:

proxg(x) = argmin
u

{
1

2
‖u− x‖22+λ‖u‖0

}
= T h2λ(x),

where the component-wise hard-thresholding function T hλ is
defined as

T hλ (x) ,

{
x |x|>

√
λ

0 |x|≤
√
λ
.

These two thresholding functions are depicted in Fig. 1.
Now, we are ready to review the proximal algorithms. These

methods target the following minimization problem:

min
x

{
h(x) , f(x) + g(x)

}
, (2)

where, f : domf −→ R is a convex and continuously differ-
entiable function (hence its gradient is Lipschitz continuous),
and g : Rn −→ R is a non-smooth convex function. Let L
be the Lipschitz constant of ∇f . It can be shown that [31]

∀x, y ∈ domf : f(x) ≤ f̃(x,y),

where,

f̃(x,y) , f(y) +∇f(y)T (x− y) +
1

2µl
‖x− y‖22 (3)

is a quadratic upper-bound of f at y, and µl ∈ (0, 1/L]. The
idea of the proximal methods is then to iteratively minimize
h, with f being replaced with its upper-bound at the current
estimate. That is,

xk+1 = argmin
x

{
h̃(x) , f̃(x,xk) + g(x)

}
· (4)

This is very similar to majorization-minimization algorithms
[28], in which, for minimizing a gradient Lipschitz function
f , the following iterations are performed

xk+1 = argmin
x

f̄(x,xk),

where f̄(x,xk) is a so-called majorizing function of f ; a
convex upper-bound to f that is tight at xk, i.e., for all x,
f̄(x,xk) ≥ f(x) and f̄(xk,xk) = f(xk). The quadratic
upper-bound in (3) for µl ∈ (0, 1/L] is such a majorized
function. In proximal algorithms, the same trick is used, but
it is applied to only the differentiable part of the objective
function.

By simple calculations, it can be shown that (4) is equivalent
to

xk+1 = argmin
x

{
1

2
‖x− x̄k‖22+µlg(x)

}
, (5)

where x̄k , xk − µl∇f(xk). Comparing (5) with the defini-
tion of the proximal mapping, we have finally the following
iterative algorithm

xk+1 = proxµlg(xk − µl∇f(xk))·

This algorithm is shown to converge with rate O(1/k) when
a fixed step-size µl ∈ (0, 1/L] is used [32]. It is worth
mentioning that, as said in [28] and discussed in [32], this
algorithm actually converges for step-sizes smaller than 2/L,
not just 1/L. However, the method is no longer majorization-
minimization for step-sizes larger than 1/L. Notice also that
this method has been generalized to the case in which f is
non-convex [33].

III. SL0: A BRIEF REVIEW

A. Noise-free version

As said previously, the main idea of SL0 is to approximate
the non-smooth `0 norm with a differentiable function. We
denote this function by ‖·‖σ , and it is defined as

‖x‖σ, n−
n∑
i=1

exp(−x
2
i

σ2
)· (6)

This smooth approximation approaches the `0 norm function
as σ → 0. With this choice, the SL0 problem is

min
x
‖x‖σ s.t. y = Dx· (7)

The strategy of the SL0 algorithm to solve this problem
is to use gradient-projection as follows. Starting with an
initial estimate, which is chosen as the minimum `2 norm
solution of y = Dx, the estimate is iteratively updated
by performing one-step gradient descent on ‖x‖σ (gradient
step), and then projecting the result onto the admissible set
A , {x : y = Dx} (projection step). A key point is that the
non-convexity of the SL0 function (6) increases by decreasing
σ. Consequently, as σ → 0, the possibility of getting trapped
into unwanted local minima is increased. To overcome this
problem, in SL0 a sequence of sub-problems of the form (7)
is solved, in which, σ is gradually decreased and the final
solution of each sub-problem is used as a starting point for the
next one. This idea is known as warm-starting or continuation
in homotopy methods [34].

The SL0 algorithm is summarized in Algorithm 1. The step-
size of the gradient descent is decreased along the outer-loop
iterations as µσ , µ · σ2, in which, µ is a constant scaling
factor with a default value of µ = 1 [35]. Moreover, σ0 and

4

Algorithm 1 SL0
Require: y, D, σ0, σmin, 0 < c < 1, µ, I
Initialization: x = D†y, σ = σ0, µσ = µ · σ2

while σ > σmin do
for i = 1, 2, . . . , I do

x̃ = x− µσ∇‖x‖σ . Gradient step
x = x̃−D†(Dx̃− y) . Projection step

end for
σ ← c · σ
µσ = µ · σ2

end while
Output: x

σmin are the initial and the final values of σ, respectively, c is a
decreasing factor for the sequence of σ’s, I is the total number
of iterations of the inner-loop corresponding to a particular
value of σ, and D† denotes the Moore-Penrose pseudoinverse
of D.

B. Robust version

The general form of the SL0 problem, which is robust
against noise, is

min
x
‖x‖σ s.t. ‖y −Dx‖2≤ ε, (8)

where ε > 0 is an upper-bound on the noise power. To solve
this problem, Eftekhari et al. [30] proposed to modify the
projection step of the noise-free SL0 (Algorithm 1) in the
following way. Let x̃ be the solution returned by the gradient
step, and

Aε , {x : ‖y −Dx‖2≤ ε} · (9)

Then, if x̃ /∈ Aε, it is projected onto A = {x : y = Dx}.
Otherwise, it remains unchanged. As demonstrated in [30],
this new algorithm is more robust than Algorithm 1.

IV. OUR WORK

In this section, our contributions are presented. First, we
revisit the SL0 algorithm by formulating the SL0 problem
as the general form of a proximal problem, and deriving the
SL0 algorithm using the proximal approach. In this way, the
exact form of the step-size, µσ , involved in SL0 is derived.
Moreover, using the recent works on non-convex proximal
problems, the convergence of the inner-loop iterations in
Algorithm 1 is established. Second, inspired by the mechanism
of SL0, we propose a general family of algorithms, which we
call iterative sparsification-projection (ISP).

A. SL0: revisited

The general form of the SL0 problem given in (8) can be
written in the following equivalent form:

min
x

{
Fσ(x) , ‖x‖σ+Iε(x)

}
, (10)

where Iε is the indicator function of Aε defined as

Iε(x) ,

{
0 x ∈ Aε
+∞ x /∈ Aε

.

Now, define fσ(x) , ‖x‖σ and g(x) , Iε(x). Then, problem
(10) becomes in the form of (2), except for the fact that here
fσ is non-convex, but it is gradient Lipschitz, as will be shown
by Lemma 1 below. On the other hand, since Aε is convex,
it follows that g is convex [36]. As a result, these functions
meet the requirements of the general proximal algorithms
presented in [37]. The Lipschitz constant of ∇fσ is given by
the following lemma:

Lemma 1. The function fσ(x) = ‖x‖σ , as defined in (6), is
gradient Lipschitz with constant L = 2

σ2 .

