
Sparse ICA via cluster-wise PCA

Massoud Babaie-Zadeh a,1 and Christian Jutten b,1

Ali Mansour c

aAdvanced Communications Research Institute (ACRI), Electrical Engineering
Department, Sharif University of Technology, Tehran, Iran

bLaboratory of images and signals (CNRS UMR 5083, INPG, UJF), Grenoble,
France

cE3I2, ENSIETA, Brest, France

Abstract

In this paper, it is shown that Independent Component Analysis (ICA) of sparse
signals (sparse ICA) can be seen as a cluster-wise Principal Component Analysis
(PCA). Consequently, Sparse ICA may be done by a combination of a clustering
algorithm and PCA. For the clustering part, we use, in this paper, an algorithm
inspired from K-means. The final algorithm is easy to implement for any number of
sources. Experiment results points out the good performance of the method, whose
the main restriction is to request an exponential growing of the sample number as
the number of sources increases.

1 Introduction

Blind Source Separation (BSS) consists in retrieving unknown statistically
independent signals from their mixtures, assuming there is no information
either about the original source signals, or about the mixing system (hence
the term Blind). Let s(t) , (s1(t), . . . , sN(t))

T be the vector of unknown
source signals (assumed to be zero-mean and statistically independent), and
x(t) , (x1(t), . . . , xN(t))

T be the vector of observed signals (in this paper,
the number of observations and sources are assumed to be equal). Then, for
linear instantaneous mixtures x(t) = As(t), where A is the N×N (unknown)

1 This work has been partially funded by Sharif University of Technology, by
French Embassy in Tehran, and by Center for International Research and Col-
laboration (ISMO).

Preprint submitted to Elsevier Science 31 July 2005

Massoud
Text Box
 Published in NeuroComputing (Elsevier), vol. 69, pp. 1458-1466, August 2006.

−5 0 5
−5

0

5

 Principal
Components

PSfrag replacements

x1

x
2

Fig. 1. Principal Components of a set of (two-dimensional) points.

‘mixing matrix’. The problem is then to estimate the source vector s(t) only
by knowing the observation vector x(t).

Since the only information about the source signals is their statistical inde-
pendence, an idea for retrieving them is to find a ‘separating matrix’ B that
transforms again the observations into independent signals. In other words, B
is calculated in such a way that the output vector y , Bx has independent
components. This approach, which is usually called Independent Component
Analysis (ICA), has been shown [1] to retrieve the source signals up to a scale
and a permutation indeterminacy (i.e. the energies of the sources and their
order cannot be restored).

On the other hand, Principal Component Analysis (PCA) is a technique to
transform a random vector to another random vector with decorrelated compo-
nents. Let Rx , E

{

xxT
}

be the correlation matrix of the zero-mean random
vector x. Moreover, let λi, i = 1, . . . , N be the eigenvalues ofRx corresponding
to (orthonormal) eigenvectors ei, i = 1, . . . , N . Now, if:

B = ET (1)

whereE , [e1, . . . , eN], then it can be easily verified that the covariance matrix
of y = Bx is diagonal. More precisely, Ry = Λ, where Ry is the correlation
matrix of y and Λ , diag(λ1, . . . , λN). In other words, the components of y
(called the principal components of x) are decorrelated, and their variances
are λi, i = 1, . . . , N . Figure 1 shows the plot of the samples of a random
vector x and its principal components.

It is well known that for BSS (or ICA) output independence cannot be sim-
plified as output decorrelation (PCA) [2]. Consequently, PCA cannot be used
for solving the ICA problem. However, the goal of this paper is to show that

2

for sparse signals, ICA can be achieved by a cluster-wise PCA.

To state the idea more precisely, note first that from (1), each row of B in
PCA is composed of the direction of one of the principal components. We
are going to show in this paper that for sparse signals, the ICA matrix can be
obtained by a clustering of observation samples, and then to take the direction
of the smallest principal component (i.e. the principal component with the
smallest variance) of each cluster as the rows of B. Developing a clustering
algorithm inspired from K-means, we will also obtain an ICA algorithm for
sparse signals.

To obtain the above result, we start with the geometrical ICA algorithm [3],
and then modify and extend it to sparse signals. Although the development of
our approach is started form geometrical interpretations, the final algorithm
(see Fig. 7) is completely algebraic. Moreover, contrary to geometrical ICA
algorithm, our result and approach are easy to extend for more than two
sources.

