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Abstract

We address some theoretical guarantees for Schatten-p quasi-norm minimization (p ∈ (0, 1]) in
recovering low-rank matrices from compressed linear measurements. Firstly, using null space
properties of the measurement operator, we provide a sufficient condition for exact recovery of
low-rank matrices. This condition guarantees unique recovery of matrices of ranks equal or
larger than what is guaranteed by nuclear norm minimization. Secondly, this sufficient condition
leads to a theorem proving that all restricted isometry property (RIP) based sufficient conditions
for `p quasi-norm minimization generalize to Schatten-p quasi-norm minimization. Based on
this theorem, we provide a few RIP-based recovery conditions.

Keywords: Affine Rank Minimization (ARM), Nuclear Norm Minimization (NNM), Restricted
Isometry Property (RIP), Schatten-p Quasi-Norm Minimization (pSNM).

1. Introduction

Matrix rank minimization constrained to a set of underdetermined linear equations, known
as affine rank minimization (ARM), has numerous applications in signal processing and control
theory [1, 2]. An important special case of this optimization problem is Matrix Completion (MC)
in which one aims to recover a matrix from partially observed entries [2]. Applications of ARM
and MC include collaborative filtering [2], machine learning [3], quantum state tomography [4],
ultrasonic tomography [5], spectrum sensing [6], direction-of-arrival estimation [7], and RADAR
[8], among others.

Rank minimization under affine equality constraints is generally formulated as

min
X

rank(X) subject to A(X) = b, (1)

where X ∈ Rn1×n2 , A : Rn1×n2 → Rm is a given linear operator (measurement operator), and
b ∈ Rm is the vector of measurements. In case of incomplete measurements, m is less than
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n1n2, or, usually, m � n1n2. Problem (1) is generally NP-hard [1], yet there are many efficient
algorithms to solve relaxed or approximated versions of it. Nuclear norm minimization (NNM),
proposed in [1], replaces the rank with its tightest convex relaxation which leads to

min
X
‖X‖∗ subject to A(X) = b, (2)

where ‖X‖∗ ,
∑r

i=1 σi(X) denotes matrix nuclear norm in which σi(X) is the ith largest singular
value of X and r is the rank of the matrix X. It has been proven that, under some sufficient
conditions, (1) and (2) share the same unique solution; see, e.g., [2, 9].

The nuclear norm of a matrix is equal to the `1 norm of a vector formed by the singular values
of the same matrix. Consequently, inspired by experimental observations and theoretical guar-
antees showing superiority of `p quasi-norm minimization to `1 minimization in Compressive
Sampling (CS) [10], another approach in [11, 12] replaces the rank function with the Schatten-p
quasi-norm resulting in

min
X
‖X‖pp subject to A(X) = b, (3)

where ‖X‖p ,
(∑r

i=1 σ
p
i (X)

)1/p
for some p ∈ (0, 1) denotes the Schatten-p quasi-norm. While

the above problem is nonconvex, it is observed that numerically efficient implementations of (3)
outperforms NNM [11–13].

In practice, there is often some noise in measurements, so measurement model is updated to
A(X) + e = b, where e is the vector of measurement noise. To robustly recover a minimum-rank
solution, equality constraints are relaxed to ‖A(X) − b‖2 ≤ ε, where ‖ · ‖2 denotes the `2 norm of
a vector and ε ≥ ‖e‖2 is some constant [2]. Therefore, (3) is modified to

min
X
‖X‖pp subject to ‖A(X) − b‖2 ≤ ε. (4)

Though there are several theoretical studies concerning `p quasi-norm minimization in the
CS literature (see, for example, [14–17]), only a few papers deal with performance guarantees of
Schatten-p quasi-norm minimization (pSNM). In [18], authors propose a necessary and sufficient
condition for exact recovery of low-rank matrices using null space properties of A. However,
the sufficient condition is not sharp and seems to be stronger than that of NNM. In contrast, it
is well known that finding the global solution of `p quasi-norm minimization in CS scenario is
superior to `1 minimization [14–16]. Therefore, when one considers the strong parallels between
CS and ARM (see [1] for a comprehensive discussion) and superior experimental performance
of pSNM in comparison to NNM, he/she expects weaker recovery conditions. We will show that
this intuition is indeed the case by providing a sharp sufficient condition, and proving that, using
(3), one can uniquely find matrices with equal or larger ranks than those of recoverable by NNM.

