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Abstract—In this paper, a novel approach for performing
Blind Source Separation (BSS) in nonlinear mixtures is proposed,
and their separability is studied. It is shown that this problem
can be solved under a few assumptions, which are satisfied in
most practical applications. The main idea can be considered as
transforming a time-invariant nonlinear BSS problem to local
linear ones varying along the time, using the derivatives of both
sources and observations.

Taking into account the proposed idea, numerous algorithms
can be developed performing the separation. In this regard, an
algorithm, supported by simulation results, is also proposed in
this paper. It can be seen that the algorithm well separates the
mixed sources, however, as the conventional linear BSS methods,
the nonlinear BSS suffers from ambiguities, which are discussed
in the paper.

Index Terms—Blind Source Separation, Nonlinear Mixtures,
Nonlinear Regression, Independent Component Analysis

I. INTRODUCTION

The Blind Source Separation (BSS) problem was firstly
introduced in 1980’s [1], [2], and since then, it has been thor-
oughly studied in the signal processing community. Roughly
speaking, in this problem there are a number of source signals
that are mixed in some way to make a number (probably not
the same number as the sources) of observation signals. The
goal is to reconstruct the sources having access only to the
observations, i.e. knowing neither the sources nor the mixing
model.

BSS problem is formally described as follows. At each
time (more generally, sample) t let us consider m observa-
tions xi(t), i = 1, . . . ,m, which are unknown time-invariant
functions fi(·) of unknown sources sj(t), j = 1, . . . , n. For
t = 1, . . . , T measurements, we can write the model as

x(t) = f(s(t)), t = 1, . . . , T (1)

where x(t) = [x1(t), ..., xm(t)]T (T stands for matrix transpo-
sition) and s(t) = [s1(t), ..., sn(t)]T represent the observation
and source vectors, respectively, and f(·) denotes a function
from Rn to Rm.

The problem is generally ill-posed, but it has been shown
that assuming some particular structure of f , and/or statistical
properties of the sources, it can be solved to some extent
and the sources can be reconstructed with ambiguities in their
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amplitude and their order. The book [2] provides a comprehen-
sive survey on different structures and proposed algorithms.
The key idea to perform separation is trying to recover some
characteristics of the sources by estimating a mapping on the
observations able to inverse f . Mostly the characteristics are at
least one of the “non-properties” (a word borrowed from [3]);
e.g. non-dependence (independence), non-Gaussianity, non-
stationarity, non-whiteness and non-negativity.

A. Background
The simplest form of the problem is when the mixture

model is instantaneous linear and the number of the sources is
equal to the number of the observations so that (1) becomes
x(t) = As(t) where A is an unknown mixing matrix. The
earliest approach to this case was in [1], [4] which introduced
the concept of Independent Component Analysis (ICA). The
independence employed in ICA is in the sense of random
variables assuming that each source consists of Independent
and Identically Distributed (iid) samples, i.e. without taking
care of the sample order.

It should be recalled that if two random variables are
mutually independent, the joint probability density function
(pdf) of them factorizes as the product of their marginal pdf’s.
On the other hand, two stochastic processes are said to be
mutually independent iff they are mutually independent for
any sequence of time instants.

Accordingly, the two notions: random variable (RV) inde-
pendence and stochastic process (SP) independence, should be
distinguished. For linear instantaneous mixtures, a very nice
result is that signal separation can be achieved if the sources
si(t) and sj(t), for any pair i 6= j, are mutually independent
random variables [4]. It is thus outstanding to note that SP
independence is not required in the linear case.

Many algorithms have been designed based on different ap-
proximations of RV independence, e.g. CoM2 [4], INFOMAX
[5], JADE [6], Normalized EASI [7], HOSVD [8], FastICA
[9], and finally AMUSE [10], [11] and SOBI [12] (which
exploit the assumption that the source samples are not iid,
and consider the statistical independence of delayed samples).
Afterwards, taking into account any of the mentioned “non-
properties”, any combination of them, or even some other
characteristics such as sparsity, other separation algorithms
have been proposed [2].
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Nonetheless, in many applications the mixing model of
the sources has to be modeled as nonlinear. Hyperspectral
imaging [13], [14], remote sensing data [15], determining the
concentration of different ions in a combination via smart
chemical sensor arrays [16], and removing show-through in
scanned documents [17] are some well-studied examples of
such applications. However, in contrast to linear BSS, no
general theoretical results on identifiability and separability
have been provided for BSS in nonlinear mixtures so far.

B. ICA in Nonlinear Mixtures

Although for linear mixtures, conventional ICA (i.e. based
on RV independence) ensures identifiability and separability
even for iid sources, it is not sufficient for nonlinear mix-
tures. In other words, one can find some nonlinear mixtures
(with non-diagonal Jacobian) of mutually independent sources
which are still mutually independent. In this subsection it is
shown by a counter-example why RV-based ICA does not work
for nonlinear BSS.

In [18, Section 3.3], it is shown that even for smooth
nonlinear mixing functions, source independence (in the sense
of random variables) is not a powerful enough criterion for
separating the sources. In the following example, at each
sample t, the sources are mixed nonlinearly as[

x1(t)
x2(t)

]
=

[
cosα(s(t)) − sinα(s(t))
sinα(s(t)) cosα(s(t))

] [
s1(t)
s2(t)

]
(2)

where α(s(t)) is a differentiable function. In this particular ex-
ample the determinant of the Jacobian matrix of the nonlinear
transformation always equals to one, hence

ρX1,X2
(x1, x2) =

1

|det(Jf (s))|
ρS1,S2

(s1, s2)

= ρS1,S2
(s1, s2). (3)

Particularly, if the source samples are iid and uniformly
distributed between −1 and 1, i.e. ρS1,S2

(s1, s2) = 0.25 for
(s1, s2) ∈ [−1, 1]× [−1, 1] and 0 elsewhere and given

α(s(t)) =

{
θ0(1− r)n if 0 ≤ r ≤ 1

0 if r ≥ 1
(4)

where r
4
=
√
s21(t) + s22(t) and θ0 and n are constant real and

natural numbers respectively, the observations will also follow
a joint uniform distribution as ρX1,X2

(x1, x2) = 0.25 for
(x1, x2) ∈ [−1, 1]× [−1, 1] and 0 elsewhere, which factorizes.
Thus the observations are instantaneously mutually indepen-
dent, even though each of them is a nonlinear mixture of both
sources. In other words, this counter-example proves that RV
independence is not sufficient for separating nonlinearly mixed
signals.

As a consequence, except a few dispersed works (e.g. [19]
and [20]), studies in nonlinear BSS were mainly focused
on specific mixing models or specific source signals, which
were concerned by practical applications and for which RV
independence is sufficient for ensuring identifiability and sep-
arability. Post-Nonlinear (PNL) [21], [22] and Bi-Linear (or
Linear Quadratic) mixtures [17], [23] are known as the two
main classes of nonlinear models investigated [24] and for

which ICA leads to source separation under mild conditions. In
addition, Convolutive Post-Nonlinear mixtures [18], conformal
mappings [25], and linear-transformable mappings [26] are
some other categories that have been addressed so far and
for which RV independence leads to source separation.