The paper is organized as follows. Section 2 reviews the geometrical source
separation algorithm, and its modification for using it in separating sparse
signals. Then, we will see, in Section 3, that how hyper-plane fitting can be
used for sparse ICA. After reviewing, in Section 4, the Principal Component
Regression (PCR) method for hyper-plane fitting, an approach for fitting N
hyper-planes onto a set of data points is proposed in Section 5. Putting all
together, the final algorithm is presented in Section 6. Finally, some experi-
mental results are given in Section 7.

2 Geometrical source separation algorithm

2.1 Classical geometric algorithm

The geometrical interpretation of ICA, which results in the geometrical source
separation algorithm, has been first introduced in [3]. In this approach (for 2-
dimensional case), using source independence i.e. ps1,s2

(s1, s2) = ps1
(s1)ps2

(s2),
where p stands for the Probability Density Function (PDF), one easily sees
that, for bounded sources in which there exist A1 and A2 such that ps1

(s1) = 0
for |s1| > A1 and ps2

(s2) = 0 for |s2| > A2, the support of ps1,s2
(s1, s2) is the

rectangular region {(s1, s2) | |s1| ≤ A1, |s2| ≤ A2}. Therefore, for bounded
sources, the points (s1, s2) will be distributed in a rectangular region (Fig. 2-
a). On the other hand, having in mind the scale indeterminacy, the mixing
matrix can be assumed to be of the form (i.e. normalized with respect to

3

PSfrag replacements

s1

s 2 0

0

0.2

0.4

0.5

1.5
-1.5

0.6

0.8

1

1

-0.2

-0.4

-0.5

-0.6

-0.8

-1

-1

(a)

(b)

PSfrag replacements

s1

s2

0

0

0.2
0.4

0.5

0.5

1.5

1.5
-1.5
-1.5

0.6
0.8

1

1

-0.2
-0.4

-0.5

-0.5

-0.6
-0.8

-1

-1

(a)

(b)

x1

x
2

1
a

b

Fig. 2. Distribution of a) source samples, and b) observation samples.

diagonal elements):

A =

1 a

b 1

 (2)

Then, under the transformation x = As, the rectangular region of the s-
plane (Fig. 2-a) will be transformed into a parallelogram (Fig. 2-b). It is easy
to verify that the slopes of the borders of this parallelogram are 1/a and b.
Consequently, for estimating the mixing matrix, it is sufficient to plot the
observation points (x1, x2), which will produce a parallelogram, and then to
estimate the slopes of the borders of this parallelogram, which determine a
and b and hence the mixing matrix.

2.2 Geometric algorithm for sparse sources

Although the approach of the previous section constitutes a very simple BSS
algorithm and provides us a geometrical interpretation of ICA, it has two
restrictions: 1) it cannot be easily 2 generalized to separate more than two
sources, and 2) it is suitable only for separating sources that allow a good
estimation of the borders of the parallelogram (e.g. uniform and sinusoidal
sources). Indeed, this approach cannot be directly used for separating sparse
(like speech and ECG) signals. This is because the PDF of a sparse signal is
mostly concentrated about zero, and hence the support of ps1s2

(s1, s2) is not
well filled by the source samples (s1, s2) (see Fig. 3 for the case of two speech
signals). In other words, for sparse signals, it is practically impossible to find
a point on the border of the parallelogram (which would require that both
sources have simultaneously high amplitude).

Although for sparse signals the borders of the parallelogram are not visible
in Fig. 3, there are two visible “axes”, corresponding to lines s1 = 0 and
s2 = 0 in the s-plane (throughout the paper, it is assumed that the sources
and hence the observations have zero-means). The slopes of these axes, too,

2 The algorithm becomes very tricky.

4

PSfrag replacements

0

0

0.1

0.1

-0.1

-0.1

0.2

0.2

0.3

0.3

-0.3

-0.3

0.4

0.4

0.5
1.5
-1.5
0.6
0.8
1

-0.2

-0.2

-0.4

-0.4
-0.5
-0.5

-0.6
-0.8
-1

(a)

(b)

s1

s 2

PSfrag replacements

0

0 0.1-0.1

0.2

0.2 0.3-0.3

0.4

0.4

0.5
1.5
-1.5

0.6

0.8
1

-0.2

-0.2

-0.4

-0.4-0.5

-0.6

-0.8

-1
(a)

(b)

s1

s2

x1

x
2

Fig. 3. Distribution of a) two speech samples, and (b) their mixtures.

determine 1/a and b in (2). In other words, for sparse signals, instead of finding
the borders, we try to find these axes. This idea is used in [4] for separating
speech signals by utilizing an “angular” histogram for estimating these axes.
In their method, the resolution of the histogram cannot be too fine, since it
would require too many data points, and conversely cannot be too coarse, since
it would provide a too bad estimation of the mixing matrix. Moreover, their
approach cannot be easily generalized to mixtures of more than two source
signals.

