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Abstract

Suppose that a solution x̃ to an underdetermined linear system b = Ax is given. x̃ is approximately sparse meaning
that it has a few large components compared to other small entries. However, the total number of nonzero components
of x̃ is large enough to violate any condition for the uniqueness of the sparsest solution. On the other hand, if only
the dominant components are considered, then it will satisfy the uniqueness conditions. One intuitively expects that
x̃ should not be far from the true sparse solution x0. It was already shown that this intuition is the case by providing
upper bounds on ‖̃x − x0‖ which are functions of the magnitudes of small components of x̃ but independent from x0.
In this paper, we tighten one of the available bounds on ‖̃x − x0‖ and extend this result to the case that b is perturbed
by noise. Additionally, we generalize the upper bounds to the low-rank matrix recovery problem.

Keywords: Approximately sparse solutions, low-rank matrix recovery, restricted isometry property, sparse vector
recovery

1. Introduction

Let x0 ∈ Rm denote a sparse solution of an underdetermined system of linear equations

b = Ax (1)

in which b ∈ Rn and A ∈ Rn×m,m > n. Suppose that ‖x0‖0 = k, where ‖x0‖0 designates the number of nonzero
components or the `0 norm of x0. Further, let spark(A) represent the spark of A, defined as the minimum number of
columns of A which are linearly dependent, and let δ2k(A) denote the restricted isometry constant of order 2k for the
matrix A [1]. It is well known that if k < spark(A)/2 or δ2k(A) < 1, then x0 is the unique sparsest solution of the
above set of equations [1, 2].

When the sparsest solution of (1) is sought, one needs to solve

min
x
‖x‖0 subject to Ax = b. (2)

However, the above program is generally NP-hard [3] and becomes very intractable when the dimensions of the
problem increase. Since finding the sparse solution of (1) has many applications in various fields of science and
engineering (cf. [4] for a comprehensive list of applications), many practical alternatives for (2) have been proposed
[5–8]. If the solution obtained by these algorithms satisfies one of the above sufficient conditions, then, assuredly, this
solution is the sparsest one.

Now, consider the case that the solution given by an algorithm is only approximately sparse meaning that it has
some dominant components, while other components are very small but not equal to zero. If the total number of
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nonzero components is large such that neither of the mentioned conditions hold, it is not clear whether this solution is
close to the true sparse solution or not. However, intuitively, one expects that if the number of effective components is
small, then the obtained solution should not be far away from the true solution. Immediately, the following questions
may be raised. Is this solution still close to the unique sparse solution of b = Ax? Is it possible in this case to establish
a bound on the error of finding x0 without knowing x0? Similar questions can be asked when there is error or noise in
(1). Taking the noise into account, (1) is updated to

b = Ax + e, (3)

where e is the vector of noise or error. In this setting, to estimate x0 given b and A, the equality constraint in (2) is
relaxed, and the following optimization problem should be solved:

min
x
‖x‖0 subject to ‖Ax − b‖ ≤ ε, (4)

where ε ≥ ‖e‖ is some constant and ‖ · ‖ designates the `2 norm.
The answers to the above questions were firstly given in [9]. Let x̃ denote the output of an algorithm to find or

estimate x0 from (1) or (3). Particularly, [9] provides two upper bounds on the error ‖x0 − x̃‖. The first one is rather
simple to compute but turns out to be loose. On the other hand, while the second bound is tight, generally, it is much
more complicated to compute.

Herein, in the spirit of the loose bound in [9], we provide a better bound which is based on the same parameter
of the matrix A, but it is strictly tighter than the loose bound in [9]. Moreover, our proposed bound is obtained in a
much simpler way with a shorter algebraic manipulation. The proposed bound is extended to the noisy setting defined
in (3). Furthermore, these results are also generalized to the problem of low-rank matrix recovery from compressed
linear measurements [10].

The bounds introduced in this paper can be used in analyzing the theoretical performance of algorithms in sparse
vector and low-rank matrix recovery that provide approximately sparse or low-rank solutions such as [7] and [11, 12].1

However, the bounds are obtained without any assumption on the recovery algorithm, and it is possible to improve
them by exploiting properties of a specific algorithm. A similar upper bound on the error of sparse recovery in the
noisy case has been proposed in [13]. This upper bound, however, is only applicable when the given solution has
a sparsity level, the number of nonzero components, not greater than that of the true solution, while our bounds are
obtained under the opposite assumption on the sparsity level of the given solution.