C. Our Contribution

However, the above limitations are mainly due to the fact
that the temporal information of the sources is not exploited.
For example in [27] it is shown that even if for each
time instant t0, x1(t0) and x2(t0) are independent random
variables, stochastic processes x1(t) and x2(t) might not be
independent stochastic processes, and random variables x1(t0)
and x2(t0 − 1) could be dependent. Taking this fact into
account, previous “counter-examples” lose their validity for
proving that general nonlinear mixtures are not separable.

Therefore in this work, using a more general definition
of independence than RV independence used in ICA, but
simpler than SP independence, we address a more general
problem without being restricted to any specific mixture or
parametric model. We will provide a method, based on which
different algorithms can be developed for solving nonlinear
BSS problems. We propose a general approach for performing
the separation in nonlinear mixtures as well as the necessary
conditions on the model. In this work, we also provide a
separation algorithm, efficiency of which is proved by simple
simulations as a proof of concept.

It should be mentioned that this work, as well as other
general nonlinear BSS methods [2], [28], [29], [30], suffers
from the ambiguity of a nonlinear transformation that cannot
be resolved. However, it is important to differentiate between
source separation and source reconstruction. In fact, once
the sources are separated, the task of BSS is done. Source
reconstruction is a more general task that is out of the scope
of this work.

Although source separation can be sufficient and efficient in
the cases where BSS is used as a first step before classification,
in practical applications of source reconstruction, the proposed
method of this paper, as well as most other papers on nonlinear
BSS, serves as a first step which separates the sources and
maybe needs to be followed by a reconstruction method. For
this last step, simple and weak priors on a source like sparsity
[31], bandwidth [32], zero-crossing [33], etc. can be used
for reconstructing it without knowing the nonlinear distortion.
This point is more elaborated in the following sections.

Parts of this work have already been presented in the
conference paper [34]. The present paper not only extends the
example proposed in that one, but also elaborates, details (with
mathematical expressions) and discusses more the proposed
method, and provides simulations with noticeable results.

The paper is organized as follows. The novel approach
for solving the nonlinear BSS problem is introduced in the
next section. Then a discussion on the separability and the
assumptions on the model is provided. Section III contains
the basic algorithms proposed for performing the separation.
The algorithms are implemented and tested with examples, the
results of which are presented in Section IV. Finally, conclu-
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x = f(s) y = g(x)

s1

sn

x1

xn

y1

yn

Unknown

Fig. 1: Nonlinear BSS problem basic model

sions, remained questions and future works are discussed in
the last section.

II. THE MAIN IDEA

The problem model, depicted in Fig. 1, considers that
the number of the sources is equal to the number of the
observations. In this model, we generally expect each of the
elements of y(t) = g(x(t)) to be a function of only one of
the source signals (and each source signal appears in only one
entry of y(t)).

Since we are going to exploit only the statistical inde-
pendence of the sources to be retrieved, and since changing
the order of source signals and an invertible component-
wise nonlinear transformation do not affect the independence
condition, one may at most expect to obtain a “nonlinear copy”
of the source vector (defined in Section II-A). In other words,
for each source to be estimated, a nonlinear function remains
as an ambiguity that cannot be resolved. This is discussed in
more details in Section V.

The main idea is based on the fact that the derivatives
of the sources are locally mixed linearly even though the
mixture model is nonlinear in general. Indeed, if the nonlinear
mapping f is differentiable at each point, one can derive a local
linear approximation of it involving the derivatives of sources
and observations. This is easily seen from

xi(t) = fi(s(t))⇒
dxi
dt

=

n∑
j=1

∂fi
∂sj

dsj
dt

(5)

⇒ ẋ = Jf ;t(s)ṡ, (6)

where

Jf ;t(s) =


∂f1
∂s1

· · · ∂f1
∂sn

...
...

∂fn
∂s1

· · · ∂fn
∂sn

 (7)

is the Jacobian matrix of the nonlinear mixing function, and
ẋ and ṡ denote the time (or sample) derivatives of x and s
respectively.

It should be noted that the precise definition of the derivative
of a random process p(t) is in the mean square sense, i.e. a
random process ṗ(t) is the time-derivative of a random process
p(t) iff limε→0 IE[|p(t+ε)−p(t)ε −ṗ(t)|2] = 0 where IE represents
the expected value. Nonetheless, in the rest of the paper, for
the reason of simplicity, we use the equality symbol “=” for
the equality of random processes in the mean squared sense
as well.

It is worth noting that Jf ;t(s) is the Jacobian of the nonlinear
time-invariant function f and is a function of the sources s,
however, since the source vector is a random process and

varies over the time, the elements of Jf ;t(s) change over the
time as well. This is why t does not directly appear in (7) and
is considered as an index of the Jacobian matrix (not an input
argument). Thus, (6) is a locally linear instantaneous mixture
model.

So, one can firstly separate the local linear mixtures of the
source derivatives using a linear (but adaptive) BSS technique,
and then, use an integration step to reconstruct the source sig-
nals themselves. Applying a linear BSS method on derivatives
of the sources imposes some necessary conditions on them,
which will be studied in the following section. Particularly, the
DC value of signals is removed in the first step of any classical
linear BSS method, hence the derivatives in our framework.
Nonetheless, as mentioned earlier, the goal in this work is to
reconstruct a “nonlinear copy” of the sources which can still
be achieved considering this DC-removal pre-processing.

In the following, the problem of interest is formulated
and all the assumptions are mentioned. Then the proposed
approach is described and the separability is discussed. The
discussion is made from two points of view: mathematical
expressions and system analysis.

A. Problem Definition and Assumptions

Definition Let s be an n-dimensional vector. y = c(s) is
called a “nonlinear copy” of s if it has the same dimension as
s and each element yi of it is an invertible nonlinear function
of one and only one of the elements of s. It can be written as

∀ 1 ≤ i ≤ n yi = ci(sτ i) (8)

where ci for i = 1, . . . , n is an invertible nonlinear function
and (τ1, τ2, . . . , τn) is a permutation of (1, 2, . . . , n). �

In this case, the transformation c(·) which only con-
tains component-wise nonlinear functions and permutations,
is called a “nonlinear copy function” or a “trivial nonlinear
mapping”.

Thus, the problem can be defined as follows. Let an obser-
vation vector be an unknown nonlinear mixture of an unknown
source vector s(t) as (1), or equivalently

∀ i xi(t) = fi(s(t)). (9)

Source separation consists of finding a nonlinear mapping g
as

find g s.t. g ◦ f = c (10)

where c = g ◦ f is a “nonlinear copy” function.
Note that an ambiguity of a permutation and a nonlinear

function in reconstruction of the sources cannot be resolved.
It is evident from the definition of a nonlinear copy function
and (10). In addition, it can also be understood from another
point of view by looking at the Jacobian of the mixing function
(see Section II-B).