However, we start here with another idea for finding these axes: ‘fitting two
straight lines’ onto the scatter plot of observations. We will see, in the following
sections, that this idea can be easily generalized to more than two sources.
Moreover, we will see that this fitting can be done by a cluster-wise PCA,
which means that, sparse ICA can be done by a cluster-wise PCA.

3 Sparse ICA by line fitting

3.1 Two dimensional case

As it is explained in the previous section, our main idea is to estimate the
slopes of two axes of the scatter plot of observations (Fig. 3-b). These axes
correspond to the lines s1 = 0 and s2 = 0 in the scatter plot of sources. The
existence of these lines is a result of the sparsity of the source signals. For
example, the points with small s1 and different values for s2 will form the axis
s1 = 0.

However, we do not use (2) as a model for mixing matrix, because it has two
restrictions. Firstly, in this model, it is implicitly assumed that the diagonal
elements of the actual mixing matrix are not zero, otherwise infinite values
for a and b may be encountered (this situation corresponds to vertical axes in
the x-plane). Secondly, this approach is not easy to be generalized to higher
dimensions.

5

Instead of starting with mixing matrix (like model (2)), let consider a general
“separating matrix” B = [bij]2×2. Under the transformation y = Bx, one of
the axes must be transformed into y1 = 0, and the other into y2 = 0. In other
words, for every (x1, x2) on the first axis:

0

y2

 =

b11 b12

b21 b22

x1

x2

⇒ b11x1 + b12x2 = 0 (3)

The above relation shows that the equation of the first axis in the x-plane is
b11x1+b12x2 = 0. In a similar manner, the second axis will be b21x1+b22x2 = 0.
Consequently, for estimating the separating matrix, the equations of the two
axes must be found in the form of α1x1 + α2x2 = 0, and then each row of the
separating matrix is composed of the coefficients of one of the axes.

It is seen that by this approach, we are not restricted to non-vertical axes
(non-zero diagonal elements of the mixing matrix). Moreover, this approach
can be directly used in higher dimensions, as stated below.

3.2 Higher dimensions

The approach stated above can be directly generalized to higher dimensions.
For example, in the case of 3 sparse sources, the small values of s1 with different
values of s2 and s3 will form the plane s1 = 0 in the 3-dimensional scatter plot
of sources. Hence, in this 3-dimensional scatter plot, there are 3 visible planes:
s1 = 0, s2 = 0 and s3 = 0. These planes will be transformed into three main
planes in the scatter plot of observations. With calculations similar to (3), it
is seen that each row of the separating matrix is composed of the coefficients
of one of these main planes of the form α1x1 + α2x2 + α3x3 = 0.

Consequently, for separating the mixtures of N sparse signals from N observed
signals, N (hyper-)planes of the form α1x1 + · · · + αNxN = 0 must be first
“fitted” onto the scatter plot of observations. Then, each row of the separating
matrix is the coefficients (α1, . . . , αN) of one of these (hyper-)planes.

4 Fitting a straight line (a hyper-plane) onto a set of points

To use the idea of the previous section in separating two (N) sparse sources,
we need a method for fitting two lines (N hyper-planes) onto the scatter plot
of observations. In this section, we consider the problem of fitting one line (one
hyper-plane) onto a set of points. Then, in the following section, a method for

6

PSfrag replacements

P1

P2

P3

P4

P5

P6

P7

P8

x

y

y2

d2

(a)(b)

PSfrag replacements

P1

P2

P3

P4

P5

P6

P7

P8

x

y

y2

d2

(a)
(b)

Fig. 4. a) Least squares line fitting, b) Orthogonal line fitting.

fitting two lines (N hyper-planes) will be stated based on the method of this
section for fitting one line (one hyper-plane).

The approach presented in this section for line (hyper-plane) fitting has old
roots in mathematics [5] and is usually called Principal Component Regression
(PCR) [6].

4.1 Two-Dimensional case (line fitting)

Consider the problem of fitting a line onto K data points (xi, yi)
T , i = 1 . . . K.

