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Abstract

The main motivation behind compressive sensing is to reduce the sampling rate

at the input of a digital signal processing system. However, if for processing the

sensed signal one requires to reconstruct the corresponding Nyquist samples,

then the data rate will be again high in the processing stages of the overall

system. Therefore, it is preferred that the desired processing task is done directly

on the compressive measurements, without the need for the reconstruction of

the Nyquist samples. This paper addresses the case in which the processing

task is “detection” (the existence) of a sparse signal in additive white Gaussian

noise, with applications e.g. in radar systems. Moreover, we will propose two

estimators for estimating the degree of sparsity of the detected signal. We will

show that one of the estimators attains the Cramér-Rao lower bound of the

problem.

Keywords: compressed sensing, detection-estimation, compressive sensing

radar, generalized likelihood ratio test

1. Introduction

Detection of a sparse signal in additive white Gaussian noise (AWGN) from a

small number of compressive measurements without signal reconstruction is an

interesting subject that has received recent consideration [3], [11], [16], [2], [17].

This interest arises from a desire to avoid the difficulties caused by reconstruct-5

ing the original signal for detection. Note that by using compressed sensing, the

data rate is greatly reduced, that is, the rate of measurements is much lower
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than the Nyquist rate. However, if for processing the measurements, one needs

to reconstruct the original signal, (i.e. reconstruct the Nyquist samples) then

the data rate is again very high. In other words, compressed sensing will not10

be very useful if the Nyquist samples are needed again to be reconstructed in

some part of the system, and it is desirable to do the required process (sparse

signal detection and parameter estimation) directly based on compressed mea-

surements [4].

To the best of our knowledge, this problem has not yet been modeled using15

the sparse signal as a random process with an appropriate a priori probability

density function (PDF). In [3], [2], [17], the signal is not random and there is no

specific property in the signal modeling to express its sparsity. Authors of [16]

exploit sparsity by performing the detection for all possible support patterns

with fixed size on average. Therefore, the degree of sparsity (or equivalently,20

the support size) must be known exactly and this is difficult in practice.

In some studies (e.g. [11], [16]), it is assumed that the random signal has a

Gaussian PDF, which is not a suitable distribution for modeling sparsity. Here,

in contrast to these works, a sparsity-enforcing a priori PDF is assumed for the

signal, and a new detection algorithm along with a sparsity degree estimation25

is proposed.

The paper is organized as follows. In Section 2, the problem of detecting a

sparse signal in AWGN is modeled mathematically and a solution is provided

for this model. In fact, by using a random model for the sparse signal and

assuming that the number of Nyquist samples is large, the distribution of the30

measurements vector when the signal exits, can be approximated by a Gaus-

sian distribution. This is achieved by using the central limit theorem (CLT).

Moreover, since the sparsity degree of the signal is unknown, it is needed to

rely on a generalized likelihood ratio test (GLRT) approach. In Section 3, the

relationship between the signal to noise ratio (SNR) at the input of the detector35

and the SNR of the presented detector statistic is studied for high input SNRs.

In Section 4, the performance of the proposed estimator for the sparsity degree

is investigated and it is shown that the estimator attains the Cramér-Rao lower
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bound (CRLB), that is, it is an efficient estimator. However, there is no guaran-

tee that the estimated probability of activity is less than 1. Therefore, another40

estimator is proposed that is guaranteed to estimate this probability less than 1

but it does not attain the CRLB. Nevertheless, the variance of the estimator is

close to the CRLB. Finally, Section 5 presents simulation results for detection

of the sparse signal and estimation of the degree of sparsity.

Notations: For any vector y, its transpose is yT . For any square matrix A,45

its determinant is denoted by |A|. The probability of an event A is represented

by P{A}. The expectation and covariance matrix of a random vector y are

denoted by E{y} and cov{y}, respectively. Moreover, IM stands for the M×M

identity matrix.

2. Our problem modeling and solution50

Detecting a sparse signal in AWGN is mathematically expressed as the hy-

pothesis testing problem H0 : y = Φn

H1 : y = Φ(s + n),

(1)

where yM×1 is the measurements vector, ΦM×N is the compressed sensing mea-

surement matrix where elements are drawn from a random Gaussian matrix with

independent identically distributed (i.i.d.) elements having zero mean and unit

variance (it should be noted that at the detector side, the matrix Φ is randomly

chosen and then kept fixed), and M � N . Moreover, nN×1 is the AWGN sam-55

ples vector at the receiver with a normal distribution, having zero mean and

variance σ2
n as N (0, σ2

nIN ), and sN×1 is the samples vector of the sparse signal.

In this paper, σ2
n is a priori known (note that in practice, it can be measured

in the absence of the sparse signal). In [4], detection of a target is studied for a

simple radar application in which the radar signal is sparse.60

To model the sparse signal, we assume that each element is independent of

the others, and that it is “inactive” (i.e. nearly zero) with probability 1 − p
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having a normal distribution N (0, σ2
off), and it is “active” with probability p

having a normal distribution N (0, σ2
on), where σ2

on � σ2
off. Here p is the sparsity

degree of the signal and therefore is close to 0. The above assumptions result in s65

being an i.i.d. vector with elements each having a distribution (1−p)N (0, σ2
off)+

pN (0, σ2
on). This is called the i.i.d. Bernoulli-Gaussian distribution, which has

been frequently used in the literature to model sparsity [8], [13], [6], [12]. In this

paper, p is not a priori known but σon and σoff are. In fact, σon and σoff can

be pre-estimated by knowing the nature of the signal. For most of the sparse70

signals σoff = 0 but for some of them (for example seismic signals [8]) this is not

the case.