The above source separation problem is ill-posed without
additional assumptions, either on the nonlinear mapping f
or on the sources. In this paper, we consider the following
assumptions:
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1) The number of the sources is equal to the number of the
observations,

2) f is invertible,
3) f is memoryless,
4) f is time-invariant,
5) f ∈ C1 (i.e. it is differentiable with continuous first-

order derivative),
6) sources s1(t), . . . , sn(t) are differentiable, hence colored

(this assumption implies continuity and smoothness),
7) derivatives of the sources {ṡ1(t), . . . , ṡn(t)} are mutu-

ally independent and
8) at most, one of of the derivatives of the sources follows

the Gaussian distribution.

These assumptions are satisfied in most practical applica-
tions where the signals and the nonlinear mixing model corre-
spond to real physical phenomena. In fact, the assumptions 1
to 4 are classical assumptions of BSS that are assumed even
in linear cases. If the source signals have different origins (i.e.
their physical origins are independent), then they will also be
mutually independent stochastic processes, hence assumptions
6 and 7 hold.

As a consequence, all applications introduced in the Section
I-A, including hyperspectral imaging [14] and determining the
concentration of different ions in a combination via smart
chemical sensor arrays [16] satisfy the mentioned assumptions.

Therefore, nonlinear BSS problems which can be treated
through the proposed approach in this work do not belong
to specific set of functions and are quite general.

The necessity of these assumptions is regarding with the
proposed approach which comes in Section II-B. Nevertheless,
it is worth adding some remarks about some of them.

The assumption f ∈ C1 imposes the continuity of Jf .
Moreover, according to the inverse function theorem [35], if a
function f is invertible on a region in its domain and f ∈ C1, 1)
its Jacobian Jf will be non-singular on that region and 2) the
Jacobian of its inverse is equal to the inverse of its Jacobian
(J−1f = Jf−1 ). Consequently, assumptions 5 and 2 result in
continuity and non-singularity of Jf , which makes the local
linear BSS problem (6) solvable with ICA.

In addition, f needs to be memoryless and time-invariant,
because otherwise Jf in (6) would also vary along time, hence
the variations of local linear approximation would be too
difficult to be followed by a BSS algorithm. This limitation
will be better understood after Section III in which we utilize
it for amending the initially proposed method.

Moreover, assumption 6, in combination with the differen-
tiability and continuity of f , implies the smoothness of the
variations of the nonlinear function, hence its Jacobian Jf ,
along the time so that it is tractable by adaptive local BSS
algorithms. In other words (as it will be elaborated in Section
III and simulation results), the performance of the proposed
method depends on the speed of the variations of Jf along the
time, which is due to the colorfulness of the sources and the
nonlinearity of f itself.

As mentioned before, the proposed algorithm in this work
is based on the statistical independence of the sources. There-
fore, as assumed in ICA-based classical BSS methods, mixed

signals in (6) need to satisfy certain conditions [4]. This is
where the assumptions 7 and 8 come from.

It should be noticed that the assumptions 7 and 8 concern
derivatives of the sources (because in (6), the mixed signals
are the derivatives of the sources). The assumption 7 can be
expressed as

ρS(ṡ) =

N∏
k=1

ρk(ṡk) (11)

where ρS(ṡ) and ρk(ṡk) correspond to the joint and marginal
pdf’s of the derivatives of the sources. It should be noted
that a more limiting assumption than (11) was proposed as a
necessary and sufficient condition for separability of nonlinear
mixtures in [20] (but without any proof or explanation),
which needed the signals and their derivatives to be jointly
statistically independent.

Note that (11) is a completely different condition from RV
independence of the source signals and is not a result of that.
Generally, a signal and its derivative can be instantaneously
independent: for instance, given the position of a particle at
a time, one cannot say anything about its speed at that time).
However, the derivative of a signal contains some information
about the variations of it (which can be translated to the
bandwidth or the amount of colorfulness).

To summarize, the proposed approach for nonlinear BSS in
this paper is mainly based on local linear approximation of the
nonlinear mixture. So, it is applicable to any nonlinear model
satisfying the mentioned assumptions. In addition, a discussion
is made in Section IV showing how its performance relates
with the amount of the nonlinearity of the mixture (supported
by simulation results).

It should be finally declared that the mentioned assumptions
are not claimed to be necessary for the general separability
of nonlinear mixtures. One may suggest other approaches
and methods for nonlinear BSS, based on other assumptions.
However, in the proposed framework, it is necessary for them
to be satisfied and they are sufficient in the sense that if
they hold, it is possible to separate the sources based on the
proposed approach.

B. Proposed Approach

In order to get ẋ, a component-wise derivative operator
should be applied on the output of the mixing function f(s) of
Fig. 1. Then, in order to cancel the effect of the differentiation
operator (so that the separating function g(·) in Fig. 1 remains
unchanged), an integration operator needs to be added right
after the differentiation operator. This will lead to the system
which is depicted in Fig. 2.

Therefore, the problem (10) can be equivalently written as

find g s.t. g ◦ d−1 ◦ d ◦ f = c (12)

where c is a nonlinear copy function and d and d−1 are
the component-wise differentiation and integration operators
respectively. For the reason of homogeneity in expressions, we
use the same notation as functions for operators even though it
is not mathematically accurate. It should be noted that d−1◦d
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f(s) d
dt

∫
g(x)

s1

sn

x1

xn

ẋ1

ẋn

x1

xn

y1

yn

Unknown

Fig. 2: Nonlinear BSS problem alternative model

d
dt

Jf ;t Jg;t

∫s1

sn

ṡ1

ṡn

ẋ1

ẋn

ẏ1

ẏn

y1

yn

Unknown

Fig. 3: Transforming the nonlinear BSS problem model to the linear time-
variant one

is not necessarily equal to identity function because the result
of integration is not unique and it could be added by any
constant (in general, d−1 ◦ d ◦ f = f + cte). However, since
d and d−1 operate component-wise, applying them may just
add a constant value to each signal, which does not affect the
proposed framework.

However, (6) says that the derivatives of the observations
locally are linear mixtures of the derivatives of the sources.
It means that they can be achieved by mixing the derivatives
of sources via the Jacobian matrix of the nonlinear mixing
function. In other words, considering (6), each half of this new
model (which is nonlinear), can be replaced by an equivalent
one (which is locally linear) shown in Fig. 3.

Mathematically speaking, denoting Jf ;t = ∂f/∂s and
Jg;t = ∂g/∂x the Jacobian matrices of the mixing function f
and separating function g respectively, the equivalence of the
systems of Fig. 2 and Fig. 3 can be written as{

d ◦ f ≡ Jf ;t ◦ d
g ◦ d−1 ≡ d−1 ◦ Jg;t

. (13)

This equation says that instead of taking derivatives of a
mixture of sources (i.e. d ◦ f ), one can equivalently mix
derivatives of the sources via the Jacobian of the mixing
function (i.e. Jf ;t ◦ d).

Then, replacing d ◦ f and g ◦ d−1 in (12) with their
equivalents in (13), the nonlinear BSS problem becomes

∀t, find Jg;t s.t. d−1 ◦ Jg;t ◦ Jf ;t ◦ d = c. (14)

This new model (depicted in Fig. 3) will be used for a
discussion on the separability and proposing an algorithm.