In addition, we further exploit this sufficient condition and extend a result from [18] to prove
that all restricted isometry property (RIP) based results for recovery of sparse vectors using `p

quasi-norm minimization generalize to Scahtten-p quasi-norm minimization with no change. In
particular, extending some results of [15], we will show that if δ2r < 0.4531, then all low-rank
or approximately low-rank matrices with at most r dominant singular values can be recovered
accurately from noisy measurements via (4). This generalization also proves that, for some
sufficiently small p > 0, if δ2r+2 < 1, then, program (4) recovers all matrices with at most r large
singular values from noisy measurements accurately. Furthermore, another RIP-based sufficient
condition will be presented which is sharper than a threshold in [15] for small values of p.
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The rest of this letter is organized as follows. After introducing some notations, in Section 2,
we will present our performance analysis. Section 3 is devoted to the proofs of the main results
which is followed by conclusion.

Notations: A vector is called k-sparse if it has k nonzero components. x↓ denotes a vector
obtained by sorting elements of x in terms of magnitude in descending order, and x(k) desig-
nates a vector consisted of the k largest elements (in magnitude) of x. Let 〈x, y〉 , xT y be
the inner product of x and y and ‖x‖2 , 〈x, x〉 1

2 stand for the Euclidean-norm. `p quasi-

norm of x for p ∈ (0, 1) is defined as ‖x‖p ,
(∑

i xp
i

)1/p
, where xi is the ith entry of x. For

any matrix X ∈ Rn1×n2 , define n , min(n1, n2). It is always assumed that singular values
of matrices are sorted in descending order, and σ(X) = (σ1(X), . . . , σn(X))T is the vector of

singular values of X. ‖X‖F ,
√∑n

i=1 σ
2
i (X) denotes the Frobenius norm. Furthermore, let

X = U diag(σ(X))VT denotes the singular value decomposition (SVD) of X, where U ∈ Rn1×n

and V ∈ Rn2×n. X(r) = U diag(σ1(X), . . . , σr(X), 0, · · · , 0)VT represents a matrix obtained by
keeping the r largest singular values in the SVD of X and setting others to 0. For a linear opera-
tor A : Rn1×n2 → Rm, let N(A) , {X ∈ Rn1×n2 : A(X) = 0,X , 0} = null(A)\{0}. For a set S ,
|S | denotes its cardinality.

2. Main Results

2.1. A null space condition

In [18], exploiting null space properties of A, a necessary and sufficient condition for suc-
cessful reconstruction of minimum-rank solutions via (3) are derived, yet there is a gap between
these conditions. In this paper, we close this gap by introducing the following lemma, which is
mainly based on a result from [19], and prove that the necessary condition in [18] is also suf-
ficient. Moreover, we will show that, using pSNM, one can uniquely recover all matrices with
equal or larger rank than those of uniquely recoverable by NNM.

Lemma 1. All matrices X ∈ Rn1×n2 of rank at most r can be uniquely recovered by (3), provided
that, ∀W ∈ N(A),

r∑
i=1

σ
p
i (W) <

n∑
i=r+1

σ
p
i (W).

It is worth mentioning that the sufficient condition in Lemma 1 is weaker than the corre-
sponding sufficient condition in [18] which, according to our notations, is formulated as

2r∑
i=1

σ
p
i (W) <

n∑
i=2r+1

σ
p
i (W).