Let p0 denote the a priori probability of theH0 hypothesis. In order to derive

the maximum a posteriori (MAP) detector, the likelihood ratio test (LRT)

should be computed.75

Observe that the distribution under hypothesis H1 of test (1) is difficult

to be obtained analytically for small number of samples. Fortunately, if we

assume that N is sufficiently large, this distribution can be approximated by a

multivariate Gaussian. Since y under H1 is a linear transformation of a large

random vector, the Lyapounov CLT can be used [1, Section 27] (for the sake of80

readability, this theorem is reviewed in Appendix A). This allows us to state

the following theorem:

Theorem 1. If it is assumed that the number of Nyquist samples (N) is suf-

ficiently large, then the logarithm of the likelihood ratio test (LLRT) can be

approximated by

LLRT(y|p) =
M

2
ln
( σ2

n

σ2
n + σ2(p)

)
+

σ2(p)

2σ2
n(σ2

n + σ2(p))
yTA−1y

H1

≷
H0

p0

1− p0
, (2)

where σ2(p) , pσ2
on + (1− p)σ2

off and A , ΦΦT .

Proof. See Appendix B.

As p is unknown, a GLRT should be used, i.e. LLRT(y|p) should be max-

imized over p to find the optimum value popt, and then compare GLR(y) =
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LLRT(y|popt) with an appropriate threshold. After some straightforward ma-

nipulations (taking the derivative of LLRT(y|p) with respect to p and finding

its root), popt can be derived as

popt =
1

σ2
on − σ2

off

( 1

M
yTA−1y − σ2

n − σ2
off

)
. (3)

It can be verified that at popt, the second derivative of the log-likelihood function

is negative. In fact, it can be written as

d2
(
LLRT(y|p)

)
dp2

∣∣∣∣
p=popt

= − M(σ2
on − σ2

off)2

2(σ2
n + poptσ2

on + (1− popt)σ2
off)2

< 0. (4)

Finally, the GLRT detector is GLR(y)≷H1

H0

p0

1−p0
which can be simplified as the

following detector

t
H1

≷
H0

Th, (5)

in which

t =
1

Mσ2
n

yTA−1y − ln(yTA−1y), (6)

Th =
2

M
ln
( p0

1− p0

)
− ln(Mσ2

n) + 1. (7)

If the Cholesky factorization is used for the matrix A−1 as A−1 = LLT ,

yTA−1y can be rewritten as wTw where w , LTy. Therefore, (5) can be

restated as

t1
H1

≷
H0

Th1, (8)

in which

t1 = −M
2

ln(wTw)− 1

2wTw
wTw −

(
− M

2
ln(σ2

n)− 1

2σ2
n

wTw
)
, (9)

Th1 = ln
( p0

1− p0

)
− M

2
lnM +

M − 1

2
. (10)

The test statistic in (9), is a likelihood ratio between the variable that has its85

observed variance with respect to that variable having a variance σ2
n, a classical

detection in noise scenario, using the observed variance instead of an a priori

known variance under H1.
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2.1. Detector after reconstruction

We present here, the detector based on the reconstructed signal, since later

we will compare its performance with the detector obtained from test (1). In

fact, after reconstruction, the hypothesis test will beH0 : ŷ = n

H1 : ŷ = s + n.

(11)

where ŷ is the vector of the reconstructed measurements. Therefore

f(ŷ|H0) =
1

(2πσ2
n)

N
2

exp
{
− ‖ŷ‖

2
2

2σ2
n

}
. (12)

Under H1 hypothesis, each element of the vector ŷ is ŷi = si+ni for i = 1, . . . , N

where si and ni are the elements of the vectors s and n, respectively. si and

ni are independent of each other. si has a normal distribution N (0, σ2
on) with

probability p and a normal distribution N (0, σ2
off) with probability 1 − p. ni

has a normal distribution N (0, σ2
n). Therefore, ŷi has a normal distribution

N (0, σ2
on +σ2

n) with probability p and has a normal distribution N (0, σ2
off +σ2

n)

with probability 1− p. In other words, ŷi has a distribution pN (0, σ2
on + σ2

n) +

(1− p)N (0, σ2
off + σ2

n). On the other hand, ŷi for i = 1, . . . , N are independent

of each other because, the vectors s and n are both i.i.d. and independent of

each other. Hence

f(ŷ|H1) =

N∏
i=1

(
p√

2π(σ2
on + σ2

n)
exp

{
− |ŷi|2

2(σ2
on + σ2

n)

}
+

1− p√
2π(σ2

off + σ2
n)

exp
{
− |ŷi|2

2(σ2
off + σ2

n)

})
.

(13)

Consequently, the logarithm of the likelihood ratio test is

ln
(f(ŷ|H1)

f(ŷ|H0)

)
=

N∑
i=1

ln

(
p√

σ2
on + σ2

n

exp
{
− |ŷi|2

2(σ2
on + σ2

n)

}
+

1− p√
σ2

off + σ2
n

exp
{
− |ŷi|2

2(σ2
off + σ2

n)

})
+N lnσn +

‖ŷ‖22
2σ2

n

.

(14)
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3. The SNR of the presented detector90

It seems that obtaining a closed form formula for the receiver operating

characteristic (ROC) of the presented detector would be too tricky. This is

mainly due to the presence of the natural logarithm term in (6). Therefore, as a

measure of the detector performance, the relationship between the SNR at the

input of the detector and the SNR at the threshold comparison is computed.

The signal at the input of the detector is yin = s + n, in which s is the signal

term and n is the noise term. Therefore the signal power is E{‖s‖2} = Nσ2(p)

and the noise power is E{‖n‖2} = Nσ2
n. Hence, the input SNR will be

SNRin =
Nσ2(p)

Nσ2
n

=
σ2(p)

σ2
n

. (15)

The SNR at the threshold comparison is given in the following theorem.

Theorem 2. If the input SNR is sufficiently high, the SNR at the threshold

comparison is

SNRdet ,
E{signal part in the detector statistic}
E{noise part in the detector statistic}

=
SP

NP
=
σ2(p)

σ2
n

, (16)

which is the same as the input SNR.