Proof: See Appendix A.

So, the iterative proximal algorithm for solving (10) is

xk+1 = proxµg(xk − µσ∇fσ(xk))· (11)

Note that since g is an indicator function, its prox-operator is
simply the projection onto Aε [28]:

proxg(x) = argmin
u∈Aε

‖u− x‖22·

The overall algorithm is the same as the SL0 algorithm
outlined in Algorithm 1, except for the projection step which is
now with respect to Aε. For the convergence of the iterations
in (11), we have the following theorem:

Theorem 1. Let {xk} be the sequence generated by (11).
Then, the corresponding objective values {Fσ(xk)} in (10)
are monotonically decreasing. Moreover, the sequence {xk}
converges to a stationary point of Fσ .

Proof : See Appendix B.

An important result of the proof of the above theorem is the
following guarantee for the convergence of the SL0 algorithm.

Corollary 1. If µσ ∈ (0, σ2/2], or equivalently, µ ∈ (0, 1/2]
then it is guaranteed that the SL0 algorithm stated in Algo-
rithm 1 converges to a stationary point of Fσ .

So, the step-size has the same monotonicity behavior as the
smoothing parameter σ. In other words, as also said in [27], at
initial iterations, where we are far from the true solution, larger
steps are taken, and as the algorithm proceeds (σ decreases),
the steps become smaller and smaller until the desired solution
is reached. It is worth mentioning that, although the default
value for the step-size scaling factor in [35]3 is µ = 1, our
simulations reveal that using µ = 1/2 (the maximum value
to insure having a majorization-minimization like algorithm)
leads to much better performance.

B. Iterative Sparsification-Projection (ISP)

Note that the gradient step in SL0 can be written as (µ =
1/2)

x←− T 0
σ (x) , x · (1− exp(−x

2

σ2
)),

where, due to the separability of the operation, only the scalar
case has been considered. The sparsification function T 0

σ along

3Note that, in [35], due to its different definition of the gradient term, 2µ
has been defined as the scaling factor. So, its default value is actually 2.

5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

T
0
σ (x)

T
h

λ
(x)

x

Fig. 2: SL0 sparsification vs. hard thresholding.

with the hard-thresholding function is plotted in Fig. 2. This
figure describes the shrinkage behavior of the gradient step in
SL0. Large enough inputs (compared to the σ parameter) incur
no shrinkage, as in hard thresholding, while small enough
ones are shrunk toward zero, hence promoting the sparsity.
However, the SL0 shrinkage operation is not as crisp as hard
thresholding.

Let us give another example. Consider the following scalar
function

f1σ(x) =
x2√

x2 + σ2
· (12)

When applied element-wise on a vector x as F 1
σ (x) ,∑

i f
1
σ(xi), F 1

σ approaches the `1 norm when σ → 0. For
simplicity, we call F 1

σ smoothed `1 (SL1) norm. Using the
same approach as in the proof of Lemma 1, it is straight-
forward to show that f1σ is gradient Lipschitz with constant
L = 2/σ. The sparsification function T 1

σ (x) = x−µσ∇f1σ(x)
with µσ = 1/L, along with the soft-thresholding function is
plotted in Fig. 3. As can be seen, T 1

σ (x) well approximates
the soft-thresholding operation. The relation between the σ
parameter in T 1

σ and the threshold λ in soft-thresholding can
be found by investigating the behaviors of the two functions
at infinity: x− µσ = x− λ so λ = µσ = σ/2.

These observations are not accidental. Indeed, a property of
prox-operators says that: the prox-operator of a differentiable
function f can be interpreted as a kind of gradient descent
step for f [28]:

proxµf (x) ≈ x− µ∇f(x)· (13)

Now, let f(x) = |x|. This function is not differentiable, so
the above relation cannot be utilized. However, if we use the
differentiable approximation of f , i.e., the function f1σ(x), in
the right-hand side of (13), we expect the relation to hold
with a good precision, especially for a small enough σ. In
other words,

proxµσf (x) = T sµσ (x) ≈ x− µσ∇f1σ(x),

Again, the quality of this approximation is evident from
Fig. 3. So, one-step gradient descent of the differentiable
approximation of the `1 norm acts nearly like soft-thresholding
with the threshold being equal to the step-size. The same holds

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

T
1
σ (x)

T
s

λ
(x)

Fig. 3: SL1 sparsification vs. soft thresholding.

Algorithm 2 ISP
Require: y, D, T ∗τ (.), τ0, τf , 0 < c < 1, I
Initialization: x = D†y, τ = τ0
while τ > τf do

for i = 1, 2, . . . , I do
x̃ = T ∗τ (x) . Sparsification step
x = argminu∈Aε‖u− x̃‖22 . Projection step

end for
τ ← c · τ

end while
Output: x

for hard-thresholding. The relation between the thresholding
parameter and the step-size is also like before: λ = µσ .

Motivated by the above discussion, a general family of
algorithms, dubbed iterative sparsification-projection (ISP), is
introduced that follow a similar approach as in SL0. This
framework is summarized in Algorithm 2, in which, T ∗τ de-
notes a thresholding function, which can be one-step gradient
descent of a smooth sparsity promoting function, e.g. (6), or
prox-operator of a non-smooth sparsity promoting function,
e.g. T sλ and T hλ . Moreover, τ0 and τf are the initial and the
final values of the threshold τ , 0 < c < 1 is a decreasing factor
for τ , and I denotes the total number of inner-loop iterations
corresponding to a particular value of τ .

Depending on the sparsification function used in Algo-
rithm 2, different instances of the ISP algorithms with compet-
ing performances can be realized. Specifically, ISP-Hard, ISP-
Soft, ISP-`0, and ISP-`1 correspond to T hτ , T sτ , T 0

τ , and T 1
τ

sparsifications, respectively. Gradient-based algorithms such as
ISP-`0 have an additional step-size parameter to tune, while
proximity-based algorithms do not have such a free parameter.

Remark 1. For the initialization of SL0, it is proposed in
[27] to start with the minimum `2 norm solution. However, for
the general ISP algorithms, the zero initialization has the same
effect, regardless of the type of sparsification. This is because
that, x = 0 is not affected by the sparsification step in the first
iteration, while the result after applying the projection step is
exactly the minimum `2 norm solution. The threshold in the
next iteration can be set to τ = 5 · maxi |xi|, as suggested
in [27]. The threshold is then decreased along the outer-loop
iterations similar to the σ parameter in SL0. The final value of

6

20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

(a)
20 40 60 80 100 120 140 160 180 200

−3

−2

−1

0

1

2

3

x
τ

(b)
20 40 60 80 100 120 140 160 180 200

−3

−2

−1

0

1

2

3

x
τ

(c)

20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

x
τ

(d)
20 40 60 80 100 120 140 160 180 200

−3

−2

−1

0

1

2

3

x
τ

(e)
20 40 60 80 100 120 140 160 180 200

−3

−2

−1

0

1

2

3

x
τ

(f)