The rest of this paper is organized as follows. After introducing the notations used throughout the paper, in Section
2, we first present the upper bounds on the error of sparse vector recovery and, next, generalize them to the low-rank
matrix recovery problem. Section 3 is devoted to the proofs of the results in Section 2, followed by conclusions in
Section 4.

Notations: For a vector x, ‖x‖, ‖x‖1, and ‖x‖0 denote the `2, `1, and the so-called `0 norms, respectively. Moreover,
x↓ denotes a vector obtained by sorting the elements of x in terms of magnitude in descending order, and xi designates
the ith component of x. xI represents the subvector obtained from x by keeping components indexed by the set
I. A vector is called k-sparse if it has exactly k nonzero components. For a matrix A, ai denotes the ith column.
Additionally, spark(A) and null(A) designate the minimum number of columns of A that are linearly dependent and
the null space of A, respectively. Similar to the vectors, AI represents the submatrix of A obtained by keeping those
columns indexed by I. It is always assumed that the singular values of matrices are sorted in descending order, and
σi(X) denotes the ith largest singular value of X. Let X =

∑q
i=1 σiuivT

i , where q = rank(X), denote the singular value
decomposition (SVD) of X. X(r) =

∑r
i=1 σiuivT

i represents a matrix obtained by keeping the r first terms in the SVD
of X, and X(−r) = X − X(r). ‖X‖F denotes the Frobenius norm, and ‖X‖∗ ,

∑q
i=1 σi(X), in which q = rank(X), stands

for the nuclear norm.

2. Upper Bounds

In this section, the upper bounds on the error of sparse vector and low-rank matrix recovery are presented.

1It is worth emphasizing that the results presented in this paper are theoretical in nature and can be used only to theoretically justify the
effectiveness of an algorithm. More precisely, as they are based on some parameters of the sensing matrix, which cannot be computed in general,
these results cannot be used to experimentally evaluate the performance of an algorithm.
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2.1. Sparse Vector Recovery

Following the common practice in the literature of compressive sensing (CS), we refer to b,A, and e in (3) as
the measurement vector, sensing matrix, and noise vector, respectively. Before stating the results, we recall two
definitions.

Definition 1 ([1]). For a matrix A ∈ Rn×m and all integers k ≤ m, the restricted isometry constant (RIC) of order k is
the smallest constant δk(A) such that

(1 − δk(A))‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk(A))‖x‖2 (5)

holds for all vectors x with sparsity at most k.

Definition 2 ([9]). For a matrix A ∈ Rn×m, let σmin,p(A) > 0 for p ≤ spark(A) − 1 be the smallest singular value of
all

(
m
p

)
possible n × p submatrices of A.

The following theorem presents the upper bounds for both noisy and noiseless cases. We deliberately separate the
noisy and noiseless cases in order to be able to provide a tighter bound in the noiseless setting.

Theorem 1. Let A ∈ Rn×m, m > n, denote a sensing matrix. We have the following upper bounds.

• Noiseless case: Suppose that x0 is a k-sparse solution of Ax = b, where k < spark(A)/2. For all x̃ solutions of
Ax = b satisfying x̃↓k+1 ≤ α,

‖x0 − x̃‖2 ≤
(
1 + (m − 2k)

maxi ‖ai‖
2

σ2
min,2k(A)

)
(m − 2k)α2. (6)

• Noisy case: Let x0 be any arbitrary vector with ‖x0‖0 = k < spark(A)/2, and let b = Ax0 + e, where e is noise
with ‖e‖ ≤ ε. For all x̃ vectors satisfying ‖b − Ax̃‖ ≤ ∆ and x̃↓k+1 ≤ α, the error ‖x0 − x̃‖ is bounded by

‖x0 − x̃‖ ≤
(
1 +
√

m − 2k
maxi ‖ai‖

σmin,2k(A)

)√
m − 2k α

+
∆ + ε

σmin,2k(A)
. (7)

In brief, the above bounds say that if we have a solution x̃ that consists of k large components, then this vector
is not far from the sparse solution provided that σmin,2k(A) is not very small. In particular, the bound in (6) vanishes
when x̃ is k-sparse, reducing to the well-known uniqueness theorem in [2]. Moreover, notice that these bounds work
uniformly for all sparse vectors x0 of sparsity level k; that is, they are independent from the position and magnitude
of nonzero component of x0.