Proof. See Appendix C.

Remark: In the above theorem, by sufficiently high (say above 7dB1), we

mean so high that yTA−1y is large enough such that t (defined in (6)) can be95

approximated by its first term, that is, t ∼= 1
Mσ2

n
yTA−1y.

4. Performance evaluation of the sparsity degree estimator

From (3), the proposed estimator for the sparsity degree is

p̂ =
1

σ2
on − σ2

off

( 1

M
yTA−1y − σ2

n − σ2
off

)
, (17)

1For example, in radar applications, the SNR above 12dB is usually considered high.
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where y = Φ(s + n). Note that, if the following two parameters are defined as

σ2
∆ , σ2

on − σ2
off, and σ2

η , σ2
off + σ2

n, it is clear that σ2 + σ2
n = σ2

η + pσ2
∆ and

hence, p̂ =
1
M yTA−1y−σ2

η

σ2
∆

.100

Theorem 3. The proposed estimator (17) is unbiased and it attains the CRLB

of the problem which equals
2(σ2(p)+σ2

n)2

M(σ2
on−σ2

off)2 = 2
M

(
σ2
η

σ2
∆

+ p
)2

.

Proof. See Appendix D.

From the above theorem, it is obvious that a small CRLB is obtained for large

number of measurements (M), small sparsity degree (p) or when the difference105

between the active and inactive variances (σ2
on and σ2

off) is much larger than the

total noise variance (σ2
η).

In the simulations, the estimator after reconstruction is needed for compari-

son. In fact, the reconstructed signal is ŷ = s+n. As it was discussed at the end

of Section 2, the reconstructed signal is a Gaussian mixture, since each element

of the vector ŷ has the distribution pN (0, σ2
on + σ2

n) + (1 − p)N (0, σ2
off + σ2

n).

Therefore, the parameters of the mixture including the mixture weights, i.e. p

and 1 − p can be estimated by using the expectation-maximization algorithm

[7, Section 2.8].

Remark: There is no guarantee that p̂ ≤ 1. However, as it is shown in

Appendix E, we have p̂ ≤ 1 with a probability very close to 1. In fact,

in Appendix E a new estimator is proposed that is guaranteed to be less

than 1. The new estimator is p̂new = min{1,p̂}−1+α
α where α is the probabil-

ity that p̂ ≤ 1, that is, α , P{p̂ ≤ 1}. The variance of the new estimator is

σ2
p̂new

= 1−α
α (1− p)2 + 1

αCRLB in which CRLB is as given in Theorem 3. It is

observed that the new proposed estimator does not attain the CRLB. However,

it is a just little larger than the CRLB, since α is very close to 1 (for example

for p = 0.1, σon = 1, σoff = 0.1, SNRin = 7dB, and M = 66, if F (x,M) is de-

fined as the cumulative density function (CDF) of a chi-square random variable

with M degrees of freedom, we have α = F (515.76, 66) which is calculated as 1

under MATLAB precision and therefore σ2
p̂new

∼= CRLB = −32.77dB). Another

estimator can be p̂1 = min{1, p̂}, however, as it is shown in Appendix E, it is a
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biased estimator, and its bias is equal to B(p) = E{min{1, p̂}}−p = (1−α)(1−p).

Since α is very close 1, the bias is nearly zero. For the above mentioned

biased estimator, the CRLB can be computed as
(

1 + d
dpB(p)

)2

/I(p) where

I(p) , −E
{
∂2 ln f(y; p)/∂p2

}
and f(y; p) is the PDF of the measurements un-

der the H1 hypothesis which is a function of p [15, Problem 2.4.17]. I(p) has

been calculated in Appendix D (see (D.8)), from which, the CRLB for the

biased estimator is obtained as

CRLBbiased ,

(
1 + d

dpB(p)
)2

I(p)
=

2α2(σ2(p) + σ2
n)2

M(σ2
on − σ2

off)2
. (18)

Again since α is very close to 1, the above CRLBbiased is very close to the CRLB

given in Theorem 3. Moreover, from Appendix E, the variance and the mean

square error (MSE) of the biased estimator can be calculated as

var{p̂1} , E{p̂2
1} − E2{p̂1} = E{min{1, p̂}2} − E2{min{1, p̂}}

= α(1− α)(1− p)2 +
2α(σ2(p) + σ2

n)2

M(σ2
on − σ2

off)2
, (19)

MSE{p̂1} , var{p̂1}+ B2(p) = (1− α)(1− p)2 +
2α(σ2(p) + σ2

n)2

M(σ2
on − σ2

off)2
. (20)

As α is very close to 1, the variance and the MSE of the biased estimator is

very close to the CRLBbiased, and consequently to the CRLB.

5. Results and simulations110

In this section, seven simulations are conducted to experimentally evaluate

the performance of the proposed algorithm for sparse signal detection and spar-

sity degree estimation. In all of these simulations, the following parameters are

fixed

p = 0.1, σoff = 0.1, σon = 1, p0 = 0.5, N = 1320.

In what follows, for each ROC figure, the area under the curve (AUC) is given

in a table. Moreover, by the compression ratio (CR) we mean the fraction N
M .

9



Experiments 1 and 2. performance evaluation for the low input SNRs

In these experiments, the presented detector performance is studied and

compared with the traditional detector at low input SNRs (by “traditional de-115

tector”, we mean the detector that first reconstructs the signal from its com-

pressive measurements and then uses the GLRT traditional detector explained

in Eqs. (11) to (14)). The GLRT detector statistic in (6) is probably too tricky

to be simplified and obtain a closed form formula for the ROC. This is due to the

presence of the natural logarithm term in (6). Therefore, two simulations are120

performed to evaluate the detector performance at low input SNRs empirically.