In the traditional least squares method, this is done by finding the line y =
mx+h which minimizes

∑K
i=1(y−yi)

2 =
∑K

i=1(mxi+h−yi)
2. This is equivalent

to minimizing the “vertical” distances between the line and the data points, as
shown in Fig. 4-a. This technique is mainly used in linear regression analysis
where there are errors in yi’s, but not in xi’s. Similarly, one could find the
line x = m′y + h′ which minimizes

∑K
i=1(x− xi)

2 =
∑K

i=1(m
′yi + h′ − xi)

2 and
is equivalent to minimizing the “horizontal” distances between the line and
the data points. Of course, changing the model and the criterion will provide
different solutions.

Therefore, for fitting a line onto a set of points, a better method consists in
minimizing the sum of “orthogonal distances” between the points and the line,
as shown in Fig. 4-b. This approach is closer to the geometrical interpretation
of ‘line fitting’, and provides a unique optimal solution at the least square
sense.

Moreover, as discussed in the previous sections, we are seeking a line in the
form ax+ by = 0. Consequently, the best fitted line is determined by minimiz-
ing

∑K
i=1 d

2
i , where di is the orthogonal distance between the i-th point and

the line, that is:

di =
|axi + byi|√
a2 + b2

(4)

7

It must be noted that ax + by = 0 is not uniquely determined by a pair
(a, b), because (ka, kb) represents the same line. To get a unique solution,
the coefficients are normalized such that a2 + b2 = 1. To summarize, the line
which has the best fit onto the set of points {(xi, yi), i = 1, . . . , K} is the line
ax+ by = 0 which minimizes the cost function:

C(a, b) =
K
∑

i=1

(axi + byi)
2 (5)

subject to the constraint a2 + b2 = 1.

4.2 N-Dimensional case (hyper-plane fitting)

In a similar manner, consider the problem of fitting an N -dimensional hyper-
plane α1x1 + α2x2 + · · · + αNxN = 0 onto a set of K data points

{

xi =

(x
(i)
1 , x

(i)
2 , . . . , x

(i)
N)

T , i = 1, . . . , K
}

. The best hyper-plane is obtained by mini-

mizing
∑K

i=1 d
2
i , where di is the distance between the i-th point and the hyper-

plane, that is:

di =
|α1x

(i)
1 + α2x

(i)
2 + · · ·+ αNx

(i)
N |

√

α2
1 + α2

2 + · · ·+ α2
N

(6)

Moreover, to uniquely determine the hyper-plane, we set α2
1+α

2
2+ · · ·+α2

N =
1. In summary, the hyper-plane which has the best fit onto the set of points
{

xi = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
N)

T , i = 1, . . . , K
}

is the hyper-plane α1x1+α2x2+ · · ·+
αNxN = 0 which minimizes the cost function:

C(α1, . . . , αN) =
K
∑

i=1

(

α1x
(i)
1 + · · ·+ αNx

(i)
N

)2
(7)

subject to the constraint α2
1 + · · ·+ α2

N = 1.

4.3 Solution for the N-Dimensional case

The optimum values of α1, . . . , αN are obtained by minimizing the cost func-
tion C(α1, . . . , αN) in (7) under the constraint g(α1, . . . , αN) = 0, where
g(α1, . . . , αN) , α2

1 + · · · + α2
N − 1. Using Lagrange multipliers, the solu-

tion satisfies ∇C = λ∇g. After a few algebraic calculations, this equation is
written in the matrix form:

Rxα =
λ

K
α (8)

8

−9 0 9
−9

0

9

 Direction
of smallest
 principal
component

Fitted line (plane)

Fig. 5. PCR for two or three dimensional data. If seen as a two dimensional plot,
the thick line is the fitted line, if seen as a three dimensional plot it is the fitted
plane.

where α , (α1, . . . , αN)
T and Rx , 1

K

∑K
i=1 xix

T
i is the correlation matrix of

data points. Equation (8) shows that λ/K and α are eigenvalue and eigenvec-
tor of the correlation matrix Rx, respectively. Moreover:

C =
K
∑

i=1

(

αTxi

)2
=

K
∑

i=1

αTxix
T
i α = KαTRxα = λαTα = λ

and hence for minimizing the cost function, λ must be minimum.

In summary, the coefficient vector α = (α1, . . . , αN)
T of the hyper-plane α1x1+

· · · + αNxN = 0 which has the best fit onto the set of data points
{

xi =

(x
(i)
1 , x

(i)
2 , . . . , x

(i)
N)

T , i = 1, . . . , K
}

is the eigenvector of the correlation matrix
Rx which corresponds to its minimum eigenvalue.