Since
∑r

i=1 σ
p
i (W) ≤

∑2r
i=1 σ

p
i (W) and

∑n
i=r+1 σ

p
i (W) ≥

∑n
i=2r+1 σ

p
i (W), the sufficient condition

in Lemma 1 is less restrictive than [18, Theorem 3]. Based on the above sufficient condition, we
have the following proposition which is a routine extension of [14, Theorem 5].

Proposition 1. Let r∗p(A) and r∗1(A) denote the maximum ranks such that all matrices X with
rank(X) ≤ r∗p(A) and rank(X) ≤ r∗1(A) can be uniquely recovered by (3) and (2), respectively.
Then r∗p(A) ≥ r∗1(A) for any p ∈ (0, 1).
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2.2. RIP-based conditions
Inspired by the strong parallels between CS and ARM, [18] simplifies generalization of some

results on `1 norm minimization to nuclear norm minimization. Remarkably, it shows that all
RIP-based conditions for stable and robust recovery of sparse vectors through `1 norm mini-
mization directly generalize to nuclear norm minimization. Furthermore, [18] proves a similar
equivalence between RIP-based conditions for recovery of sparse vectors via `p quasi-norm min-
imization and recovery of low-rank matrices using pSNM. Nevertheless, the established equiva-
lence in [18, Lemma 14] is not as strong as one might expect. In essence, it shows an equivalence
between RIP conditions for recovery of 2k-sparse vectors and RIP conditions for reconstruction
of rank k matrices. However, it is natural to have the equivalence between sparsity and rank of
the same order. Utilizing Lemma 1, we make the order of sparsity and rank equal to k in the
aforementioned equivalence. To that end, first, formulation of `p quasi-norm minimization as
well as the definitions of RIP for vector and matrix cases are recalled.

In `p quasi-norm minimization, the program

min
x
‖x‖pp subject to ‖Ax − bv‖2 ≤ ε (5)

is used to estimate a sparse vector x ∈ Rmv from noisy measurements bv = Ax + ev in which
A ∈ Rnv×mv and bv ∈ Rnv are known and ev is noise vector with ‖ev‖2 ≤ ε.

Definition 1 ([20]). For matrix A and all integers k ≤ mv, the restricted isometry constant (RIC)
of order k is the smallest constant δk(A) such that

(1 − δk(A))‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk(A))‖x‖22

holds for all vectors x with sparsity at most k.

Definition 2 ([18]). For linear operator A and all integers r ≤ n, the RIC of order r is the
smallest constant δr(A) such that

(1 − δr(A))‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr(A))‖X‖2F

holds for all matrices X with rank at most r.

The following theorem formally shows how the results are extended to pSNM.

Theorem 1. Let x0 ∈ Rmv be any arbitrary vector, bv = Ax0 + ev, and x∗ denote a solution to (5)
to recover x0. Likewise, let X0 ∈ Rn1×n2 be any arbitrary matrix, b = A(X) + e, and X∗ denote
a solution to (4) to recover X0. Assume that RIP condition f (δk1 (A), · · · , δku (A)) < δ0, for some
function f , is sufficient to have

‖x0 − x∗‖p ≤ g1(x↓0, ε),
‖x0 − x∗‖2 ≤ g2(x↓0, ε),

for some functions g1 and g2. Then, under the same RIP condition f (δk1 (A), · · · , δku (A)) < δ0,
we have

‖X0 − X∗‖p ≤ g1(σ(X0), ε),
‖X0 − X∗‖F ≤ g2(σ(X0), ε).
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One of the best uniform thresholds on δ2k for finding k-sparse vectors using `p quasi-norm
minimization is given in [15]. This threshold works uniformly for any p ∈ (0, 1] and covers
exact recovery conditions as well as robust and accurate reconstruction of sparse and nearly-
sparse vectors from noisy measurements. Theorem 1 simply generalizes the results in [15] to
low-rank matrix recovery by means of the following proposition and corollary. To have a more
organized presentation, we use the inequality γ2t ≥ (1+δ2t)/(1−δ2t), where γ2t is the asymmetric
RIC defined in [15], to state our results in terms of δ2t (the RIC defined herein).