At first, the ROC curves2 are plotted empirically for the CRs 20 and 80 at

the input SNR 3dB in Fig. 1. As is observed, the proposed detector performance

is acceptable for the CRs lower than around 20: the signal can be detected with

a probability near 1, while using only about 5% of the number of measurements125

as for the Nyquist samples. For comparison, the ROC curves for the CS method

with reconstruction at SNRin = 3dB are also plotted. The OMP algorithm [14]

is used for CS reconstruction. As can be seen, again the detection is good for the

CRs lower than around 20 (the detection probability is near 0.9 for all false alarm

probabilities). Because the input SNR is low, the reconstruction algorithm does130

not work as well as the proposed detector. Therefore, the performance of the

detector after reconstruction is degraded and to have a better performance, the

CR should be decreased.

In the second simulation, the ROC curves are derived for the low input

SNRs 0dB and 6dB at CR = 40 empirically and depicted in Fig. 2. From the135

figure, it is obvious that the proposed detector performance is reasonable (the

detection probability is near 1) for the input SNR 6dB. While this is a good

result, the CR must be decreased if it is necessary to perform the detection at the

2In the simulations, the ROC curves are obtained as follows: For a fixed probability of

false alarm (pf ), a threshold (Th) is obtained for the detector in (5). From the determined

threshold, the value of the probability of detection (pd) is calculated. Therefore, by sweeping

pf , different values of pd and hence, multiple points in the ROC curve are achieved.
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0 0.2 0.4 0.6 0.8 1
pf

0

0.2

0.4

0.6

0.8

1

p
d

N=M = 20 without CS reconstruction

N=M = 80 without CS reconstruction

N=M = 20 with CS reconstruction

N=M = 80 with CS reconstruction

Figure 1: The empirical ROC curves for the CRs 20 and 80 at fixed SNRin = 3dB (the low

input SNR).

Curve AUC

N/M = 20 without CS reconstruction 0.9999

N/M = 80 without CS reconstruction 0.9653

N/M = 20 with CS reconstruction 0.9989

N/M = 80 with CS reconstruction 0.9635

Table 1: AUC for the curves in Fig. 1

lower input SNRs. In fact, there is a tradeoff between the maximum reachable

CR and the minimum acceptable input SNR for a tolerable detector quality.140

Therefore, these factors should be chosen carefully if the desired performance

is to be achieved. For comparison, the ROC curves for the CS method with

reconstruction at CR = 40 are also plotted. It can again be seen that, to have

an acceptable detection performance, the input SNR should be increased.

Experiments 3, 4 and 5. performance evaluation for the high input145

SNRs

In these experiments, the presented detector performance is studied and

11



0 0.2 0.4 0.6 0.8 1
pf

0

0.2

0.4

0.6

0.8

1

p
d

SNRin = 6dB without CS reconstruction

SNRin = 0dB without CS reconstruction

SNRin = 6dB with CS reconstruction

SNRin = 0dB with CS reconstruction

Figure 2: The empirical ROC curves for the low input SNRs 0dB and 6dB for CR = 40.

Curve AUC

SNRin = 6dB without CS reconstruction 0.9999

SNRin = 0dB without CS reconstruction 0.9425

SNRin = 6dB with CS reconstruction 0.9995

SNRin = 0dB with CS reconstruction 0.9321

Table 2: AUC for the curves in Fig. 2

compared with the traditional detector at the high input SNRs.

In the first experiment, the ROC curves are plotted for the CRs 80 and 320

at the fixed input SNR 11dB (Fig. 3). It can be seen that for CR = 80, the150

proposed detector has a high performance quality, i.e. the detection probability

is always near 1 even at small probabilities of false alarm. Also, the ROC curves

are plotted for the same settings, when CS reconstruction is used. As seen, for

small false alarm probabilities the detector performance is degraded. This is

mainly because, the number of measurements is small. Moreover, for the low155

input SNRs (Fig. 1), although the number of measurements is high, at small

false alarm probabilities the performance is degraded even more, but this is due

12



0 0.2 0.4 0.6 0.8 1
pf

0.7

0.75

0.8

0.85

0.9

0.95

1

p
d

N=M = 80 without CS reconstruction

N=M = 320 without CS reconstruction

N=M = 80 with CS reconstruction

N=M = 320 with CS reconstruction

Figure 3: The ROC curves for the CRs 80 and 320 at fixed SNRin = 11dB (the high input

SNR).

Curve AUC

N/M = 80 without CS reconstruction 0.99990

N/M = 320 without CS reconstruction 0.9854

N/M = 80 with CS reconstruction 0.99989

N/M = 320 with CS reconstruction 0.9911

Table 3: AUC for the curves in Fig. 3

to the low-SNR reconstruction.

The second simulation is performed to examine the ROC curves for the high

input SNRs 8dB and 14dB at fixed CR = 160. The results are shown in Fig. 4.160

As expected, for the proposed detector the detection probability is above 0.95

for the input SNR 14dB. In fact, by increasing the input SNR above around

14dB, the performance of the detector does not improve much. The reason is

the high compression ratio. For the same settings but with CS reconstruction,

the ROC curves are also plotted. It is again seen that, for all of the SNRs, the165

detector performance at low probabilities of false alarm deteriorates. In fact, in
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0 0.2 0.4 0.6 0.8 1
pf

0.6

0.7

0.8

0.9

1

p
d

SNRin = 14dB without CS reconstruction

SNRin = 8dB without CS reconstruction

SNRin = 14dB with CS reconstruction

SNRin = 8dB with CS reconstruction

Figure 4: The ROC curves for the high input SNRs 8dB and 14dB for CR = 160.