Fig. 4: A few iterations of the ISP-Hard algorithm in recovery of a 25-sparse Bernoulli-Gaussian signal of length n = 200
from m = 80 Gaussian measurements. The original signal is depicted in (a), while (b)-(f) show the progress of the algorithm
along iterations. The threshold level for each iteration is drawn as two horizontal red lines.

the threshold depends on the minimum absolute value of the
non-zero entries of the true solution. About this final value, it is
said in [27] that “In applications where the zeros in the sparsest
x are exactly zero, σ can be decreased arbitrarily.” However,
in practice, a very small σ does not affect the progress of the
algorithm, because, when σ is small enough, the sparsification
function becomes an identical map: T 0

σ (x) ≈ x.
Remark 2. The decreasing behavior of the threshold makes

the ISP algorithms similar to deterministic annealing (DA)
approach for solving non-convex problems [38]. DA is inspired
by statistical physics, where there is an annealing process
that avoids many shallow local minima of a specified cost
by gradually decreasing the temperature. Similarly, DA algo-
rithms avoid undesired local minima by gradually decreasing a
problem parameter, analogues to the temperature in statistical
physics processes. In ISP, the threshold plays the role of
temperature in DA methods.

When there is a limitation of fixed number of iterations for
the algorithm, the threshold sequence can be set as

τ(j) = τ0(
τf
τ0

)
j
J ,

where j denotes the (outer-loop) iteration index, and J is the
total number of iterations. In this way, the threshold starts
(approximately) at τ0 and finishes at τf .

Figure 4 shows the solutions of a few iterations of the
ISP algorithm using hard-thresholding (ISP-Hard) for recon-
structing a 25-sparse Bernoulli-Gaussian signal of length 200
from 80 random measurements. It is observed that as the

threshold decreases along the iterations, the estimates’ quality
is improved.

C. Sparse recovery in presence of noise

In the projection step of the ISP algorithms, the following
problem has to be solved:

min
x

1

2
‖x− x̃‖22 s.t. ‖y −Dx‖2≤ ε, (14)

where x̃ is the result of the sparsification step, and ε denotes
an error tolerance. The idea of Eftekhari et. al explained in
Subsection III-B for solving the robust version of SL0 is
not a good method, especially when m is close to n. We
will see this behavior in Section V. Therefor, we propose an
alternative solution that has better performance. To this aim,
we first consider the special case of D being a tight-frame, i.e.,
DDT = αI for some α > 0, and then we study the general
case.

1) Tight-frame D: To solve (14), first the Lagrangian
function is formed as

L(x, λ) =
1

2
‖x− x̃‖22+λ(‖y −Dx‖22−ε2), (15)

in which, λ is the Lagrangian multiplier. Karush-Kuhn-Tucker
(KKT) conditions are used to derive the following optimality
conditions: x∗ = (I + λ∗ ·DTD)−1(x̃ + λ∗ ·DTy)

‖y −Dx∗‖22= ε2

λ∗ ≥ 0
(16)

7

This leads to the following nonlinear equation for λ∗:

‖y −D(I + λ∗DTD)−1(x̃ + λ∗DTy)‖22= ε2· (17)

This equation does not have a closed-form solution in general,
but in the special case where D is a tight-frame, we can
find a closed-form solution. Tight-frame matrices are often
of interest in compressed sensing applications for their fast
computations. For instance, submatrices of the discrete Fourier
transform (DFT), the discrete cosine transform (DCT), the
Hadamard transform, and the noiselet transform are tight-
frames [20]. Moreover, it has been shown in [39] that unit-
norm tight-frames (tight-frames that have unit-norm columns)
lead to good mean squared error (MSE) performance in
compressed sensing. Using the tight-frame assumption for D
and applying the Woodbury matrix inversion lemma [40], the
matrix inversion term in x∗ can be rewritten as

(I + λ∗DTD)−1 = I− λ∗

(1 + λ∗α)
DTD, (18)

which by inserting into (17) and solving for λ∗, while consid-
ering DDT = αI, leads to the following formulas:{

λ∗ = 1
α max(‖y−Dx̃‖2

ε − 1, 0)

x∗ = x̃ + λ∗

1+λ∗αDT (y −Dx̃)
. (19)

2) General D: In the general case, we use alternating di-
rection method of multipliers (ADMM) [41] to solve problem
(14). Toward this goal, consider the following equivalent form
of (14)

min
x,z

1

2
‖x− x̃‖22 s.t. ‖z‖2≤ ε, z = y −Dx, (20)

in which z is an auxiliary variable. Then, the augmented
Lagrangian function of the above problem is formed as4

L(x, z,λ) =
1

2
‖x−x̃‖22−λ

T (z−y+Dx)+
γ

2
‖z−y+Dx‖22,

(21)
in which, γ > 0 is a penalty parameter which controls the
convergence rate of the algorithm. This function is iteratively
minimized over x and z, in a Gauss-Seidel manner, followed
by update of the Lagrange multiplier vector λ. The update
problems are as follows

zk+1 = argminz: ‖z‖2≤ε L(xk, z,λk)

xk+1 = argminx L(x, zk+1,λk)
λk+1 = λk − γ(zk+1 − y + Dxk+1)

. (22)

It can be easily shown that the z-update problem is

zk+1 = argmin
z: ‖z‖2≤ε

1

2
‖z− y + Dxk −

1

γ
λk‖22, (23)

which admits the following solution

zk+1 = PAz(y −Dxk +
1

γ
λk), (24)

where, PAz(.) is the projection onto Az = {z : ‖z‖2≤ ε}.
That is,

PAz(z) ,

{
z z ∈ Az

ε
‖z‖2 · z oth.

4Note that the constraint ‖z‖2≤ ε has not been included in the Lagrangian
function. However, when minimizing over z, this constraint will be considered.

Algorithm 3 Projection onto Aε using ADMM
Require: y, D, x̃, γ > 0
Initialization: x = x̃, λ = 0, set A = (I + γDTD)−1

while ‖y −Dx‖2> ε do
z = PAz(y −Dx + 1

γλ)

x = A(x̃ + γDT (y − z + 1
γλ))

λ = λ− γ(z− y + Dx)
end while
Output: x

The update problem for x has also the following closed-form
solution:

xk+1 = (I + γDTD)−1(x̃ + γDT (y− zk+1 +
1

γ
λk))· (25)

The final projection algorithm is summarized in Algorithm 3.