Remark 1. The loose bounds in [9, Theorems 2 & 4] translated to our notations in the noiseless and noisy settings
are

‖x0 − x̃‖ ≤
(
1 +

1
σmin,2k(A)

)
mα, (8)

‖x0 − x̃‖ ≤
(
1 +

1
σmin,2k(A)

)
mα +

∆ + ε

σmin,2k(A)
. (9)

The bounds in (8) and (9) are applicable only if the sensing matrix has unit `2 norm columns, whereas Theorem 1 is
valid without this restriction. To compare our bounds in Theorem 1 to (8) and (9), let U denote the square root of the
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upper bound in (6). Substituting maxi ‖ai‖ with 1 in U, one can write that

U =

√(
1 +

m − 2k
σ2

min,2k(A)

)
(m − 2k) α

<
(
1 +

√
m − 2k

σmin,2k(A)

)√
m − 2k α = U2

=

( 1
√

m − 2k
+

1
σmin,2k(A)

)
(m − 2k)α

<
(
1 +

1
σmin,2k(A)

)
(m − 2k)α

<
(
1 +

1
σmin,2k(A)

)
mα,

where U2 is the first term in the upper bound in (7) with maxi ‖ai‖ = 1. The above inequalities prove that the bounds
(6) and (7) are strictly tighter than the corresponding bounds in [9] formulated in (8) and (9).

Remark 2. In general, finding σmin,2k(A) is a combinatorial problem2 and NP-hard [9]. However, for a random
matrix A, under some conditions, the smallest singular value of all n × 2k submatrices is highly concentrated around
a certain value. In particular, let A(2k) denote any n × 2k submatrix of A. If all the entries of A are independent and
identically distributed (iid) from a normal distribution N(0, 1

n ) and 2k < n, then for any t > 0, we have [9]

p
{
σmin(A(2k)) < 1 −

√
2k
n
− t

}
≤ e−

nt2
2 ,

where p{·} and σmin(·) denote the probability of the event described in the braces and the smallest singular value,
respectively. This shows that when the dimensions of A increase, the smallest singular value of all n× 2k submatrices

is equal to or larger than 1 −
√

2k
n with very high probability. In line with this, for any matrix with iid entries from

a zero-mean, 1
n -variance distribution with a finite fourth-order moment, when n,m → ∞ while 2k

n → c, σmin(A(2k))
converges to 1 −

√
c almost surely [14].

Remark 3. In addition to the above probabilistic values for σmin,2k(A), the bounds in Theorem 1 can be also stated
in terms of δ2k(A) instead of σmin,2k(A). In fact,

σmin,2k(A) = min
‖x‖0≤2k

‖Ax‖
‖x‖

,

or ‖Ax‖2 ≥ σ2
min,2k(A)‖x‖2 for all x with sparsity at most 2k. Since δ2k(A) in (5) is in such a way that both inequalities

are satisfied, it can be concluded that σ2
min,2k(A) ≥ 1−δ2k(A). Consequently, the following bounds, under the condition

δ2k(A) < 1, are a reformulation of the bounds in Theorem 1 in terms of δ2k(A) which is frequently used in CS literature.

• Noiseless case:

‖x0 − x̃‖2 ≤
(
1 + (m − 2k)

maxi ‖ai‖
2

1 − δ2k(A)

)
(m − 2k)α2.

• Noisy case:

‖x0 − x̃‖ ≤
(
1 +
√

m − 2k
maxi ‖ai‖
√

1 − δ2k(A)

)√
m − 2k α

+
∆ + ε

√
1 − δ2k(A)

.