Curve AUC

SNRin = 14dB without CS reconstruction 0.999843

SNRin = 8dB without CS reconstruction 0.9919

SNRin = 14dB with CS reconstruction 0.999839

SNRin = 8dB with CS reconstruction 0.9924

Table 4: AUC for the curves in Fig. 4

order to improve the performance of the detector after reconstruction, both the

input SNR and the number of measurements should be increased. Note that,

the tradeoff between the input SNR and the CR is again seen in Experiments 3

and 4.170

In the third experiment, the behavior of the detection probability versus the

CR is investigated for different input SNRs. Here the false alarm probability

is fixed as pf = 10−4. From Fig. 5, it is seen that, for the proposed detector,

in order to have a probability of detection greater than 0.9, for input SNRs

lower than 12dB, the CR should be lower than 20, and for input SNRs greater175

than 6dB, the CR should be lower than 320. In fact, as the input SNR de-
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100 101 102

CR

0.2

0.4

0.6

0.8

1

p d

SNRin = 0dB

SNRin = 6dB

SNRin = 12dB

SNRin = 0dB

SNRin = 6dB

SNRin = 12dB

Figure 5: The probability of detection (pd) versus the CR for different input SNRs at fixed

probability of false alarm pf = 10−4. The first three legends are related to the simulated

curves without CS reconstruction and the second three legends are related to the simulated

curves with CS reconstruction.

creases, much more measurements is needed to have an acceptable probability

of detection. Overall, the detector performance is so good that for the input

SNRs greater than 0dB the number of measurements can be decreased to as

low as about 2.5% of the Nyquist samples and still produce a high performance180

quality. For comparison, SNR curves are depicted for the same settings, when

CS reconstruction is used. It is seen that at high input SNRs and at low CRs,

the performances of the detector after reconstruction and the proposed detector

are similar.

Experiment 6. Computational cost185

In this experiment, the computational cost of the presented detector is stud-

ied and compared with the detector after reconstruction (here, for the recon-

struction stage, two algorithms have been used, namely OMP as a greedy al-

gorithm and basis pursuit de-noising (BPDN) as a penalization algorithm). In

fact, the averaged CPU time over 100 simulations is used as a rough measure190
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d
s detector after reconstruction with BPDN

detector after reconstruction with OMP
the proposed detector

Figure 6: The mean calculation time in seconds versus the CR for the presented detector and

also the detector after reconstruction.

of the detection algorithm complexity for different CRs.3

The result is depicted in Fig. 6. It is seen that the presented detector is

always 2 degrees of magnitude better than the detector after reconstruction

with either OMP or BPDN algorithm. This is because, the reconstruction

process is highly computational. It should be noted that, for low CRs, the195

difference in the mean calculation time between the detectors is larger because

more measurements are obtained.

We re-emphasize here that the main added-value of our approach is not de-

creasing the computational load, but it is keeping the data rate small in all parts

of the system (because we are working directly with compressive measurements,200

without the need for reconstructing high rate Nyquist samples).

3The simulations are performed in MATLAB R2015b environment using Intel (R) Core

(TM) i7-4720HQ @ 2.60GHz processor with 16GB of memory, and under 64 bit Microsoft

Windows 10 operating system.
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Experiment 7. Sparsity estimation accuracy

In this simulation, the accuracy of the estimation of the signal sparsity is

studied. Here, the simulation is run 100 times. The MSE of the estimated

sparsity for the two proposed estimators and also for the estimators after re-205

construction with OMP and BPDN, and the CRLB are computed for the two

input SNRs 3dB and 11dB. As shown in Figs. 7 and 8, the proposed estimators

approximately attain the CRLB (It is notable that the two proposed estimators

have nearly the same MSE). Moreover, by increasing the SNR and decreasing

the CR, the MSE of the estimation decreases. This can be deduced from (D.2) in210

which by increasing the number of measurements (M) and decreasing the noise

variance (σ2
n), the variances of the estimators decrease. Therefore, although the

detection performance is of high quality for the high CRs, more measurements

are needed to provide a good estimation of signal sparsity. Also from Figs. 7

and 8, it is observed that, the MSE of the estimators after reconstruction is215

nearly 2 dB and 1 dB greater than the CRLB for the low and high input SNRs,

respectively. Moreover, for very high CRs, the difference between the MSE and

the CRLB is more. This is because, for very high CRs the reconstruction is not

as efficient as for the low CRs.

6. Conclusion220

In this paper, it has been shown that the detection of a sparse signal in

AWGN and the estimation of its degree of sparsity can be accomplished using

compressive measurements without signal reconstruction. In fact, performing

the detection and estimation directly in the compressive space allows to keep

the rate of measurements low through all the parts of the digital processing225

system. Here, the proposed approach for deriving the detector and the estima-

tors is related to the signal sparsity implicitly. In fact, in order to maintain the

information of the signal in the dimensionality reduction with random projec-

tions, the signal should be sparse. For the proposed detector, by using a CR as

high as 20 for the low SNRs and as high as 80 for the high SNRs, the detection230
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Figure 7: The mean square error of the estimated sparsity for the two proposed estimators

and the CRLB in dB versus the CR for the input SNR 3dB (the low input SNR).
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Figure 8: The mean square error of the estimated sparsity for the two proposed estimators

and the CRLB in dB versus the CR for the input SNR 11dB (the high input SNR).

performance is very high (the probability of detection is always near 1). This is

in contrast to what is observed in standard detection of sparse signals where, for
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both the low and high SNRs, acceptable results are obtained only for the CRs

less than 20. Moreover, in regard to the complexity, the presented detector is at

least 2 degrees of magnitude better than the detector after reconstruction. For235

the proposed estimators, however, in order to produce an acceptable estimation

quality for both the low and high SNRs, a CR less than 20 is needed.

Appendix A. Lyapounov CLT [1, Section 27]

Suppose that, the sequence of random variables {x1, x2, . . . } satisfies the

following two conditions:240

Condition 1: All of these random variables are independent, each with

finite mean µi and variance σ2
i .

Condition 2: For some δ > 0:

lim
n→∞

1

s2+δ
n

n∑
i=1

E
{
|xi − µi|2+δ

}
= 0, (A.1)

where s2
n ,

∑n
i=1 σ

2
i .