V. SIMULATION RESULTS

A number of numerical experiments on recovery of sparse
and compressible signals from their compressed linear mea-
surements (in the compressed sensing application), and sparse
approximation of natural image patches were conducted to
evaluate the performance of the ISP algorithms, and to
compare them with some well-known algorithms, including
GOMP5 [22], EM-GM-AMP6 [17], and NESTA7 [20]. GOMP
is a generalization of OMP, in the sense that “multiple”
atoms are picked up per iteration. As demonstrated in [22],
GOMP has a faster convergence and a better performance
than OMP. The family of approximate message passing (AMP)
algorithms are simple but efficient extensions of iterative
shrinkage-thresholding algorithms [11], and are inspired by
belief propagation in graphical models [15]. In particular, EM-
GM-AMP is a message passing algorithm that first models the
distribution of the signal’s non-zero coefficients as a Gaussian
mixture, and then learns the model parameters through expec-
tation maximization, using generalized AMP (GAMP) [16] to
implement the expectation step. The EM-GM-AMP algorithm
shows state-of-the-art performance in compressed sensing,
as confirmed by the simulations performed in [17]. Finally,
NESTA, is an `1 norm-based sparse recovery algorithm that
directly solves P ε1 using Nesterov’s smoothing idea [20]. For
all the algorithms, their available MATLAB packages were
used.

To measure the performances of the algorithms, the follow-
ing quantities were used:
• The normalized mean squared error (NMSE) between the

true sparse signal x∗ and the estimated one x̂:

NMSE(x∗, x̂) ,
‖x∗ − x̂‖2
‖x∗‖2

·

• The Gini index (GI) [42]. For a discrete signal x, GI(x)
is a robust measure of the sparsity of x. In contrast to

5http://islab.snu.ac.kr/paper/gOMP.zip
6http://www2.ece.ohio-state.edu/∼schniter/EMGMAMP/EMGMAMP.html
7http://statweb.stanford.edu/∼candes/nesta/

8

conventional norm measures, such as `0 and `1, GI is
normalized between 0 and 1, with 0 corresponding to the
least sparse signal comprising from equal energy entries,
and 1 for the most sparse signal with all of its energy
concentrated in only one entry. Moreover, GI is scale
invariant and independent of the length of the signal. For
a signal x = [x1, · · · , xn]T , define its re-ordered version
as x̄ = [x̄1, · · · , x̄n] where |x̄1|≤ |x̄2|≤ · · · |x̄n|. The GI
of x is then defined as

GI(x) , 1− 2

‖x‖1

n∑
i=1

n− i+ 1/2

n
· |x̄i|.

Moreover, to compare the computational complexities of the
algorithms, their runtimes were used as a rough measure. Our
simulations were performed on a 64 bit Windows 7 operating
system with 8 GB RAM and an intel core i7 CPU.

The parameters of the algorithms were set as follows.
For the ISP algorithms, τ0 = 5 maxi|x0i |, where x0 is the
minimum `2 norm solution of y = Dx, which as explained
earlier is the result of the second iteration of the algorithms
initialized by the zero signal, τf = 5 × 10−4, c = 0.9, and
I = 3. In addition, the penalty parameter γ in Algorithm 3 was
set to 0.4. For GOMP, the number of selected atoms in each
iteration was set to N = 4. Moreover, the algorithm stopped
whenever the iteration number reached a maximum, which we
set to K = m, or the `2 norm of the residual fell below a given
threshold determined by the noise level (for more details, see
Table I of [22]). For EM-GM-AMP, the parameters suggested
in [17] were used. Finally, in NESTA, except for the final value
of the smoothing parameter that was set to µf = 10−5, the
remaining parameters were set to their default values. These
parameters are fixed throughout the simulations.

The rest of this section is organized as follows. In Sub-
section V-A, the simulation results demonstrating the perfor-
mances of the ISP algorithms, the effect of the step-size scaling
factor µ in SL0, and the performances of Eftekhari’s robust
projection and Algorithm 3 in noisy settings, are presented.
Then, Subsection V-B compares the performances of ISP-
Hard, GOMP, EM-GM-AMP, and NESTA.

A. Comparison of the ISP algorithms

In this subsection, the results of comparing ISP-Hard,
ISP-Soft, ISP-`0, and ISP-`1 are reported. As a common
practice in the literature, synthetically generated data were
used to examine the performances of the algorithms in com-
pressed sensing. To this end, the measurement matrix D was
generated by randomly and independently choosing its entries
from the normal distribution N (0, 1). The sparse signal x, of
length n = 1000 and with s ∈ {50, 100, 150, 200} non-zero
entries, was generated using a Bernoulli-Gaussian distribution
as follows. The locations of the non-zero entries were sampled
uniformly at random, and their values were selected from
N (0, 1). The measurement vector y, of length m = 400, was
then generated as y = Dx + e, where e is a Gaussian noise
vector with N (0, σ2

noise) distributed entries. Each experiment
was repeated 500 times and the average results were reported.

50 100 150
−160

−150

−140

−130

−120

−110

−100

−90

−80

s

N
M
S
E

(d
B
)

µ = 1
µ = 1/2

Fig. 5: NMSE (dB) of the ISP-`0 algorithm vs. the number of
non-zero entries, s, in recovery of Bernoulli-Gaussian signals
from Gaussian measurements for µ = 1 and µ = 1/2 (m =
400 and n = 1000).

20 40 60 80 100
0

0.2

0.4

0.6

0.8

Iteration

‖x
k
−
x
∗
‖ 2
/‖
x
∗
‖ 2

ISP-Hard
ISP-Soft
ISP-ℓ0
ISP-ℓ1

(a) s = 50

20 40 60 80 100
0

0.2

0.4

0.6

0.8

Iteration

‖x
k
−
x
∗
‖ 2
/‖
x
∗
‖ 2

ISP-Hard
ISP-Soft
ISP-ℓ0
ISP-ℓ1

(b) s = 100

20 40 60 80 100
0

0.2

0.4

0.6

0.8

Iteration

‖x
k
−
x
∗
‖ 2
/‖
x
∗
‖ 2

ISP-Hard
ISP-Soft
ISP-ℓ0
ISP-ℓ1

(c) s = 150

20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

Iteration

‖x
k
−
x
∗
‖ 2
/‖
x
∗
‖ 2

ISP-Hard
ISP-Soft
ISP-ℓ0
ISP-ℓ1

(d) s = 200

Fig. 6: Normalized errors vs. iterations of the ISP algorithms in
noiseless recovery of Bernoulli-Gaussian signals from Gaus-
sian measurements with different number of non-zeros, s. For
this experiment, m = 400 and n = 1000.

1) The effect of µ: Here, the performances of ISP-`0 for
µ = 1 suggested in [35], and µ = 1/2, which is proposed in
this paper, are compared. Figure 5 shows the NMSE values
(in dB) versus the number of non-zero entries of x. As can be
clearly seen, the choice µ = 1/2 corresponding to the upper-
bound of being a majorization-minimization algorithm leads
to much better results than µ = 1. Therefor, we used µ = 1/2
in ISP-`0 and ISP-`1 for the simulations.