Regarding (14) and Fig. 3, the goal is to find a linear
time-variant system Jg;t such that each of the output signals
y1(t), . . . , yn(t) is a function of only one of the sources, hence
y is a nonlinear copy of the sources.

By left-multiplying both sides of (14) by d, and right-
multiplying them by d−1, we will have

d ◦ d−1 ◦ Jg;t ◦ Jf ;t ◦ d ◦ d−1 = d ◦ c ◦ d−1 (15)

⇒ Jg;t ◦ Jf ;t = d ◦ c ◦ d−1 = c2 (16)

where the last equation comes from the fact that c is a
nonlinear copy function and, therefore, in combination with
d and d−1 makes another nonlinear copy function named c2.
As a consequence, the basic problem (10) is equivalent to

∀ t find Jg;t s.t. Jg;t ◦ Jf ;t = c2 (17)

where c2 is a nonlinear copy function. This is a traditional
linear BSS problem where the mixing matrix is not constant
along the time, and can be solved via existing adaptive
linear BSS methods (probably, with some modifications). As
a conclusion, any nonlinear BSS problem is equivalent to a
time-varying linear one and if the linear problem is solved
correctly, the nonlinear problem will be solved as well.

It is worth adding two remarks which help better under-
standing the proposed concept. Firstly, the local linear mixing
Jf ;t and separating Jg;t matrices are the Jacobian matrices of
the nonlinear mixing f and separating g functions respectively.
Neglecting the indeterminacies in reconstructing the sources,
it is obvious from Fig. 3 that the matrix Jg;t should be the
inverse of the matrix Jf ;t. Actually, as mentioned in Section
II-A, the inverse of the Jacobian of a function is the Jacobian
of the inverse function [35]. This can also be easily shown
by writing the equivalency equations of the right half of the
systems of Fig. 2 and 3.

Secondly, the proposed approach could also be derived
by trying to linearly approximate the nonlinear function via
Taylor expansion as

x(t) = f(s(t))⇒

∀t x(t+ ε) = x(t) +
∂f

∂s
(s(t+ ε)− s(t)) + o(ε) (18)

⇒ x(t+ ε)− x(t) ≈ Jf ;t(s)
∣∣∣
s=s(t)

(s(t+ ε)− s(t)) (19)

⇒ ∆x(t) ≈ Jf ;t(s)
∣∣∣
s=s(t)

∆s(t), (20)

where o(ε) represents Higher-Order Terms and ∆x(t) and
∆s(t) are the differences (increments) of the observation and
source vectors respectively.

Eq. (20) can also be considered as a discrete-time approx-
imation of (6) using the difference instead of the derivative.
Nevertheless, the proposed framework can also be understood
as the (local) linear approximation of the nonlinear mixing
function at each point, and trying to separate the sources using
adaptive linear BSS methods.

Reconstruction Indeterminacies: Linear BSS methods suf-
fer from ambiguities both in the order of the sources and
their scales. On the other hand, as pointed earlier and will
be explained in the following, the proposed framework in this
paper is based on the local linear approximation of the nonlin-
ear mixture. However, there are two well-known ambiguities
in traditional BSS methods: permutation and scaling. So it is
important to understand how these local ambiguities perform
globally.
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Since the local separating matrix Jg;t is estimated adap-
tively and continuously, the local permutation matrix should
also change continuously. However, a change in permutation
cannot be continuous at all. Therefore, local permutations in
any neighbourhood of observations result in an arbitrary global
permutation, and do not cause any issue about the alignment
of permutations at successive time instants.

Moreover, the time-varying values of the scaling ambiguity
on the whole domain of the signals cause a component-
wise nonlinearity which cannot be resolved by the proposed
algorithm, i.e. each output of the algorithm does depend on
only one of the sources but with a time-varying scaling factor
(i.e. a nonlinear function).

This indeterminacy in reconstructing the sources could
also be seen from another point of view. Assume u(·) is a
component-wise nonlinear function as

ỹ(t) = u(y(t)) (21)

such that

∀ 1 ≤ k ≤ n ỹk(t) = uk(y(t)) = ûk(yk(t)) (22)

where ûk(·) for k = 1, . . . , n are 1-dimensional R → R
nonlinear functions.

Obviously, the Jacobian of a component-wise function is di-
agonal. As a consequence, if Jg;t satisfies (17), Ju◦g = JuJg

will satisfy (17) as well. Indeed, if a function g (resulting
in y as the separated sources) is a separating function, the
function u◦g (resulting in ỹ(t) = u(y(t))) will also separate
the sources. In other words, the proposed approach may result
in any component-wise nonlinear function of the sources.

III. PROPOSED ALGORITHMS

It follows from Fig. 3 that

ẏ(t) = Jg;t(x(t))ẋ(t) = Jg;t(x(t))Jf ;t(s(t))ṡ(t). (23)

Therefore it is necessary and sufficient for the separation to
find a matrix Jg;t(x(t)) such that the off-diagonal elements
of Jg;t(x(t))Jf ;t(s(t)) are zero everywhere and its diagonal
elements are nonlinear copy functions.

In this section, we are going to propose algorithms in order
to perform nonlinear BSS based on the proposed idea. To this
end, firstly an adaptive linear BSS method is recalled in sub-
section III-A, which plays an important role in the proposed
algorithms. In this subsection, the necessity of utilizing an
adaptive algorithm is highlighted and its exact formulation is
provided. Then a basic algorithm is proposed in subsection
III-B led by the sequencing steps of the mentioned approach
of Section II. Afterwards, in subsection III-C, the main prob-
lem of the proposed preliminary algorithm is discussed and
addressed by nonlinear regression of the separating function.
Finally, in subsection III-D a modified algorithm is proposed
employing the “Nonlinear Regression” technique.

A. Adaptive Linear BSS (Normalized EASI)

An adaptive BSS algorithm is an algorithm whose esti-
mation of mixing/separating matrix is on-line, i.e. adjusted
at each new sample that is observed. Normalized EASI
(Equivariant Adaptive Separation via Independence) [7] is
one of the adaptive BSS algorithms that is based on the
statistical independence of the sources. This powerful real-
time algorithm is used in this work as the adaptive linear
BSS method for estimating the Jg;t matrix, which cancels
the mixture Jf ;t. In this purpose, components of ṡ must be
statistically independent. In other words, while assumption 7 is
necessary because of Normalized EASI, using other algorithms
might impose other assumptions on the sources.

Since the mixing matrix in (23) (i.e. Jg;t) changes along
the time, an adaptive technique needs to be utilized to perform
the linear BSS (so that it can follows the variations of Jg;t).
Taking advantage of the equivariancy, good convergence rate
and low computational cost of Normalized EASI, it has been
used as the adaptive linear BSS algorithm in whole this work.