Then, the sum of xi−µi
sn

converges in distribution to a standard normal random

variable as n goes to infinity, i.e.

1

sn

n∑
i=1

(xi − µi)→ N (0, 1). (A.2)

In practice, it is sufficient to check the second condition for δ = 1.

Appendix B. Proof of Theorem 1245

To calculate the LRT, the PDFs of the measurements vector should be found

conditioned on the H0 and H1 hypotheses. This is done in the following two

lemmas.

Lemma 1. The measurements vector distribution conditioned on H0 is normal

N (0, σ2
nΦΦT ), i.e.

f(y|H0) =
1

(2πσ2
n)

M
2 |A| 12

exp
{
− 1

2σ2
n

yTA−1y
}
, (B.1)
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where A , ΦΦT .

Proof. Because the noise vector has a normal distribution, the measurements250

vector distribution conditioned on H0 is also normal with covariance matrix

A = ΦΦT [9, Section 6.2].

Lemma 2. If it is assumed that the number of Nyquist samples (N) is suffi-

ciently large, then the PDF of the measurements vector conditioned on the H1

hypothesis will be a Gaussian distribution with zero mean and covariance matrix

(σ2(p) + σ2
n)A where σ2(p) , pσ2

on + (1− p)σ2
off, i.e.

f(y|H1, p) = N (0, (σ2(p) + σ2
n)A). (B.2)

Proof. In order to find the PDF of the measurements vector conditioned on the

H1 hypothesis, i.e. f(y|H1), at first f(z|H1) where z , Φs should be computed.

Let zi, i = 1, 2, . . . ,M and si, i = 1, 2, . . . , N denote the i-th element of z and s,

respectively. Then,

zk =

N∑
i=1

φkisi =

N∑
i=1

tki, (B.3)

in which φki stands for the (k, i)-th element of Φ, and tki , φkisi. The mean

and variance of each term in the above summation can be computed as

µki , E{tki} = φkiE{si} = 0 (B.4)

σ2
ki , var{tki} = φ2

ki

(
pσ2

on + (1− p)σ2
off

)
= φ2

kiσ
2(p), (B.5)

where σ2(p) , pσ2
on + (1− p)σ2

off.

It is now verified that the random variables tki fulfill both conditions of

Lyapounov CLT theorem (expressed in Appendix A): {tki}Ni=1 are independent

because {si}Ni=1 are independent, moreover, for each i, the mean and variance

of tki are finite (condition 1). By defining xnk as x2
nk ,

∑n
i=1 σ

2
ki for each

n = 1, 2, . . . , it can be verified that for δ = 1, condition 2 is satisfied, i.e.

20



limn→∞
1

x2+δ
nk

∑n
i=1 E{|tki − µki|2+δ} = 0. In other words, for δ = 1,

E{|tki − µki|2+δ} = |φki|3E{|si|3}

= 2

√
2

π
|φki|3

(
pσ3

on + (1− p)σ3
off

)
, (B.6)

where the third order moments of normal random variables have been calculated

using [9, Section 5.4]. Therefore

lim
n→∞

1

x2+δ
nk

n∑
i=1

E{|tki − µki|2+δ}

= 2

√
2

π

pσ3
on + (1− p)σ3

off

σ3(p)
lim
n→∞

∑n
i=1 |φki|3(∑n
i=1 |φki|2

) 3
2

(B.7)

= 2

√
2

π

pσ3
on + (1− p)σ3

off

σ3(p)
lim
n→∞

n
(
2
√

2
π

)
n

3
2

= 0, (B.8)

where the law of large numbers (LLN) [9, Section 7.4] has been used for the

calculation of the limit in the above equation.255

Since the two conditions of the Lyapounov CLT are satisfied, the sum of

tki−µki
xnk

converges in distribution to a standard normal random variable as n

goes to infinity which means that
∑n
i=1 tki

n→∞−−−−→ N (0, x2
nk). Therefore, from

the assumption that N is sufficiently large, we have

lim
n→∞

n∑
i=1

tki ≈
N∑
i=1

tki = zk, (B.9)

and

p(zk) = N (0, x2
Nk), (B.10)

in which

x2
Nk ,

N∑
i=1

σ2
ki = σ2(p)

N∑
i=1

φ2
ki = σ2(p)‖Φk‖2, (B.11)

and ΦT
k is the k-th row of Φ. Since each zk is a normal random variable, the

vector z has a jointly normal distribution. Therefore, in order to derive its PDF,

it is enough to find its mean vector and covariance matrix as

E{zk} =

N∑
i=1

E{tki} = 0 for k = 1, . . . ,M

⇒ E{z} = 0, (B.12)
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and

R = [rjl]M×M , cov{z} = E{zzT }, (B.13)

where

rjl = E{zjzl} =

N∑
i=1

N∑
u=1

φjiφluE{sisu}

=

N∑
i=1

N∑
u=1

φjiφluσ
2(p)δ(i− u) = σ2(p)ΦT

j Φl, (B.14)

in which δ is the Kronecker delta function.

From (B.13) and (B.14), it can be deduced that R = σ2(p)A, which means

that p(z|H1) = N (0, σ2(p)A). Conditioned on H1, y = z + Φn. As z and n

are independent of each other and both are normal with zero mean, y is also

normal with zero mean, and covariance matrix cov{y} = cov{z}+ cov{Φn} =

σ2(p)A + σ2
nA = (σ2(p) + σ2

n)A. Therefore, f(y|H1, p) will be [9, Section 6.2]

f(y|H1, p) =
1(

2π(σ2
n + σ2(p))

)M
2 |A| 12

× exp
{
− 1

2(σ2
n + σ2(p))

yTA−1y
}
.