2) Convergence behaviors: The normalized errors’ evo-
lutions of the ISP algorithms versus iterations for different
sparsity levels and σnoise = 0 are compared in Fig. 6. The final
values of the normalized errors are also reported in Table I.
As demonstrated, ISP-Hard has the best convergence rate, and
except for large values of s, its final normalized errors are
the lowest among the others. Notice also that, as expected,

9

ISP-Soft and ISP-`1 have poor performances for large s.
The sparsity of the solutions (measured by GI) over iter-

ations are shown in Fig. 7 for s = 150. As illustrated, the
sparsity increases along the iterations for all the algorithms.
Again, the `1 norm-based algorithms achieved less sparse
solutions compared to the `0 norm-based ones, which was
expected. From the computational complexity aspect, all the
algorithms had nearly the same runtimes.

TABLE I: NMSE values for the ISP algorithms in noiseless
recovery of Bernoulli-Gaussian signals of length n = 1000
from their m = 400 linear Gaussian measurements.

Algorithm s = 50 s = 100 s = 150 s = 200

ISP-Hard 3.4623e-08 1.9449e-08 4.6082e-07 0.4105
ISP-`0 9.1372e-08 6.3223e-07 1.5820e-06 0.3095

ISP-Soft 1.7035e-04 0.0206 0.2312 0.4219
ISP-`1 2.1137e-04 0.0214 0.2294 0.4191

10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Iteration

G
in
i
in
d
e
x

True
ISP-Hard
ISP-Soft
ISP-ℓ0
ISP-ℓ1

Fig. 7: Gini index vs. iterations of the ISP algorithms in
noiseless recovery of Bernoulli-Gaussian signals of length
n = 1000 that have s = 150 non-zero entries, from their
m = 400 linear Gaussian measurements.

3) Robust recovery: To compare our proposed robust pro-
jection (Algorithm 3) with that of Eftekhari et al. [30], we
conducted an experiment, in which, the sparse signal had 50
non-zero entries out of 1000, the noise standard deviation was
σnoise = 0.005, and the number of measurements, m, was
variable. Figure 8 shows the results for ISP-`0. It is observed
that the performance of Eftekhari’s method deteriorates as
the number of measurements increases. However, Eftekhari’s
method has a lower computational complexity. It is also no-
ticeable that the two ideas have similar performances when the
measurement matrix is highly overcomplete, with Eftekhari’s
method being faster. This suggests to use Eftekhari’s projection
for these situations. This behavior is mainly due to the prop-
erties of the measurement matrix, e.g., its rank and condition
number, and will be explored further in Subsection V-B-2.

B. Comparison with GOMP, EM-GM-AMP, and NESTA

In this subsection, the ISP-Hard algorithm, which showed a
better performance than the other ISP algorithms, is compared

100 200 300 400 500 600 700 800 900 1000
−50

−40

−30

−20

−10

0

10

m

N
M
S
E

(d
B
)

Eftekhari’s idea
Proposed

(a)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

m

R
u
n
ti
m
e
(s
ec
)

Eftekhari’s idea
Proposed

(b)

Fig. 8: (a) NMSE (dB) and (b) runtimes (sec) of ISP-
`0 algorithm equipped with Eftekhari’s projection and our
proposed one (Algorithm 3) vs. the number of Gaussian
measurements. The underlying signal is Bernoulli-Gaussian of
length n = 1000 with s = 50 non-zeros.

with GOMP, EM-GM-AMP, and NESTA in different scenar-
ios. First, we present the phase transitions (see [15]) of the
algorithms. A phase transition describes the 2D success/failure
regions of an algorithm in terms of the sparsity and the
undersampling ratios, defined as ρ , s/m and δ , m/n,
respectively. Next, the performances of the algorithms are
compared for compressible signals, different measurement
matrices, and sparse approximation of natural image patches.

1) Phase transition: To construct the phase transition
diagrams, the sparsity–undersampling parameter space was
divided into a 40 × 60 grid within the region specified by
δ ∈ [0.05, 0.95] and ρ ∈ [0.01, 0.99]. The matrix D and the
sparse signal x were generated in the same way as described in
Subsection V-A. A recovery was declared successful if NMSE
≤ 0.001. At each grid point, the success rates were computed
over 100 realizations. Phase transition diagrams for different
algorithms are shown in Fig. 9, while the phase transition
curves (PTCs) that separate the regions with success rates
above and below 0.5 are illustrated in Fig. 10. This figure also
includes the theoretical LASSO PTC [15]. As depicted, EM-
GM-AMP has the highest PTC, meaning that, it successfully
recovers Bernoulli-Gaussian signals in a wider region of the
δ−ρ space than the other algorithms. Moreover, ISP-Hard and
GOMP have similar performances for small δ and ρ, while
for other values, ISP-Hard outperforms GOMP. The empirical
performance of NESTA is also comparable to the theoretical
LASSO, except for small δ and ρ. Figure 11 compares the
averaged runtimes of the algorithms versus both the sparsity
ratio ρ and the undersampling ratio δ. As demonstrated, while
ISP-Hard has an almost constant runtime over various sparsity
levels, it takes more times for the other algorithms to recover
less sparse signals. In terms of the number of measurements m,
however, almost all the algorithms have increasing runtimes
with m. In addition, ISP-Hard has the lowest runtime in
average.

2) Different measurement matrices: Similar to [43], the
recovery performances of the algorithms are compared under
the following four types of the measurement matrix D:

• Sparse: A Gaussian matrix generated from N (0, 1) that
a portion of its entries were uniformly set to zero.

• Non-zero mean: A matrix generated from a non-zero

10

δ

ρ

0.1 0.3 0.5 0.7 0.9

 0.9

 0.7

 0.5

 0.3

 0.1

0

0.2

0.4

0.6

0.8

1

(a) ISP-Hard
δ

ρ

0.1 0.3 0.5 0.7 0.9

 0.9

 0.7

 0.5

 0.3

 0.1

0

0.2

0.4

0.6

0.8

1

(b) GOMP

δ

ρ

0.1 0.3 0.5 0.7 0.9

 0.9

 0.7

 0.5

 0.3

 0.1

0

0.2

0.4

0.6

0.8

1

(c) EM-GM-AMP
δ

ρ

0.1 0.3 0.5 0.7 0.9

 0.9

 0.7

 0.5

 0.3

 0.1

0

0.2

0.4

0.6

0.8

1

(d) NESTA

Fig. 9: Phase transitions for noiseless recovery of Bernoulli-
Gaussian signals from Gaussian measurements, which indicate
successful recovery rates, in terms of the sparsity ratio ρ ,
s/m and the undersampling ratio δ , m/n, for n = 1000.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

δ

ρ

ISP-Hard
GOMP
EM-GM-AMP
NESTA
theoretical LASSO

Fig. 10: Phase transition curves (PTCs) that divide the phase
transition diagrams depicted in Fig. 9 into two regions corre-
sponding to success rates above and below 0.5. The theoretical
LASSO PTC [15] is also included for comparison.

mean, unit-variance Gaussian distribution.
• Ill-conditioned: A matrix D with singular value decom-

position (SVD) as D = UΣVT that the diagonal entries
of Σ are Σii = κ(m−i)/m, where κ > 1 is the condition
number of D.