2Since one should calculate the singular values of all
(

m
2k

)
possible n × 2k submatrices of A.
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Remark 4. As mentioned briefly in Section 1, our analysis can be used to prove theoretical guarantees of the
algorithms in [7, 11, 12] under weaker conditions. In this remark, we give more explanation and, for the sake of
brevity, focus on the sparse recovery algorithm in [7]. The SL0 algorithm [7] uses a smooth nonconvex relaxation for
the `0 norm to solve (2). Namely, it solves

max
x

m∑
i=1

fσ(xi) subject to Ax = b, (10)

where fσ(·) is the function approximating the Kronecker delta function and σ is a scaling parameter which reflects
accuracy. It is shown in [7] that the solutions to (10) and (2) coincide when σ→ 0, and (10) is solved for a decreasing
sequence of σ. Let xσ and x0 denote a solution to (10) for a given σ and the sparsest solution of Ax = b, respectively.
The equivalence of (2) and (10) is justified by upper bounding the error term ‖x0 − xσ‖ with a decreasing function of
σ [7, 9]. From Theorem 1, it is possible to find a tighter bound for ‖x0 − xσ‖ than the one previously available in [7].
This allows for the use of a faster decreasing sequence of σ in the theoretical proof of the convergence and, hence, a
faster convergence rate.

2.2. Low-rank Matrix Recovery
Recovery of a low-rank matrix from compressed linear measurements [10] is the task of finding the low-rank

matrix X0 ∈ Rn1×n2 from underdetermined measurements b = A(X0) where b ∈ Rm,A : Rn1×n2 → Rm is a linear
operator, and m < n1n2. In the presence of noise, the measurement model is changed to b = A(X0) + e where e is
the vector of noise.3 This recovery is a generalization of sparse vector recovery introduced in Section 1 to matrix
variables. Consequently, the naive approach for recovering X0 from either noiseless or noisy measurements is

min
X

rank(X) subject to ‖A(X) − b‖ ≤ ε, (11)

where ε is some constant not less than ‖e‖ in the noisy case and equal to 0 in the noiseless case.
In this subsection, we present upper bounds on the error of recovering or estimating low-rank matrices from

noiseless and noisy measurements when the obtained solution is approximately low-rank. Similar to the vector case, a
matrix is approximately low rank, if it is composed of a few dominant singular values, while its other singular values
are very small. Before stating the results, first the definition of the RIC is recalled.

Definition 3 ([15]). For a linear operatorA : Rn1×n2 → Rm and all integers r ≤ min(n1, n2), the RIC of order r is the
smallest constant δr(A) such that

(1 − δr(A))‖X‖2F ≤ ‖A(X)‖2 ≤ (1 + δr(A))‖X‖2F
holds for all matrices X with rank at most r.

Theorem 2. LetA : Rn1×n2 → Rm,m < n1n2, denote a linear operator, and let n = min(n1, n2). We have the following
upper bounds.

• Noiseless case: Suppose that X0 is a rank r solution of b = A(X). If 0 < δ2r(A) < 1, then, for all X̃ solutions
of b = A(X) satisfying σr+1(X̃) ≤ α,

‖X0 − X̃‖2F ≤
(
1 + (n − 2r)

1 + δ1(A)
1 − δ2r(A)

)
(n − 2r)α2. (12)

• Noisy case: Let X0 be any arbitrary matrix of rank r, and let b = A(X0) + e, where e is noise with ‖e‖ ≤ ε. If
0 < δ2r(A) < 1, then for all X̃ estimates of X0 satisfying ‖b −A(X̃)‖ ≤ ∆ and σr+1(X̃) ≤ α, the error ‖X0 − X̃‖
is bounded by

‖X0 − X̃‖F ≤
1 +

√
(n − 2r)

1 + δ1(A)
1 − δ2r(A)

√n − 2r α

+
∆ + ε

1 − δ2r(A)
. (13)

3The parameters b,m, e, and n (to be defined later on in this subsection) should not be confused with the similar parameters defined in Subsection
2.1.
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3. Proofs of Results

3.1. Proof of Theorem 1
We need the following lemmas.

Lemma 1. Let A ∈ Rn×m, m > n, be a sensing matrix. For every x ∈ null(A) and any subset I of {1, · · · ,m} with
cardinality m − p, where p ≤ spark(A) − 1, we have that

‖x‖2 ≤
(
1 + (m − p)

maxi ‖ai‖
2

σ2
min,p(A)