The update formula of the separating matrix Jg;t according
to this algorithm will be as

Jg;t+1 = Jg;t − λt
[ y(t)y(t)T − I

1 + λty(t)T y(t)

+
h(y(t))y(t)T − y(t)h(y(t))T

1 + λt|y(t)T h(y(t))|

]
Jg;t (24)

where λt is a sequence of positive adaptation steps and
h(·) is an arbitrary component-wise (n-dimensional) nonlinear
function. For a more detailed discussion on the choice of the
components hi(·) of h(·), the reader is invited to refer to [7].

Plainly, at each iteration, eq. (24) is followed by an update
of the output vector as

ẏ(t+ 1) = Jg;t+1 ẋ(t+ 1). (25)

B. Preliminary Algorithm

As mentioned earlier, assuming Jg;t(x(t)) in Eq. (23) to
vary slowly enough such that it remains almost constant in
the temporal neighborhood of each point x(t), a preliminary
algorithm can be suggested simply as locally solving linear
BSS problems at all time instants.

Accordingly, the first algorithm, called Adaptive Algorithm
for Time-Variant Linear mixtures (AATVL), is sketched in
Algorithm 1, where in line (2), EASI or any other adaptive
linear BSS technique can be employed.

The main problem with this algorithm is the issue of
convergence: it always needs to be updated at each new sample
of observations. In conventional applications of Normalized
EASI, where the mixing matrix is assumed to be constant, after
a number of iterations the algorithm (hopefully) converges to
the exact separating matrix. However, in our case where Jf ;t

varies from one sample to another, the algorithm should not
only estimate the exact separating matrix Jg;t at each sample,
but it should also track the variations of Jf ;t along the time.
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Algorithm 1 Adaptive Algorithm for Time-Variant Linear
mixtures (AATVL)

1: ẋ ← Derivative (difference) of x
2: procedure ADAPTIVE LINEAR BSS METHOD ( ẋ(t) )
3: Jg;0 ← Random Initialization
4: ẏ(0) = Jg;0 ẋ(0)
5: for t = 0, . . . , T − 1 do
6: Jg;t+1 ← Update by eq. (24)
7: ẏ(t+ 1) ← Update by eq. (25)
8: end for
9: end procedure

10: y ← Integral of ẏ

So the convergence issue is much more severe than the classic
linear problem.

It is worth noting that the variations of Jf ;t(s(t)) depend
on both the nonlinearity of the mixing model f(·) and the
dynamics of the sources s(t). Thus, even if the nonlinear
mixing function f(·) is smooth, bursty sources may lead
to bursty changes in the mixing values, and consequently,
the separating matrix cannot be tracked by the separating
algorithm. This is the reason why the proposed approach needs
both assumptions 4 (the mixture to be time-invariant) and
6 (the sources to be colored) to impose the smoothness on
Jf ;t(s(t)) along the time.

Another issue, which makes the convergence problem even
more severe, is that the output of this adaptive linear BSS
algorithm is going to be integrated through a following step to
estimate the separated sources. This integration will propagate
the estimation error to the other samples as well. As a
consequence, the AATVL algorithm (algorithm 1) needs to
be modified.

C. Nonlinear Regression

In this subsection, the main problem of the proposed
preliminary algorithm (i.e. convergence) is addressed by a
nonlinear regression technique. The concept is explained in
details providing 2 different methods (subsections III-C1 and
III-C2). The second method (which is actually used in the
modified algorithm 2) is supported by a simulated preliminary
example and a discussion on its performance.

The convergence problem of the algorithm 1 is because it
does not exploit the time-invariance and smoothness of the
mixing function f . In fact, the original nonlinearity f , and its
inverse g, are time-invariant. Therefore the dependence of Jf ;t

(Jg;t) on s (x) is not time-varying.
In other words, s and x themselves are time-varying, and

Jf ;t and Jg;t are evaluated for sources and observations at
successive times as

Jf ;t(s(t)) =
∂f

∂s
(s)
∣∣∣
s=s(t)

(26)

Jg;t(x(t))=
∂g

∂x
(x)
∣∣∣
x=x(t)

. (27)

As a result, a modification on the algorithm 1 can be
suggested by learning the nonlinear model of Jg;t(x) from

its estimations at different samples (say Ĵg(x(t)) for t =
1, . . . , T , the outputs of the adaptive linear BSS method). It
should be noted that Jg;t(x) is an n× n matrix and contains
n2 nonlinear functions that should be learned in this approach.

For example, let [Jg;t(x)]i,j denote the (i, j)th element of
the separating matrix. In the “nonlinear regression” stage,
we aim at estimating the nonlinear function [Jg;t(x)]i,j from
[Ĵg(x(t))]i,j for t = 1, . . . , T . In the simplest case, it can be
mathematically expressed as for all 1 ≤ i, j ≤ n

minimize
[Jg;t(x)]i,j

T∑
t=1

(
d2
w([Ĵg(x(t))]i,j , [Jg;t(x)]i,j)

)
(28)

where d2
w represents a weighted squared distance of a point

and a manifold defined as

d2
w(·, ·) = d2(·, ·)× w(d2(·, ·)) (29)

and

d2([Ĵg(x(t))]i,j , [Jg;t(x)]i,j) =

| [Jg;t(x)]i,j
∣∣
x=x(t)

− [Ĵg(x(t))]i,j |2. (30)

Since the error in the estimation [Ĵg(x(t))]i,j might be large
for some samples (especially due the convergence issue), there
might be some outliers in the data. Although the outliers are
supposed to be rare, due to the power of 2 in (30), they
can highly affect the result of the manifold learning process.
Consequently, using a weighted distance in (28) is essential in
order to reduce the effect of the estimations that are too far
from the learned manifold.

The weighting function is designed such that it is close
to 1 for short distances and it tends to zero as the distance
increases. As an example, Gaussian weighting function can
be defined as

w(d2) = e−
d2

2σ2 (31)

where σ is a parameter which can be adjusted according to
the data.

The optimization (28), where the cost function should
be minimized with respect to a nonlinear manifold, can be
performed using either a parametric model (when the nonlinear
function is assumed to belong to a specific set of functions,
e.g. polynomials) or a non-parametric one (utilizing an inter-
polation method like smoothing splines). One may also modify
a dimension reduction technique (e.g. ISOMAP [36]) in order
to solve (28).

1) Parametric Approach: In this approach, a parametric
model for each [Jg;t(x)]i,j is assumed and then the minimiza-
tion of (28) is performed with respect to those parameters. In
other words, we assume each manifold to be formulated as

[Jg;t(x)]i,j = Qi,j(x;θi,j) (32)

where θi,j is a vector of the parameters in nonlinear model of
[Jg;t(x)]i,j .

As a consequence, with this parametric model, (28) becomes

minimize
θi,j

T∑
t=1

(
d2
w([Ĵg(x(t))]i,j , [Jg;t(x)]i,j)

)
(33)
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Fig. 4: The nonlinear function of [Jg(x)]1,1 of (36) with respect to the
observations

where d2
w([Ĵg(x(t))]i,j , [Jg;t(x)]i,j) can be calculated as a

function of the parameters according to (29) and (30). Thus it
can be solved, and the optimal parameter vectors θ∗i,j will let
us formulate the [Jg;t(x)]i,j’s.