Proposition 2. Let X0 ∈ Rn1×n2 be any arbitrary matrix and A(X0) + e = b, where b ∈ Rm is
known and e is noise with ‖e‖2 ≤ ε. Suppose that X∗ is a solution to (4) to recover X0 for some
p ∈ (0, 1]. If

δ2t <
2(
√

2 − 1)(t/r)
1
p−

1
2

2(
√

2 − 1)(t/r)
1
p−

1
2 + 1

(6)

holds for some integer t ≥ r, then

‖X0 − X∗‖p ≤ C1‖X0 − X(r)
0 ‖p + D1r

1
p−

1
2 ε,

‖X0 − X∗‖F ≤ C2t
1
2−

1
p ‖X0 − X(r)

0 ‖p + D2ε.

The constants C1,C2,D1,D2 depend only on p, δ2t, t/r and are given in [15, Theorem 3.1]. In
particular, when ε = 0 and rank(X0) ≤ r, (6) implies that X0 is a unique solution to (3).

Two important special cases of the above sufficient condition are summarized in the following
corollary.

Corollary 1. The sufficient condition of Proposition 2 implies the following sufficient conditions
too:

• δ2r < 0.4531 for any p ∈ (0, 1],

• knowing r and δ2r+2 < 1, it is possible to find some p0 such that inequality (6) holds for all
0 < p < p0.

Theorem 1 also generalizes other recent RIP-based conditions in `p quasi-norm minimization
(e.g., the conditions in [21, 22]). In addition to the above conditions, below, we introduce another
sufficient condition which guarantees robust and accurate reconstruction of low-rank matrices.

Theorem 2. Under assumptions of Proposition 2, if

δ2t <
(t/r)

2
p−1
− 1

(t/r)
2
p−1

+ 1
(7)

holds for some integer t ≥ r, then

‖X0 − X∗‖p ≤ C′1‖X0 − X(r)
0 ‖p + D′1r

1
p−

1
2 ε,

‖X0 − X∗‖F ≤ C′2t
1
2−

1
p ‖X0 − X(r)

0 ‖p + D′2ε,

where the constants C′1,C
′
2,D

′
1,D

′
2 depend only on p, δ2t, t/r. In particular, when ε = 0 and

rank(X0) ≤ r, (7) implies that X0 is a unique solution to (3).
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Despite the fact that a uniform recovery threshold cannot be obtained from Theorem 2, sub-
stituting t with r + 1 in (7), we get

δ2r+2 <
(1 + 1/r)

2
p−1
− 1

(1 + 1/r)
2
p−1

+ 1
. (8)

Fixing r and δ2r+2, let p0 denote the maximum value such that all p ∈ (0, p0) satisfy (6) for
t = r + 1. Respectively, let p′0 denote the maximum value such that all p ∈ (0, p′0) satisfy (8).
Neglecting the constant terms, since, with the decrease of p, the power of (1 + 1/r) in (8) grows
twice that of in (6), it is expected that (8) guarantees accurate recovery for p′0 ≈

√
p0 when

thresholds in the right-hand side of (6) and (8) tend to 1. Figure 1 shows δ2r+2 thresholds derived
from Proposition 2 and Theorem 2 as a function of p for r = 5. As it is clear, the threshold
given in Theorem 2 becomes sharper than that of given in Proposition 2 after passing p ≈ 0.22.
Furthermore, it reaches to 1 at p ≈ 0.05, while the one from Proposition 2 approaches to 1 at
p ≈ 0.025. Recall that δ2r < 1 is a sufficient condition for the success of the original rank
minimization problem in (1) [1]. Consequently, the above result shows that, for a larger range of
p’s, pSNM is almost optimal since δ2r+2 < 1 guarantees its success.