• Low-rank: A matrix D = 1
mUm×rV

T
r×n, where r is the

rank of D, and the entries of U and V are drawn from
N (0, 1).

We considered recovery of Bernoulli-Gaussian sparse sig-
nals of length 1000 with 150 non-zero entries, from 500 noisy
measurements (σnoise = 0.0005) taken with measurement
matrices of the above four types. Furthermore, except for

0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

ρ

R
u
n
ti
m
e
(s
ec
)

ISP-Hard
GOMP
EM-GM-AMP
NESTA

(a)

0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

δ

R
u
n
ti
m
e
(s
ec
)

ISP-Hard
GOMP
EM-GM-AMP
NESTA

(b)

Fig. 11: Runtimes of different algorithms, for noiseless recov-
ery of Bernoulli-Gaussian signals, in terms of: (a) the sparsity
ratio ρ , s/m, and (b) the undersampling ratio δ , m/n,
with n = 1000.

the sparse type, we set optEM.robust_gamp=true in
EM-GM-AMP, which makes the algorithm more robust to
problematic measurement matrices including low-rank, ill-
conditioned, and non-zero mean.

The averaged NMSEs (dB) over 100 realizations are illus-
trated in Fig. 12. In this figure, ISP-Hard1 and ISP-Hard2
denote the ISP-Hard algorithm equipped with Eftekhari’s
robust projection and Algorithm 3, respectively. As shown in
this figure, EM-GM-AMP is very sensitive to ill-conditioned
and non-zero mean measurement matrices. Moreover, GOMP
does not work well for low-rank and ill-conditioned matrices,
while it has close performances to ISP-Hard2 for other types
of matrices. Another noticeable point is that, ISP-Hard1 has
inferior performances to ISP-Hard2, especially for low-rank
product matrices, as confirmed by Fig. 12 (d).

0.2 0.4 0.6 0.8 1
−60

−55

−50

−45

−40

−35

−30

N
M
S
E

(d
B
)

ISP-Hard1
ISP-Hard2
GOMP
EM-GM-AMP
NESTA

(a) Sparsity ratio
20 40 60 80 100

−80

−60

−40

−20

0

N
M
S
E

(d
B
)

(b) Condition number

10
−4

10
−3

10
−2

10
−1

10
0

−70

−60

−50

−40

−30

−20

−10

0

N
M
S
E

(d
B
)

ISP-Hard1
ISP-Hard2
GOMP
EM-GM-AMP
NESTA

(c) Mean
0.4 0.5 0.6 0.7 0.8 0.9 1

−60

−50

−40

−30

−20

−10

0

10

N
M
S
E

(d
B
)

(d) Rank ratio (r/m)

Fig. 12: NMSEs (dB) in recovery of Bernoulli-Gaussian
signals with measurement matrix D of types: (a) sparse, (b) ill-
conditioned, (c) non-zero mean, and (d) low-rank. The signal
length is n = 1000, with s = 150 non-zeros, and the number
of measurements is m = 500.

3) Compressible signals: A signal x ∈ Rn is called
compressible if its sorted coefficients {x̄i} exhibit a power-law

11

decay as |x̄i|. R · i−d, where R > 0, and d > 0 is the decay
rate [44]. A set of probability distributions were described in
[44] whose i.i.d. realizations result in compressible signals.
Generalized Pareto distribution (GPD) is such a compressible
signal prior, whose probability density function (pdf) is given
by

P (x; q, λ) =
q

2λ
(1 +

|x|
λ

)−(q+1)· (26)

It has been shown in [44] that R = λn1/q and d = 1/q,
and that, wavelet coefficients of natural images can be well
approximated by this distribution.

We chose GPD, and used the MATLAB code available in
‘http://dsp.rice.edu/randcs’ to produce compressible signals of
length n = 1000. The scaling parameter λ was set to 1, and
the compressibility parameter q was changed from 0.1 to 1.5.
The performances of different algorithms were then evaluated
in recovery of compressible signals from a number of m = 500
Gaussian measurements.

Figure 13 compares the averaged NMSEs (dB) (over 100
realizations) versus q, where GI values corresponding to each q
are also plotted. As can be seen, GOMP has the best recovery
performance among the others. Also, ISP-Hard outperforms
EM-GM-AMP. However, all the algorithms fail to successfully
recover less compressible signals.

0 0.5 1 1.5
−150

−130

−110

−90

−70

−50

−30

−10

q

N
M

S
E

 (
d
B

)

0 0.5 1 1.5
0.7

0.75

0.8

0.85

0.9

0.95

1

G
in

i
in

d
e
x

ISP-Hard
GOMP
EM-GM-AMP
NESTA
Gini index

Fig. 13: NMSEs (dB) and GIs in recovery of compressible
signals vs. the compressibility parameter q. The signal length
is n = 1000, and a total of m = 500 measurements were
taken.

4) Sparse approximation of image patches: Here, we con-
sider a sparse decomposition problem, where the ability of the
algorithms in sparsely approximating natural image patches
within a certain error bound are compared. To this end,
1000 blocks of size 8 × 8 from some well-known images,
including Lena, Barbara, Cameraman, and House were ran-
domly extracted. The blocks were then converted to 64-
dimensional vectors. The dictionaries over which the blocks
were decomposed are 64 × 64 and 64 × 256 DCT. The
approximation error’s upper bound was set to ε = 0.005.
For EM-GM-AMP, in addition to the suggested parameters
in [17], we set optEM.learn_noisevar=false and
optEM.noise_var=ε2.

TABLE II: Decomposition errors and GIs in approximating
natural 8×8 image blocks over DCT dictionaries of sizes 64×
64 and 64× 256, with an error constraint of 0.005. For each
algorithm, top cells denote decomposition errors and bottom
cells correspond to GIs.

Algorithm 64× 64 64× 256

ISP-Hard1 0.0042± 7.9350E− 04 0.0049±8.3817E− 05
0.6983±0.0986 0.9500±0.0154

ISP-Hard2 0.0050±3.2035E− 05 0.0050±1.5489E− 05
0.7139±0.1003 0.9513±0.0151

GOMP 0.0044±0.00195 0.0047±2.0694E− 04
0.7123±0.1027 0.9507±0.0149

EM-GM-AMP 0.0062±0.0049 22.8665±30.4031
0.6991±0.0901 0.8693±0.0805

NESTA 0.0050±2.3100E− 09 0.0050±8.4619E− 10
0.7009±0.0975 0.9133±0.0283

The averaged approximation errors and GIs of the rep-
resentation vectors are reported in Table II. Examining the
results reveals that ISP-Hard2 has better GIs than the other
algorithms, while it satisfies the error constraint with a good
precision. Moreover, EM-GM-AMP failed in maintaining the
decomposition errors lower than ε = 0.005, especially for
the 64 × 256 dictionary. In addition, ISP-Hard1 has a poor
performance in the complete DCT dictionary. It is also worth
mentioning that ISP-Hard1’s error converged to the true one
in the overcomplete DCT dictionary.