2) Non-Parametric Approach: The other approach pro-
posed for nonlinear regression is non-parametric where no
model for the nonlinearity is assumed. To this end, the non-
linear functions are learned by fitting curves using a smooth-
ing method (e.g. smoothing splines [37]) to the estimations
[Ĵg(x(t))]i,j for t = 1, . . . , T .

In this work, smoothing spline [38] is utilized as the
smoothing method, for which a penalty function (the second
order derivative of [Jg;t(x)]i,j) is added to the cost function
(28) to impose the smoothness. In this method, there is a
smoothing parameter, controlling the trade-off between fidelity
to the data and roughness of the function estimate.

This method is explained via studying its performance on
an example with a mixing function f as (2). This model is
a rotation with the angle which depends to the norm of the
source vector. So the inverse function g can be easily achieved
by another rotation with the negative angle as[

y1(t)
y2(t)

]
=

[
cosα(x(t)) sinα(x(t))
− sinα(x(t)) cosα(x(t))

] [
x1(t)
x2(t)

]
(34)

where
α(x(t)) = α0 + γ ×

√
x21(t) + x22(t). (35)

Therefore, the exact Jacobian Jg(x) is calculated as

Jg(x) =

[
cosα(x) sinα(x)
− sinα(x) cosα(x)

]
[

1 + x2
∂α(x)
∂x1

x2
∂α(x)
∂x2

−x1 ∂α(x)∂x1
1− x1 ∂α(x)∂x2

]
. (36)

Now consider one of the elements of Jg(x), say [Jg(x)]1,1.
In this example, n = 2 and the 2-dimensional nonlinear
function of the function [Jg(x)]1,1 with respect to x1 and x2
(calculated in (36)) is depicted in Fig. 4a.

As an example, suppose that the sources s1(t) and s2(t)
are integrals of a triangle (with the amplitude of 6 and the
primitive period of 200π samples) and a sinusoidal (with the
amplitude of 6 and the frequency of

√
3/200π samples) signal

respectively. The trajectory of the observation vector along the
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Fig. 5: The estimated (learned) nonlinear model of [Jg(x)]1,1 from 300
(Fig. 5a) and 700 (Fig. 5b) samples of observations. The circles are the outputs
of the adaptive linear BSS method [Ĵg(x(t))]1,1, and hyper-surface is the
learned manifold using the introduced smoothing spline technique.

time projected onto the 2-dimensional manifold of [Jg(x)]1,1
for 300 time instants is plotted in Fig. 4b. It illustrates the
changes in the value of [Jg;t(x)]1,1 along the time. It is nice to
see that as time passes, the observation vector takes different
values and may span its whole range, such that it will be
possible to learn the whole shape of the nonlinear function.

Fig. 5 shows the learned nonlinear model (the hyper-
surface) given 300 and 700 samples of [Ĵg(x(t))]1,1 using the
smoothing spline technique. It can be seen that the learned
nonlinear model from 700 samples based on smoothing spline
is quite accurate in the region of interest, i.e. where samples
are available.

Fig. 6 shows the Normalized Root Mean Squared (RMS)
error in reconstruction of [Jg(x)]1,1 in (36) with respect to the
number of observation samples. The error Enrms is calculated
as

Enrms =

( ∫∫
|x1|,|x2|≤M

(
[Jg(x)]1,1 − [Ĵg(x)]1,1

)2) 1
2

( ∫∫
|x1|,|x2|≤M

(
[Ĵg(x)]1,1

)2) 1
2

(37)

where M = max
(

max(|x1(t)|),max(|x2(t)|)
)

is the maxi-
mum range of variations of the observations.

However, a more meaningful definition of the N-RMS error
is when it is calculated over the region of interest, as

Ẽnrms =

( ∑
t=1,...,T

(
[Jg(x(t))]1,1 − [Ĵg(x(t))]1,1

)2) 1
2

( ∑
t=1,...,T

(
[Ĵg(x(t))]1,1

)2) 1
2

.

(38)
Ẽnrms, as well as Enrms, decreases as the number of samples
increases (see Fig. 6).

According to Fig. 6, the accuracy of the estimated model
improves as the number of input samples grows until a certain
number at which the estimation is close enough to the correct
model and the error does not decrease anymore.

It should be added that the utilized algorithm in this example
(smoothing splines) does not force the model to pass the
input points. Nevertheless, depending on the application, other
smoothing algorithms with different properties (more robust to
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Fig. 6: The N-RMS error of the estimation of the nonlinear model of
[Jg(x)]1,1 with respect to the number of samples over 1) an M ×M square
(the dashed line) and 2) the region of interest in which the samples exist (the
solid line)

Algorithm 2 Batch Algorithm for Time-Invariant Nonlinear
mixtures (BATIN)

1: ẋ ← Derivative (difference) of x
Step Adaptive linear BSS:

2: procedure ADAPTIVE LINEAR BSS METHOD ( ẋ(t) )
3: Ĵg(x(0)) ← Random Initialization
4: ẏ(0) = Ĵg(x(0)) ẋ(0)
5: for t = 0, . . . , T − 1 do
6: Ĵg(x(t+ 1)) ← Update by eq. (24)
7: ẏ(t+ 1) ← Update by eq. (25)
8: end for
9: end procedure

Step Nonlinear Separation:
10: procedure NONLINEAR REGRESSION ( Ĵg(x(t)),x(t) )
11: Jg;t(x) ← Smoothing Spline of Ĵg(x(t))
12: end procedure
13: for t = 1, . . . , T do
14: ẏ(t) ← Jg;t(x) ẋ(t)
15: end for
16: y ← Integral of ẏ

noise, forcing to pass the points, and so on) may be exploited
for estimating the function (e.g. Kalman filter, kernel smoother,
Laplacian smoothing, exponential smoothing, etc.).

D. Modified Algorithm

Employing the nonlinear regression idea introduced in Sec-
tion III-C in combination with algorithm 1 leads to a second
algorithm which outperforms the first one. This algorithm
includes 2 steps: 1) an “Adaptive linear BSS” algorithm for
estimating Ĵg(x(t)) for t = 1, . . . , T and 2) a “Nonlinear
Separation” process through which the nonlinear functions
Jg;t(x) are learned by the proposed smoothing spline method
and are used to separate the sources. Once the nonlinear
functions Jg;t(x) are estimated, they are used for separating
the derivatives of the sources. The batch Algorithm for Time-
Invariant Nonlinear mixtures (BATIN) can thus be proposed
as algorithm 2.

It should be finally noted that, the Normalized EASI and the
smoothing spline algorithms that are used in algorithm 2, can
probably be replaced by other equivalent algorithms depending
on the application.
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Fig. 7: Illustration of the nonlinear mappings. 7a) the mapping follows model
(2) and (39) for α0 = 0 and γ = 1 and 7b) the mapping follows model (40).
In both figures, we represent the grid obtained by applying the nonlinear
mapping (2) or (40) to the regular grid in the domain [−1,+1]× [−1,+1],
and the input domain is mapped to nonlinear grids in the output domain which
are shown.