(B.15)

From Lemma 1 and Lemma 2, the LLRT can be computed as

LLRT(y|p) = ln
(f(y|H1, p)

f(y|H0)

)
= ln

(( σ2
n

σ2
n + σ2(p)

)M
2

× exp
{( 1

2σ2
n

− 1

2(σ2
n + σ2(p))

)
yTA−1y

})
=
M

2
ln
( σ2

n

σ2
n + σ2(p)

)
+

σ2(p)

2σ2
n(σ2

n + σ2(p))
yTA−1y

H1

≷
H0

p0

1− p0
.

(B.16)

Appendix C. Proof of Theorem 2

As derived in (6), the output statistic for GLRT is

t =
1

Mσ2
n

yTA−1y − ln(yTA−1y). (C.1)
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If the input SNR is sufficiently high, yTA−1y is large. Hence, in the above

equation, the first term is dominant. Therefore, it can be written as

t ∼=
1

Mσ2
n

yTA−1y =
1

Mσ2
n

(Φ(s + n))TA−1Φ(s + n)

=
1

Mσ2
n

(
(Φs)TA−1Φs + 2(Φs)TA−1Φn

+ (Φn)TA−1Φn
)
.

(C.2)

In the above equation, the signal term is 1
Mσ2

n
(Φs)TA−1Φs and the noise term

is 1
Mσ2

n

(
2(Φs)TA−1Φn + (Φn)TA−1Φn

)
. Therefore, the signal power (SP) is

SP = E
{ 1

Mσ2
n

(Φs)TA−1Φs
}

=
σ2(p)

Mσ2
n

E
{ 1

σ2(p)
zTA−1z

}
, (C.3)

in which z , Φs. If xK×1 is N (0,Σ), then xTΣ−1x has a chi-square distri-

bution with K degrees of freedom denoted by χ2(x,K) [10]. It is shown in

Appendix B that p(z) = N (0, σ2(p)A). Therefore, 1
σ2(p)z

TA−1z has a chi-

square distribution with M degrees of freedom. The mean and variance of a

random variable c having a chi-square distribution with m degrees of freedom

are [9, Section 5.5]

E{c} = m, (C.4)

σ2
c = 2m. (C.5)

Hence, (C.3) can be computed as

SP =
σ2(p)

Mσ2
n

M =
σ2(p)

σ2
n

. (C.6)

Moreover, the noise power (NP) can be calculated as

NP =
1

Mσ2
n

(
2E{(Φs)TA−1Φn}

+ E{(Φn)TA−1Φn
)
}
)
.

(C.7)
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In the above equation, two expectations should be computed. The first expec-

tation (E1) can be calculated as

E1 = E{(Φs)TA−1Φn}

= E{sT }ΦTA−1ΦE{n} = 0. (C.8)

For computing the second expectation in (C.7), that we denote by E2, it should

be noted that p(Φn) = N (0, σ2
nA). Therefore, 1

σ2
n

(Φn)TA−1Φn has a chi-

square distribution with M degrees of freedom [10]. Hence, from (C.4), E2 can

be computed as

E2 = E
{

(Φn)TA−1Φn
}

= Mσ2
n. (C.9)

The total noise power will be

NP = 1. (C.10)

From (C.6) and (C.10), it can be concluded that the SNR at the threshold

comparison is

SNRdet ,
SP

NP
=
σ2(p)

σ2
n

, (C.11)

which is the same as the input SNR in (15).

Appendix D. Proof of Theorem 3260

It was shown in Section 2 that p(y) = N (0, (σ2(p) + σ2
n)A). Therefore,

1
σ2(p)+σ2

n
yTA−1y has a chi-square distribution with M degrees of freedom [10].

In the following equations, (C.4) and (C.5) have been used.

In order to evaluate the estimator performance, it should be noted that it is

unbiasd because,

E{p̂} =
1

σ2
on − σ2

off

( 1

M
E{yTA−1y} − σ2

n − σ2
off

)
=

1

σ2
on − σ2

off

( 1

M
(σ2(p) + σ2

n)M − σ2
n − σ2

off

)
=
σ2(p)− σ2

off

σ2
on − σ2

off

= p. (D.1)
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In what follows, the variance of the estimator is computed.

σ2
p̂ = E{p̂2} − p2

=
1

(σ2
on − σ2

off)2

( 1

M2
E{(yTA−1y)2}+ (σ2

n + σ2
off)2

− 2

M
(σ2
n + σ2

off)E{yTA−1y}
)
− p2

=
1

(σ2
on − σ2

off)2

( (σ2(p) + σ2
n)2

M2
(M2 + 2M) + (σ2

n + σ2
off)2

− 2

M
(σ2
n + σ2

off)(σ2(p) + σ2
n)M

)
− p2

=
1

(σ2
on − σ2

off)2

(
(σ2(p) + σ2

n)2 + (σ2
n + σ2

off)2

− 2(σ2
n + σ2

off)(σ2(p) + σ2
n)

+
2

M
(σ2(p) + σ2

n)2
)
− p2

=
1

(σ2
on − σ2

off)2

((
(σ2(p) + σ2

n)− (σ2
n + σ2

off)
)2

+
2

M
(σ2(p) + σ2

n)2

)
− p2

=
1

(σ2
on − σ2

off)2

(
(σ2(p)− σ2

off)2 +
2

M
(σ2(p) + σ2

n)2
)
− p2

=
(p(σ2

on − σ2
off))2

(σ2
on − σ2

off)2
+

2(σ2(p) + σ2
n)2

M(σ2
on − σ2

off)2
− p2

=
2(σ2(p) + σ2

n)2

M(σ2
on − σ2

off)2
. (D.2)

In order to evaluate the performance of the estimator, the CRLB can be found.