)
‖xI‖

2. (14)

Proof: First, we notice that ∥∥∥∥∑
i∈I

xiai

∥∥∥∥2
≤

(∑
i∈I

‖xiai‖

)2
=

(∑
i∈I

|xi|‖ai‖

)2
,

≤ max
i
‖ai‖

2
(∑

i∈I

|xi|

)2
,

= max
i
‖ai‖

2‖xI‖
2
1,

≤ (m − p) max
i
‖ai‖

2‖xI‖
2, (15)

where, for the last inequality, we used ∀z ∈ Rl, ‖z‖21 ≤ l‖z‖2 [16]. Next, assuming p ≤ spark(A) − 1 which implies
σmin,p(A) , 0, from Ax =

∑
i∈I xiai +

∑
i<I xiai = 0, we get∥∥∥∥∑

i∈I

xiai

∥∥∥∥2
= ‖AĪxĪ‖

2 ≥ σ2
min,p(A)‖xĪ‖

2, (16)

where Ī = {1, · · · ,m} \ I. Combining inequalities (15) and (16) and using ‖x‖2 = ‖xI‖
2 + ‖xĪ‖

2 prove (14).

Lemma 2. Let A ∈ Rn×m, m > n, be a sensing matrix. For every x satisfying ‖Ax‖ ≤ η and every subset I of {1, · · · ,m}
with cardinality m − p, where p ≤ spark(A) − 1, we have that

‖x‖ ≤
(
1 +
√

m − p
maxi ‖ai‖

σmin,p(A)

)
‖xI‖ +

η

σmin,p(A)
. (17)

Proof: Similar to the proof of Lemma 1, we have∥∥∥∥∑
i∈I

xiai

∥∥∥∥ ≤ √m − p max
i
‖ai‖‖xI‖. (18)

Furthermore, from Ax =
∑

i∈I xiai +
∑

i<I xiai, we get∥∥∥∥∑
i∈I

xiai

∥∥∥∥ ≥ ‖AĪxĪ‖ − ‖Ax‖,

≥ σmin,p(A)‖xĪ‖ − ‖Ax‖,
≥ σmin,p(A)‖xĪ‖ − η. (19)

Combining inequalities (18) and (19) leads to

σmin,p(A)‖xĪ‖ ≤
√

m − p max
i
‖ai‖‖xI‖ + η

which is equivalent to

‖xI‖ + ‖xĪ‖ ≤

(
1 +
√

m − p
maxi ‖ai‖

σmin,p(A)

)
‖xI‖ +

η

σmin,p(A)
.
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The above inequality together with

‖x‖ =

∥∥∥∥∥∥∥
xI

xĪ


∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥
xI

0


∥∥∥∥∥∥∥ +

∥∥∥∥∥∥∥
 0
xĪ


∥∥∥∥∥∥∥ = ‖xI‖ + ‖xĪ‖,

where 0 is a vector of zeros of appropriate length, proves (17).

Proof of Theorem 1: To prove (6), we first notice that because x0 has k nonzero components and x̃↓k+1 ≤ α,
x = x0 − x̃ has at most 2k components with magnitude larger than α. Alternatively, x possesses at least m − 2k
components with magnitude not greater than α. Now, let I denote a set of indexes of components of x with magnitude
less than or equal to α such that |I| = m − 2k. It is clear that ‖xI‖

2 ≤ (m − 2k)α2. Consequently, since x ∈ null(A), we
can apply Lemma 1 to get

‖x0 − x̃‖2 ≤
(
1 + (m − 2k)

maxi ‖ai‖
2

σ2
min,2k(A)

)
‖xI‖

2,

≤

(
1 + (m − 2k)

maxi ‖ai‖
2

σ2
min,2k(A)

)
(m − 2k)α2.

For proving (7), we start with

‖A(x0 − x̃)‖ = ‖b − Ax̃ + Ax0 − b‖,
≤ ‖b − Ax̃‖ + ‖Ax0 − b‖,
≤ ∆ + ε. (20)

Following the same reasoning as in the proof of (6), the application of Lemma 2 proves (7).