IV. SIMULATIONS

In this section, simulation results of both proposed algo-
rithms for two different nonlinear functions are shown as
proof of concept. The data model, nonlinear functions, the
parameters and the details of the simulations come in Section
IV-A. Afterwards, the results of the simulations and their
performance evaluation are reported in Section IV-B.

A. Simulated Data and Mixture Models

In the first example, consider the two-input two-output
system of (2) where instead of (4), α(s(t)) is defined by the
parametric model

α(s(t)) = α0 + γ ×
√
s21(t) + s22(t) (39)

where α0 and γ are some parameters.
In our first simulation, (39) is considered for α0 = 0 and

γ = 1. Secondly, the proposed method is applied to another
mixing model defined as

x(t) =

[
x1(t)
x2(t)

]
= f(s(t)) =

[
es1(t) − es2(t)
e−s1(t) + e−s2(t)

]
(40)

which is a nonlinear but invertible mixing model, as well as
the first one.

The function mappings of the two simulated models are
illustrated in Fig. 7: the figure shows how a regular grid in
the input domain is transformed through the functions. As it
can be understood from this figure as well as (2) and (40),
both models are nonlinear but bijective (one-to-one) in the
input range.

In both simulations, the two sources that are mixed are the
integrals of a sine wave

ṡ1(t) = sin(
√

3t/100) ⇒ s1(t) ∝
∫
ṡ1(t) d t (41)

and a triangle wave

ṡ2(t) = saw(t/100) ⇒ s2(t) ∝
∫
ṡ2(t) d t (42)

where saw(t) is defined as a sawtooth wave with period 2π
passing through the points (0, 0), (π/2, 1), (3π/2,−1) and
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Fig. 8: The sources s1(t) and s2(t) (the integral of a sine and a triangle
wave) in the top row, and the observations x1(t) and x2(t) for the two
simulations with the nonlinear model (2) in the middle and with the nonlinear
model (40) in the bottom.
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Fig. 9: Variations of the elements of the Jacobian matrix of (2) along the
samples

(2π, 0). The sources are chosen well-known simple signals
with different frequencies avoiding any coherence, and satis-
fying assumptions on s, and especially independence of the
derivatives (assumption 7).

It should be noted that the integral can be practically approx-
imated by either a recursive summation s(t) = ṡ(t) + s(t− 1)
or a continuous function estimation based on an interpolation
method. Simulations (not presented in this paper) show that
these two approaches result in almost the same estimation.
Thus the summation is used as an approximation of the integral
everywhere.

The observations are then calculated by (2) and (40), and
are depicted in Fig. 8 as well as the sources themselves.

In order to see the time-variations of the mixing matrix, each
of the elements of the Jacobian matrix of the first simulation
(2) for α0 = 0 and γ = 0.1 is plotted separately in Fig. 9.
It can be seen that their variations along the time is periodic
(because of the dynamics of the source). As mentioned earlier,
variations of the value of the Jacobian are due to both
time-variations of the sources and nonlinearity of the mixing
function (which make the Jacobian dependent on the value of
sources).

AATVL and BATIN algorithms are applied on the ob-
servations of Fig. 8 to separate the sources. As mentioned
earlier, smoothing spline is the algorithm that is utilized for
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Fig. 10: The results of AATVL and BATIN algorithm in the mixture (2)

the nonlinear regression step of algorithm 2. Note that the
smoothing parameter, which determines the smoothness of
the learned manifold in smoothing spline method, is adjusted
heuristically in this work. It should be noted that similarly
with the integral, the difference between two successive time
samples is used as an approximation of the time-derivative
everywhere in this paper.

In the implementation of Normalized EASI (24) in this
work, h(·) is chosen as h(y) = y3. In addition, the adaptation
step λt in (24) is chosen as

λt =

{
1/t, 1 ≤ t ≤ 1000

1/1000, 1000 < t
. (43)

Even though a decreasing adaptation step (tending to zero as
t moves forward) is usually taken in order to stabilize the
algorithm after the convergence, in this case it does not go
below a threshold. This is because the mixing matrix Jx;t is
not constant and should be followed by the algorithm.

B. Simulation Results

Applying AATVL and BATIN algorithms on the obser-
vations, we get the results shown in Fig. 10 for the first
simulation (mapping of Eq. (2)), and Fig. 11 for the second
one (mapping of Eq. (40)). As expected, BATIN surpasses
AATVL in estimating the separated sources in both simula-
tions. Especially, the late convergence problem with AATVL
has been almost completely resolved by BATIN.

Additionally, in order to see that adaptive linear BSS algo-
rithms are not able to separate the sources (since the mixture
is nonlinear), we have also implemented the same algorithm
Normalized EASI for separating the mixture (40). It can be
seen from Fig. 12 that the nonlinear mixture is not separated
at all since EASI never converges.

C. Performance Evaluation

As mentioned earlier in Section II-A, unlike linear BSS
where the sources may be estimated up to a scaling (and
a permutation), in nonlinear problem, they can be estimated
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Fig. 11: The results of AATVL and BATIN algorithm in the mixture (40)
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Fig. 12: The result of performing adaptive linear BSS (Normalized EASI
method) on the sources which are mixed through (40)

up to a nonlinear transformation (and a permutation). De-
pending on the application, there should be some known
characteristics of the sources (e.g. band-limited, sparse in some
domain, bounded amplitude, and so forth) allowing the exact
reconstruction of the sources. As a consequence, traditional
performance index (e.g. Normalized RMS error) cannot be
applied in nonlinear BSS.

Without loosing generality, assume that the sources are
separated as yi(t) = ci(si(t)) for i = 1, . . . , n where ci’s
are nonlinear functions. Therefore, the pairs (si(t), yi(t))
for t = 1 . . . , T lie on a 1-dimensional manifold in a 2-
dimensional space. However, if yi depended on another source
sj (i 6= j), it would not be a mathematical function of si which
would make the scatter plot of (si(t), yi(t)) thick instead
of a 1-dimentional manifold. This fact is also illustrated in
Fig. 13. Since the pairs (s1(t), y1(t)) (similarly (s2(t), y2(t)))
approximately lie on a 1-dimensional manifold, one concludes
that y1 (y2) is only a function of s1 (s2).

If the separation is perfect, y1 (y2) will be exactly just a
function of s1 (s2), hence the pairs (s1(t), y1(t)) (similarly
(s2(t), y2(t))) exactly make a 1-dimensional manifold. The
thicker the plot of the pairs (si(t), yi(t)) is, the more separa-
tion error we have. So the thickness of the scatter plot indicates
whether there is a dependence to another signal or not.

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-4

-2

0

2

4

-2 -1 0 1 2
-4

-2

0

2

4

Fig. 13: The estimated sources y1(t) and y2(t) against the actual sources
s1(t) and s2(t), where the thickness of a plot indicates how much the
estimated signal (vertical axis) depends on the other source

We thus propose this error as an index for evaluating the
performance of a nonlinear BSS method. It can also be under-
stood by modeling each output yi(t) as yi(t) = hi(si(t)) +
interference. This model highlights that the proposed index
approximates the normalized interference to signal ratio of the
output.