Here, the observation is y = Φ(s + n) and the parameter to be estimated is

p. From the CRLB theorem [5, Section 3.4], the PDF f(y; p) must satisfy the

regularity condition

E
{∂ ln f(y; p)

∂p

}
= 0 for all p, (D.3)

where the expectation is taken with respect to f(y; p). Here, f(y; p) = N (0, (σ2(p)+
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σ2
n)A) where σ2(p) is a function of p. Therefore

ln f(y; p) = ln

(
1

(2π(σ2(p) + σ2
n))

M
2 |A| 12

× exp
{
− 1

2(σ2(p) + σ2
n)

yTA−1y
})

= −M
2

ln(2π)− M

2
ln(σ2(p) + σ2

n)− 1

2
ln |A|

− 1

2(σ2(p) + σ2
n)

yTA−1y. (D.4)

Taking the first derivative

∂ ln f(y; p)

∂p
=
∂ ln f(y; p)

∂σ2(p)

∂σ2(p)

∂p

=
(
− M

2(σ2(p) + σ2
n)

+
1

2(σ2(p) + σ2
n)2

yTA−1y
)

× (σ2
on − σ2

off).

(D.5)

Subsequently, taking the expectation

E
{∂ ln f(y; p)

∂p

}
= (σ2

on − σ2
off)
(
− M

2(σ2(p) + σ2
n)

+
M

2(σ2(p) + σ2
n)

)
= 0.

(D.6)

Hence, f(y; p) satisfies the regularity condition (D.3). Then the CRLB is

−1/E
{
∂2 ln f(y; p)/∂p2

}
. The derivative is evaluated at the true value of p265

and the expectation is taken with respect to f(y; p).

Taking the second derivative

∂2 ln f(y; p)

∂p2
=

∂

∂σ2(p)

(∂ ln f(y; p)

∂p

)∂σ2(p)

∂p

=
( M

2(σ2(p) + σ2
n)2
− 1

(σ2(p) + σ2
n)3

yTA−1y
)

× (σ2
on − σ2

off)2.

(D.7)
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Subsequently, taking the expectation of the above equation

E
{∂2 ln f(y; p)

∂p2

}
= (σ2

on − σ2
off)2

( M

2(σ2(p) + σ2
n)2
− M

(σ2(p) + σ2
n)2

)
= −M(σ2

on − σ2
off)2

2(σ2(p) + σ2
n)2

. (D.8)

Therefore, the CRLB is
2(σ2(p)+σ2

n)2

M(σ2
on−σ2

off)
2 which is the same as (D.2). This indi-

cates that the proposed estimator attains the CRLB, that is, it is an efficient

estimator.

Note that the CRLB can be rewritten in terms of σ2
η and σ2

∆, previously270

defined in Section 4, as CRLB = 2
M

(
σ2
η

σ2
∆

+ p
)2

.

Appendix E. A new estimator for the sparsity degree guaranteed to

be less than 1

As it was stated in Section 4, there is no guarantee that the estimator pro-

posed in (17) (p̂) is less than 1. Therefore, here a new estimator is proposed275

that is guaranteed to be less than 1 but it is shown that the new estimator does

not attain the CRLB. Nevertheless, the variance of the estimator is very close

to the CRLB.

The new estimator is proposed as p̂new = min{1,p̂}−1+α
α where α is the prob-

ability that p̂ ≤ 1, i.e. α , P{p̂ ≤ 1}. It is obvious that p̂new is less than 1,280

since min{1, p̂} is less than 1.

At first, α should be computed as

α = P{p̂ ≤ 1} = P
{ 1

σ2(p) + σ2
n

yTA−1y ≤M σ2
on + σ2

n

σ2(p) + σ2
n

}
. (E.1)

As it was stated in Appendix D, 1
σ2(p)+σ2

n
yTA−1y has a chi-square distribution

with M degrees of freedom. Hence,

α = F
(
M

σ2
on + σ2

n

σ2(p) + σ2
n

,M
)
, (E.2)

where F (x,M) is the CDF of a chi-square random variable with M degrees of

freedom. For the selected parameters as M = 66, σon = 1, p = 0.1, σoff = 0.1,
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and SNRin = 7dB we have α = F (515.76, 66) which is calculated as 1 under

MATLAB precision.285

Now, it is shown that the new estimator is unbiased. In fact,

E{p̂new} =
1

α
(E{min{1, p̂}} − 1 + α). (E.3)

The expectation at the right-hand side of the above equation can be calculated

as

E{min{1, p̂}} = E{min{1, p̂}|p̂ ≤ 1}P{p̂ ≤ 1}

+ E{min{1, p̂}|p̂ > 1}P{p̂ > 1}

= E{p̂}.α+ 1.(1− α) = pα+ 1− α, (E.4)

where in the last equation, (D.1) has been used. Therefore,

E{p̂new} =
1

α
(pα+ 1− α− 1 + α) = p. (E.5)

In what follows, the variance of the estimator is computed as

σ2
p̂new

= E{p̂2
new} − p2

=
1

α2
(E{min{1, p̂}2}+ (1− α)2

−2(1− α)E{min{1, p̂}})− p2

=
1

α2
(E{min{1, p̂}2}+ (1− α)2

− 2(1− α)(pα+ 1− α))− p2,

(E.6)

where in the last equation, (E.4) has been used. The last expectation in the

above equation can be calculated as

E{min{1, p̂}2} = E{min{1, p̂}2|p̂ ≤ 1}P{p̂ ≤ 1}

+ E{min{1, p̂}2|p̂ > 1}P{p̂ > 1}

= E{p̂2}.α+ 1.(1− α)

=
(
p2 +

2(σ2(p) + σ2
n)2

M(σ2
on − σ2

off)2

)
α+ 1− α, (E.7)
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where in the last equation, (D.2) has been used. By substituting (E.7) in (E.6)

and after some straightforward manipulations, the variance of the new proposed

estimator is

σ2
p̂new

=
1− α
α

(1− p)2 +
1

α
CRLB, (E.8)

where CRLB has been given in Appendix D. As is observed, since α is very

close to 1, the variance of the new proposed estimator is very close to the CRLB.

Hence, the new estimator is nearly efficient.
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