3.2. Proof of Theorem 2
Lemma 3. Let A : Rn1×n2 → Rm,m < n1n2, denote a linear operator. For every r < n = min(n1, n2) and every
X ∈ null(A), if 0 < δr(A) < 1, then

‖X‖2F ≤
(
1 + (n − r)

1 + δ1(A)
1 − δr(A)

)
‖X(−r)‖

2
F . (21)

Proof: Let X =
∑n

i=1 σiuivT
i denote the SVD of X. We can write that∥∥∥∥A(X(−r))

∥∥∥∥2
=

∥∥∥∥A( n∑
i=r+1

σiuivT
i

)∥∥∥∥2
,

=
∥∥∥∥ n∑

i=r+1

σiA(uivT
i )

∥∥∥∥2
,

≤

( n∑
i=r+1

σi

∥∥∥A(uivT
i )

∥∥∥)2
,

(a)
≤

( n∑
i=r+1

σi
√

1 + δ1(A)
)2
,

=
(
1 + δ1(A)

)∥∥∥X(−r)
∥∥∥2
∗
,

(b)
≤ (n − r)

(
1 + δ1(A)

)∥∥∥X(−r)
∥∥∥2

F , (22)

where (a) follows from the definition of the RIC and ‖uivT
i ‖F = 1 and for (b), we used the inequality ‖Y‖∗ ≤√

rank(Y)‖Y‖F [16].
Additionally,A(X) = A(X(r)) +A(X(−r)) = 0 implies that∥∥∥A(X(−r))

∥∥∥2
=

∥∥∥A(X(r))
∥∥∥2
≥

(
1 − δr(A)

)
‖X(r)‖

2
F . (23)

Combining (22) and (23) together with ‖X‖2F = ‖X(r)‖
2
F + ‖X(−r)‖

2
F leads to inequality (21).
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Lemma 4. Let A : Rn1×n2 → Rm,m < n1n2, denote a linear operator. For every r < n = min(n1, n2) and every X
satisfying ‖A(X)‖ ≤ η, if 0 < δr(A) < 1, then

‖X‖F ≤
1 +

√
(n − r)

1 + δ1(A)
1 − δr(A)

‖X(−r)‖F

+
η

√
1 − δr(A)

. (24)

Proof: Inequality (22) holds for every X; thus, it is possible to write

‖A(X(−r))‖ ≤
√

(n − r)(1 + δ1(A))‖X(−r)‖F . (25)

Furthermore, applying the triangle inequality onA(X(−r)) = A(X) −A(X(r)), one can obtain∥∥∥A(X(−r))
∥∥∥ ≥ ∥∥∥A(X(r))

∥∥∥ − ∥∥∥A(X)
∥∥∥,

≥
√

1 − δr(A)‖X(r)‖F − η. (26)

Combining inequalities (25) and (26) together with ‖X‖F ≤ ‖X(r)‖F + ‖X(−r)‖F gives inequality (24).

Proof of Theorem 2: To prove (12), let us first define X = X0 − X̃. According to [17, Thmeorem 3.3.16], for
any 1 ≤ i, j ≤ n and i + j ≤ n + 1,

σi+ j−1(X) ≤ σi(X0) + σ j(X̃).

Substituting i and j with r + 1 in the above inequality leads to

σ2r+1(X) ≤ σr+1(X0) + σr+1(X̃) ≤ α.

Consequently, Lemma 3 implies that

‖X0 − X̃‖2F ≤
(
1 + (n − 2r)

1 + δ1(A)
1 − δ2r(A)

)
‖X(−2r)‖

2
F ,

≤

(
1 + (n − 2r)

1 + δ1(A)
1 − δ2r(A)

)
(n − 2r)α2.

For proving (13), we start with

‖A(X0 − X̃)‖ = ‖b −A(X̃) +A(X0) − b‖,
≤ ∆ + ε.

Following the same reasoning as in the proof of (12), the application of Lemma 4 completes the proof.

4. Conclusion

In this paper, we proposed upper bounds on the error of sparse vector recovery from both noiseless or noisy mea-
surements when the obtained solution is approximately sparse. While these bounds are based on the same parameters
as in the loose bounds of [9], they are strictly tighter. We further generalized them to the problem of low-rank matrix
recovery, when the solution at hand to recover the true low-rank matrix is approximately low rank.
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