VI. CONCLUSION

In this paper, we addressed the sparse recovery problem. We
first investigated the already-proposed SL0 algorithm from the
proximal algorithmic framework. Using this, we shed some
lights on SL0, including the determination of its step-size
parameter and providing a convergence guarantee for it. In the
sequel, inspired by the mechanism of SL0 and the proximal
algorithms, a general family of algorithms, called iterative-
sparsification-projection (ISP), were introduced, which pos-
sesses SL0 as a special case. Moreover, to solve the projection
step of the ISP algorithms in noisy cases, a new algorithm was
proposed. Through a set of extensive experiments on sparse
signal recovery from compressed measurements in various
scenarios, and sparse approximation of natural image patches,
it was demonstrated that in most cases, our new algorithms
outperform a number of well-known algorithms, including the
state-of-the-art EM-GM-AMP algorithm [17].

APPENDIX A
PROOF OF LEMMA 1

To derive the Lipschitz constant of the gradient of fσ(x) =
‖x‖σ , we first prove the following lemma:

Lemma 2. Let F (x) ,
∑n
i=1 f(xi), in which domF = Rn

and the derivative of f : R −→ R is Lipschitz continuous
with constant L. Then, F is gradient Lipschitz with constant
L.

Proof: The gradient of F is given by

∇F (x) = [f
′
(x1), · · · , f

′
(xn)]T ·

12

Then, for all x, z ∈ Rn we have

‖∇F (x)−∇F (z)‖2=

√√√√ n∑
i=1

(f ′(xi)− f ′(zi))2

≤

√√√√ n∑
i=1

L2 · (xi − zi)2

=L · ‖x− z‖2,

which concludes the proof. �
Now, fσ(x) =

∑n
i=1(1−exp(− x2

i

σ2)). Thus, using the above
lemma, we only need to derive the Lipschitz constant of the
derivative of f(x) = 1− exp(− x2

σ2). For the second derivative
of f , which is given by

f
′′
(x) =

2

σ2
(1− 2x2

σ2
) exp(−x

2

σ2
),

we have ∀x : |f ′′(x)|≤ (2/σ2), which by using the mean
value theorem shows that f

′
is Lipschitz with constant L =

2/σ2. Consequently, the Lipschitz constant of ∇fσ is 2/σ2.

APPENDIX B
PROOF OF THEOREM 1

To prove Theorem 1, we borrow ideas from recent works
on convergence analysis of proximal methods for non-convex
problems [33], [45]. To begin with, recall our target problem

min
x

{
Fσ(x) , fσ(x) + g(x)

}
, (27)

where fσ(x) = ‖x‖σ and g(x) = Iε(x), and its associated
algorithm

xk+1 = argmin
x

{
∇fσ(xk)T (x− xk) +

1

2µσ
‖x− xk‖22+g(x)

}
(28)

Before presenting the proof, first notice the following neces-
sary definitions and useful lemmas.

Definition 3 ([46], [47]). The Fréchet subdifferential of a
function g at x ∈ Rn, denoted by ∂̂g(x), is defined as

∂̂g(x) ,

{
ζ ∈ Rn| lim inf

v→xv 6=x

1

‖x− v‖22
·(

g(v)− g(x)− 〈v − x, ζ〉
)
> 0

}
(29)

Definition 4 ([47]). The limiting-subdifferential of a proper,
lower semi-continuous function g at x ∈ Rn, denoted by
∂g(x), is defined as

∂g(x) ,

{
ζ ∈ Rn| ∃ xk → x,

g(xk)→ g(x), ζk → ζ, ζk ∈ ∂̂g(xk)

}
(30)

Proposition 1 ([37]). Let {(xk,uk)}∞k=0 be a sequence in
Graph(∂g) , {(z,v) | v ∈ ∂g(z)} that converges to (x,u)
as k →∞. By the definition of ∂g, if g(xk) converges to g(x)
as k →∞, then (x,u) ∈ Graph(∂g).

Now, we are ready to prove the theorem. Since xk+1 is the
minimizer of (28), optimality conditions imply that

∇fσ(xk)T (xk+1 − xk) +
1

2µσ
‖xk+1 − xk‖22+g(xk+1)

≤ g(xk) (31)

and

0 ∈ ∂g(xk+1) +∇fσ(xk) +
1

µσ
(xk+1 − xk), (32)

where in (32) the following lemma has been used [45]:

Lemma 3. Let h = f + g, where f is continuously differen-
tiable and g is convex. Then, ∀x ∈ domh

∂h(x) = ∇f(x) + ∂g(x)·

On the other hand, by the Lipschitz continuity of ∇fσ we
have

fσ(xk+1) ≤ fσ(xk) +∇fσ(xk)T (xk+1 − xk)

+
L

2
‖xk+1 − xk‖22 (33)

Adding (31) and (33) results in

fσ(xk+1) + g(xk+1) ≤

fσ(xk) + g(xk)− (
1

2µσ
− L

2
)‖xk+1 − xk‖22 (34)

which implies that the sequence {Fσ(xk)}∞k=0 is decreasing
if µσ ∈ (0, 1

L]. Since Fσ is bounded from below, we conclude
that {Fσ(xk)}∞k=0 converges. Summing (34) for k = 0, · · · ,∞
results in
∞∑
k=0

{
(

1

2µσ
− L

2
)‖xk+1 − xk‖22

}
≤ Fσ(x0) − Fσ(x∞)

(35)

which together with the fact that the right-hand side is
non-negative and finite, results in xk+1 → xk. Moreover,
the whole sequence {xk}∞k=0 is contained in the level set
{x| Fσ(x∞) ≤ Fσ(x) ≤ Fσ(x0)}, which is bounded. Using
this, the boundedness of the sequence {xk}∞k=0 is readily
concluded. So, according to the Bolzano–Weierstrass theorem
[31], there exists a convergent subsequence

{
xkj
}∞
j=0

that
converges to an accumulation point, say x∗. We next prove
that x∗ is a stationary point of Fσ . Let us define

uj , ∇fσ(xkj)−∇fσ(xkj−1)− 1

µσ
(xkj − xkj−1)· (36)

Then, from (32) it follows that uj ∈ ∂Fσ(xkj). Now, using
the Lipschitz continuity of ∇fσ we have

‖uj‖2≤ L‖xkj − xkj−1‖2+
1

µσ
‖xkj − xkj−1‖2→ 0 (37)

where we have used the fact that xk+1−xk → 0. So, uj → 0.
On the other hand, due to the continuity of fσ and the lower
semicontinuity of g, we have Fσ(xkj) → Fσ(x∗). Finally,
using Proposition 1

0 ∈ ∂Fσ(x∗),

which concludes the proof.

13

REFERENCES

[1] M. Elad, Sparse and Redundant Representations, Springer, 2010.
[2] H. Hastie and J. Tibshirani, R. Friedman, The Elements of Statistical

Learning, Springer Series in Statistics. Springer, 2009.
[3] E. J. Candès and M. B. Wakin, “An introduction to compressive

sampling,” IEEE Signal Proc. Magazine, vol. 25, no. 2, pp. 21–30,
2008.