3. Proofs of results

3.1. Preliminaries

We begin with a definition and a few lemmas.

Definition 3 ([23]). A function Φ(x) : Rn → R is called symmetric gauge if it is a norm on Rn

and invariant under arbitrary permutations and sign changes of x elements.

Lemma 2 ([19, Corollary 2.3]). Let Φ be a symmetric gauge function and f : [0,∞) → [0,∞)
be a concave function with f (0) = 0. Then for A,B ∈ Rn1×n2 ,

Φ

(
f
(
σ(A)

)
− f

(
σ(B)

))
≤ Φ

(
f
(
σ(A − B)

))
,

where f (x) = ( f (x1), . . . , f (xn))T .

Lemma 3. Let A,B ∈ Rn1×n2 . For any p ∈ (0, 1],

n∑
i=1

σ
p
i (A − B) ≥

n∑
i=1

|σ
p
i (A) − σp

i (B)|. (9)

Proof: It is obvious that Φ(x) =
∑n

i=1 |xi| and f (x) = xp, p ∈ (0, 1), satisfy conditions of
Lemma 2. Thus, (9) is an immediate result for p ∈ (0, 1). Moreover, (9) holds for p = 1 [23].

Lemma 4. Let W = U diag(σ(W))VT denote the SVD of W. If for some X0, ‖X0+W‖p ≤ ‖X0‖p,
then with X1 = −U diag(σ(X0))VT , we have ‖X1 + W‖p ≤ ‖X1‖p.

Proof: The proof easily follows from [18, Lemma 2] by replacing ‖ · ‖∗ with ‖ · ‖p and
applying inequality (9).
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3.2. Proofs

Proof of Lemma 1: If A(X) = b, then all feasible solutions to (3) can be represented as
X + W for some W ∈ N(A). Consequently, to prove that X is a unique solution to (3), we need
to show that ‖X + W‖pp > ‖X‖

p
p for all W ∈ N(A). Applying Lemma 3, it can be written that

‖X + W‖pp =

n∑
i=1

σ
p
i (X + W)

≥

n∑
i=1

∣∣∣σp
i (X) − σp

i (W)
∣∣∣

=

r∑
i=1

∣∣∣σp
i (X) − σp

i (W)
∣∣∣ +

n∑
i=r+1

σ
p
i (W)

≥

r∑
i=1

σ
p
i (X) −

r∑
i=1

σ
p
i (W) +

n∑
i=r+1

σ
p
i (W)

>

r∑
i=1

σ
p
i (X) = ‖X‖pp,

which confirms that X is the unique solution.
Proof of Theorem 1: The proof is a direct consequence of integrating Lemma 4 of this

paper and Theorem 1 and Lemma 5 of [18].
Proof of Theorem 2: For the sake of simplicity, we prove this theorem for the vector

case and by virtue of Theorem 1 matrix case will follow. Let x∗ denote a solution to (5) and
v = x∗−x0, where x0 is the arbitrary vector we want to recover. Furthermore, let S 0 ⊂ {1, · · · , nv}

with |S 0| ≤ r. We partition S c
0 = {1, · · · , nv}\S 0 to S 1, S 2, · · · with |S i| = t probably except for

the last set. As a result, vS i , i ≥ 0 denote a vector obtained by keeping entries of v indexed by S i

and setting all other elements to 0.
Our proof is the same as in [15, Theorem 3.1] except the way in which ‖vS 0‖2 and ‖vS 1‖2

are bounded. Hence, we use the same notation and only focus on the bounding and omit other
details. By applying the RIP definition, we get

‖vS 0 + vS 1‖
2
2 ≤

1
1 − δ2t

‖A(vS 0 + vS 1 )‖22

=
1

1 − δ2t
〈A(v −

∑
i≥2

vS i ),A(v −
∑
i≥2

vS i )〉

=
1

1 − δ2t

[
‖Av‖22 + 2

∑
i≥2

〈Av,−AvS i〉

+
∑
i, j≥2

〈AvS i ,AvS j〉

]
. (10)