Although the thickness of data in linear 2-dimensional cases
can be easily represented by the second eigenvalue of the auto-
correlation matrix, it is not trivial in nonlinear problems. In this
work, estimating the index, firstly a nonlinear curve is fitted
to the data and then the RMS error of this fitting (similar to
(37) but for a 1-dimensional manifold fitting) is introduced
as the performance indicator (named as Normalized Error of
Nonlinear Fit (N-ENF)). Normalized ENF of the ith source
separation can be formulated as

Ẽnenf =

( ∑
t=1,...,T

(
ĉi(si(t))− yi(t)

)2) 1
2

( ∑
t=1,...,T

(
ĉi(si(t))

)2) 1
2

(44)

where ĉi(si(t)) is a nonlinear curve which is best fitted to
the pairs (si(t), yi(t)). In this work, the curve is fitted using
smoothing splines [37] as

minimize
ĉi

T∑
t=1

(
yi(t)− ĉi(si(t))

)2
+

δ
∑

t=1,...,T

(
ĉ
′′

i (si(t))
)2

(45)

where ĉ
′′

i (si(t)) is the second-order time-derivative of ĉi(si(t))
and δ is a smoothing parameter. It could have also been
approximated by splitting the data to small bins and summing
up the linear RMS errors over different bins.
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Fig. 14: The normalized ENF error in separating the mixture (2) for different
levels of nonlinearity (represented by γ in (39)) using BATIN algorithm

Simulation results of the algorithms are also compared in
terms of Normalized ENF error and can be found in table I.

TABLE I: N-ENF Error for AATVL and BATIN in the
simulations

AATVL BATIN

N-ENF for the Source 1 in the mixture (2) & (39) 0.0030 0.0019

N-ENF for the Source 2 in the mixture (2) & (39) 0.0084 0.0031

N-ENF for the Source 1 in the mixture (40) 0.0025 0.0023

N-ENF for the Source 2 in the mixture (40) 0.0064 0.0040

These results show that the proposed idea is able to sep-
arate the sources that are mixed nonlinearly, which proves
the proposed concept. However, as mentioned earlier, the
performance of the proposed approach depends on the amount
of the nonlinearity of the mixing function, i.e. as the mixing
model gets distant from a linear mixture, the performance of
the algorithm decreases. In order to show how the performance
changes according to the nonlinearity level, a 3rd experiment
is provided as follows.

Recall the example (2) with α(s(t)) defined as (39), letting
α0 = π/6 and the parameter γ vary. In this example, if γ = 0,
the mixture will be linear (a π/6 rotation). But as γ grows, the
mixture will become more nonlinear. Thus γ can be considered
as a level of nonlinearity of this parametric model.

Finally, the algorithm BATIN is employed for separating
two sources of (41) and (42) mixed by (2), for different values
of γ in (39). The normalized ENF error of BATIN for both
sources is calculated and plotted in Fig. 14. Evidently, the
more the mixture is nonlinear, the less efficient the proposed
method is in separating the sources.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, a novel approach for performing nonlinear
BSS is proposed. Through this approach, it is shown that
the nonlinear mixtures are generally separable under a few
assumptions (see subsection II-A). So the counter-examples
provided in the literature to show that nonlinear mixtures are
not separable, are not valid any more.

The key idea is to regard the time-derivative of the observed
signals as a time-varying linear mixture of the (mutually in-
dependent) time derivatives of the sources. As a consequence,

the model (6) will be obtained, where the mixing matrix is a
function of the sources (not to be confused with a time-variant
mixing matrix which is a function of time).

Assuming both sources as functions of the time and non-
linear mapping as a function of the sources to be smooth
enough yields a sufficiently smooth mixing matrix which can
be considered as a time-variant model (AATVL algorithm).
However, the model (6) being a function of sources instead of
conventional time-variant mixing models, enables performing
the nonlinear regression (as explained in Section III-C) and
dramatically improves the performance of the separation,
which resulted in proposing the second algorithm (BATIN).

Once the sources are separated, BSS has been performed.
However, aiming at exactly estimating the sources (not only
separating them), the problem reduces to compensating an
unknown nonlinear distortion. In other words, in order to
precisely estimating the source signals (compensating the
nonlinear function), each of the separated signals should be
considered separately.

Numerous algorithms have been proposed for blind restora-
tion of nonlinearly distorted signals (e.g. [33], [32]). The
proposed methods are fundamentally based on retrieving some
characteristics of the signal which are affected by nonlinear
distortions. For example, nonlinear functions generally widen
the bandwidth of signals. Thus, given a distorted band-limited
signal, one may recover the original signal by trying to min-
imize its bandwidth via a nonlinear (compensating) function.

Moreover, assuming that the nonlinearly distorted signal is
sparse in some domain, it can be blindly reconstructed [39],
[31]. Since nonlinear distortions generally tend to reduce the
sparsity, the proposed algorithms compensate the distortion via
a sparse recovery procedure.

Nonetheless, depending on the application, there should be
some known characteristics of the sources (e.g. band-limited,
sparse in some domain, bounded amplitude, and so forth)
allowing the exact reconstruction of the sources.

The basic idea proposed in this work is to utilize time-
derivatives of the signals. Working with time-derivatives im-
plicitly utilizes temporal information in the signals. This
fact also supports the proposition in [27], which says that
although we may mix two sources so that the mixtures are
instantaneously independent of each other, it is highly probable
that their delayed versions are not mutually independent when
each of them is temporally correlated. In other words, it is
implied in the paper that utilizing the temporal information of
the sources may leads to solve nonlinear BSS problems.

It is worth noting that the proposed idea is quite different
with respect to the previous works in the literature on nonlinear
mixtures; it is more theoretic and general and does not
assume any specific mixing model or source signals. Two basic
methods, AATVL and BATIN are provided in this work to
show how the idea is to be employed. Nevertheless, many
different separation algorithms can be suggested based on the
proposed approach and they can be optimized to deal with
more complex signals/mixtures of practical applications.
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However, there are several issues to be considered in the
future. Firstly, the statistical characteristics of the derivative
of a signal with respect to those of the signal, itself, should be
investigated. This might be the key to better understanding of
the key feature of derivatives that lets perform the separation,
and accordingly, it may lead to new algorithms of nonlinear
BSS.

Secondly, the “Nonlinear Regression” used in the proposed
algorithm should be improved. The main objective of this step
is to accumulate the information of the separation at each
sample. For example, if at two different times, the source
vector takes the same value, the mixing matrix will remain
the same as well.

The problem in this work is considered in the simplest
form where there is no noise added to the signals. Since all
the signals in practical applications are noisy, and considering
the fact that taking the derivatives may dramatically amplifies
the noise, new methods should be developed which are more
robust to noise. It may also enforce some modifications on
“Adaptive Linear BSS” procedure of the algorithms as well.

Last but not least, finding out the relations between autocor-
relation functions of the sources (i.e. how much colored they
are) and the performance of the proposed approach and trying
to quantify it is also an interest for future studies.
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