[4] P. Comon and C. Jutten, Eds., Handbook of Blind Source Separation,
Elsevier, 2010.

[5] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed
sensing MRI,” IEEE Signal Proc. Magazine, vol. 25, no. 2, pp. 72–82,
2008.

[6] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, “Sparse
representation for computer vision and pattern recognition,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 1031–1044, 2010.

[7] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy approxima-
tions,” Constructive Approximation, vol. 13, no. 1, pp. 57–98, 1997.

[8] D. L. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans.
Info. Theory, vol. 52, no. 1, pp. 6–18, 2006.

[9] M. Babaie-Zadeh and C. Jutten, “On the stable recovery of the sparsest
overcomplete representations in presence of noise,” IEEE Transactions
on Signal Processing, vol. 58, no. 10, pp. 5396–5400, 2010.

[10] J. A. Tropp and S. J. Wright, “Computational methods for sparse
solution of linear inverse problems,” Proceedings of the IEEE, vol.
98, no. 6, pp. 948–958, 2010.

[11] I. Daubechies, M. Defrise, and C. De-Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Comm.
Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, 2004.

[12] M. Elad, “Why simple shrinkage is still relevant for redundant repre-
sentations?,” IEEE Trans. on Information Theory,, vol. 52, no. 12, pp.
5559–5569, 2006.

[13] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no.
1, pp. 183–202, 2009.

[14] J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new twist: Two-step
iterative shrinkage/thresholding algorithms for image restoration,” IEEE
Transactions on Image Processing, vol. 16, no. 12, pp. 2992–3004, 2007.

[15] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing
algorithms for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106,
no. 45, pp. 18 914–18 919, 2009.

[16] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in Proc. IEEE Int. Symp. Inform. Thy.,
2011, pp. 2168–2172.

[17] J. P. Vila and P. Schniter, “Expectation-maximization gaussian-mixture
approximate message passing,” IEEE Trans. on Signal Proc., vol. 61,
no. 19, pp. 4658–4672, 2013.

[18] M. A.T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection
for sparse reconstruction: Application to compressed sensing and other
inverse problems,” IEEE Journal of Selected Topics in Signal Processing,
vol. 1, no. 4, pp. 586–597, 2007.

[19] M. Friedlander and E. Van den Berg, “Probing the pareto frontier for
basis pursuit solutions,” SIAM J. Sci. Comput., vol. 31, no. 2, pp. 890–
912, 2008.

[20] J. Becker, S. Bobin and E. J. Candès, “NESTA: A fast and accurate
first-order method for sparse recovery,” SIAM J. Imaging Sci., vol. 4,
no. 1, pp. 1–39, 2011.

[21] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition,” in In Proc. Asilomar Conf. Signal Syst. Comput., 1993.

[22] J. Wang, S. Kwon, and B. Shim, “Generalized orthogonal matching
pursuit,” IEEE Trans. on Signal Proc., vol. 60, no. 12, pp. 6202–6216,
2012.

[23] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from
in-complete and inaccurate samples,” Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, 2009.

[24] L. Zheng, A. Maleki, X. Wang, and T. Long, “Does `p-minimization
outperform `1-minimization?,” 2015, http://arxiv.org/abs/1501.03704.

[25] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for
compressive sensing,” in IEEE ICASSP, 2008.

[26] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Applied and Computational Harmonic Analysis,
vol. 27, no. 3, pp. 265–274, 2009.

[27] H. Mohimani, M. Babaie-Zadeh, and Ch. Jutten, “A fast approach for
overcomplete sparse decomposition based on smoothed `0 norm,” IEEE
Trans. on Signal Processing, vol. 57, pp. 289–301, 2009.

[28] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 123–231, 2014.

[29] A. Blake and A. Zisserman, Visual Reconstruction, MIT Press,
Cambridge, 1987.

[30] A. Eftekhari, M. Babaie-Zadeh, C. Jutten, and H. Abrishami-
Moghaddam, “Robust-SL0 for stable sparse representation in noisy
settings,” in Proceedings of ICASSP2009, 2009, pp. 3433–3436.

[31] H. H. Sohrab, Basic Real Analysis, Birkhäuser Basel, 2014.
[32] P. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal

processing,” Fixed-Point Algorithms for Inverse Problems in Science
and Engineering, pp. 185–212, 2011.

[33] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods
for semi-algebraic and tame problems: proximal algorithms, forward-
backward splitting, and regularized gaussseidel methods,” Mathematical
Programming, vol. 137, no. 1, pp. 91–129, 2013.

[34] E. T. Hale, W. Yin, and Y. Zhang, “Fixed-point continuation for
l1-minimization: Methodology and convergence,” SIAM Journal on
Optimization, vol. 19, no. 3, pp. 1107–1130, 2008.

[35] “SL0 website,” http://ee.sharif.edu/∼SLzero/.
[36] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge

University Press, 2004.
[37] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized

minimization for nonconvex and nonsmooth problems,” Mathematical
Programming, vol. 146, no. 1-2, pp. 459–494, 2014.

[38] K. Rose, “Deterministic annealing for clustering, compression, classifi-
cation, regression, and related optimization problems,” Proceedings of
the IEEE, vol. 86, no. 11, pp. 2210–2239, 1998.

[39] W. Chen, M. R. D. Rodrigues, and I. J. Wassell, “Projection design for
statistical compressive sensing: {A tight frame based approach,” IEEE
Trans. on Signal Proc., vol. 61, no. 8, pp. 2016–2029, 2013.

[40] W. W. Hager, “Updating the inverse of a matrix,” SIAM Review, vol.
31, no. 2, pp. 221–239, 1989.

[41] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[42] N. Hurley and S. Rickard, “Comparing measures of sparsity,” IEEE
Transactions on Information Theory, vol. 55, no. 10, pp. 4723–4741,
2009.

[43] J. Vila, P. Schniter, S. Rangan, F. Krzakala, and L. Zdeborova, “Adaptive
damping and mean removal for the generalized approximate message
passing algorithm,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015, pp. 2021–2025.

[44] V. Cevher, “Learning with compressible priors,” in Advances in Neural
Information Processing Systems 22 (NIPS 2009), 2009.

[45] P. Ochs, Y. Chen, T. Brox, and T. Pock, “iPiano: Inertial proximal
algorithm for nonconvex optimization,” SIAM J. Imag. Sci., vol. 7, no.
2, pp. 388–1419, 2014.

[46] R. Tyrrell Rockafellar and R. J-B Wets, Variational Analysis, Springer,
1998.

[47] B. Mordukhovich, Variational Analysis and Generalized Differenti-
ation I. Basic Theory, vol. 330 of Grundlehren der mathematischen
Wissenschaften, Springer-Verlag Berlin Heidelberg, 1st edition, 2006.