Now, we find upper bounds for the terms in (10). Considering the second term in (10), it can
be written that

〈Av,−AvS i〉 ≤
√

1 + δ2t‖Av‖2‖vS i‖2. (11)

Since 〈vS i , vS j〉 = 0 for i , j, [20, Lemma 2.1] implies that

〈AvS i ,AvS j〉 ≤ δ2t‖vS i‖2‖vS j‖2, ∀i , j. (12)
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Also,
〈AvS i ,AvS i〉 ≤ (1 + δ2t)‖vS i‖

2
2. (13)

Putting (11)-(13) in (10) and letting Σ =
∑

i≥2 ‖vS i‖2, we get

‖vS 0‖
2
2 + ‖vS 1‖

2
2

≤
1

1 − δ2t

[
‖Av‖22 + 2

√
1 + δ2t‖Av‖2Σ

+δ2t

∑
i, j≥2
i, j

‖vS i‖2‖vS j‖2 + (1 + δ2t)
∑
i≥2

‖vS i‖
2
2

]

=
1

1 − δ2t

[
‖Av‖22 + 2

√
1 + δ2t‖Av‖2Σ + δ2tΣ

2

+
∑
i≥2

‖vS i‖
2
2

]
≤

1
1 − δ2t

[
‖Av‖22 + 2

√
1 + δ2t‖Av‖2Σ

+(δ2t + 1)Σ2
]

(14)

where, for the last inequality, we use
∑

i≥2 ‖vS i‖
2
2 ≤

(∑
i≥2 ‖vS i‖2

)2
. Inequality (14) can be reduced

to

‖vS 0‖2 ≤
1

√
1 − δ2t

[
‖Av‖2 +

√
1 + δ2tΣ

]
,

‖vS 1‖2 ≤
1

√
1 − δ2t

[
‖Av‖2 +

√
1 + δ2tΣ

]
.

The rest of the proof is similar to [15, Theorem 3.1] with new parameters λ = 2/
√

1 − δ2t and
µ =
√

1 + δ2t/
√

1 − δ2t(r/t)
1
p−

1
2 . Therefore, in this proof, from µ < 1, we get

δ2t <
(t/r)

2
p−1
− 1

(t/r)
2
p−1

+ 1
,

and, after some simple algebraic manipulations, we obtain

‖x0 − x∗‖p ≤ C′1‖x0 − x(r)
0 ‖p + D′1r

1
p−

1
2 ε,

‖x0 − x∗‖2 ≤ C′2t
1
2−

1
p ‖x0 − x(r)

0 ‖p + D′2ε,

with constants

C′1 =
2

2
p−1(1 + µp)

1
p

(1 − µp)
1
p

, D′1 =
2

2
p−1λ

(1 − µp)
1
p

,

C′2 =

(
1 + 2

√
1 + δ2t

1 − δ2t

) 2
2
p−1

(1 − µp)
1
p

,

D′2 = 2λ +

(
1 + 2

√
1 + δ2t

1 − δ2t

) 2
1
p−1λ

(1 − µp)
1
p

.
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4. Conclusion

In the affine rank minimization problem, it is experimentally verified that Schatten-p quasi-
norm minimization is superior to nuclear norm minimization. In this paper, we established a
theoretical background for this observation and proved that, under a weaker sufficient condition
than that of nuclear norm minimization, global minimization of the Schatten-p quasi-norm sub-
ject to compressed affine measurements leads to unique recovery of low-rank matrices. To show
that this approach is robust to noise and being approximately low-rank, we generalized some-RIP
based results in `p quasi-norm minimization to Schatten-p quasi-norm minimization.
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Figure 1: Recovery thresholds from Proposition 2 and Theorem 2 as a function of p. r is fixed to 5, and thresholds are
independent of matrix dimensions.

10