4.4 Relation to PCA

It is interesting to think about the conjunction of the above approach to
Principal Component Analysis (PCA), or more precisely Minor Component
Analysis (MCA) . Note that α is the vector perpendicular to the plane α1x1+
· · · + αNxN = 0, and the solution of the previous section states that the
optimum value of this vector is the direction of minimum principal component
of data points, that is, the direction of minimum spread of data points. This is
compatible with our heuristic interpretations of plane (line) fitting (see Fig. 5
for two or three dimensional case). In fact, the above approach for line (hyper-
plane) fitting is usually called Principal Component Regression (PCR) [6].

9

5 Fitting 2 straight lines (N hyper-planes)

In the previous section, an approach for fitting one hyper-plane onto a set of
points was presented. However, as stated in Section 3, for separating N sparse
signals (by having N mixtures of them), we need to fit N hyper-planes onto
observation points, not to fit just one hyper-plane.

For example, as it is seen in Fig. 3 for the two dimensional case, we need to
fit two lines onto the scatter plot of observations for finding the two axes. For
doing this, we can first divide the points into two clusters: the points which
are closer to the first axis, and the points which are closer to the second axis.
Then, a line will be fitted onto the points of each cluster. Note that a point
belongs to the first cluster if it is closer to the first axis (i.e. its distance to
the first axis is smaller than its distance to the second one). Moreover, the
axis is fitted onto the points of each cluster in such a manner that the sum
of squared distances of the points of that cluster to the axis be minimized.
Consequently, the whole process of dividing the points into the two clusters
and fitting a line onto the points of each cluster is equivalent to minimizing
the following cost function:

C =
∑

xi∈S1

d2(xi, l1) +
∑

xi∈S2

d2(xi, l2) (9)

where Sj is the j-th cluster of points and d(xi, lj) denotes the perpendicular
distance of the i-th point from the j-th line. The minimization of the above
cost function is done in both dividing the points into two clusters and fitting
a line onto the points of each cluster.

In a similar manner, for separating N sparse signals from N observed mixtures
of them, we need to divide the observation samples into N clusters, and then
to fit a hyper-plane onto the points of each cluster. This is equivalent to
minimizing the following cost function:

C =
∑

xi∈S1

d2(xi, l1) +
∑

xi∈S2

d2(xi, l2) + · · ·+
∑

xi∈SN

d2(xi, lN) (10)

where Sj is the j-th cluster of points and d(xi, lj) denotes the perpendicular
distance of the i-th point from the j-th hyper-plane. The minimization is done
in both fitting the hyper-plane onto the points of each cluster, and dividing
the points into the clusters.

10

• Initially distribute the points into clusters S1, . . . ,SN (e.g. ran-
dom initialization).

• Loop:

(1) Fit a line (hyper-plane) onto each set of points Si (we call it
li).

(2) Recalculate the clusters: Let Si be the set of all points which
are closer to line (hyper-plane) li than other lines (hyper-
planes), that is:

Si = {x | d(x, li) < d(x, lj), ∀j 6= i}

• Repeat until convergence.

Fig. 6. Algorithm of fitting two lines (N hyper-planes) onto a set of points.

5.1 The algorithm of fitting N hyper-planes

The problem is now how to divide the points into clusters and fit the hyper-
planes onto each cluster at the same time. In fact, if the hyper-planes were
known, the clusters could be easily found: the i-th cluster is composed of the
points which are closer to the i-th hyper-plane than any other hyper-plane.
On the other hand, if the clusters were known, it was very easy to find the
hyper-planes: just use the approach of Section 4 to fit an hyper-plane onto
each cluster of points.

However, in our problem, neither the clusters nor the hyper-planes are known
in advance. For finding them, we propose here to iterate between these two
cases. In other words, having (e.g. randomly) divided the points into clusters,
fit a hyper-plane onto each cluster; then having the hyper-planes, re-distribute
the points into clusters by taking the points closer to the i-th hyper-plane as
the i-th cluster; and go on. This idea results in the algorithm of Fig. 6 for
fitting N hyper-planes onto a set of points.

It can be seen that the algorithm of Fig. 6 is very similar to (and in fact inspired
from) k-means (or Lloyd) algorithm for data clustering [7]. Its difference with
respect to k-means is that in k-means, each cluster is mapped onto a point
(point → point), but in our algorithm each cluster is mapped onto a line
or hyper-plane (point → line). In the following, this algorithm will be called
FITLIN.

11

5.2 Convergence of the algorithm

One may wander that the algorithm FITLIN converges or not. The follow-
ing theorem, which is similar to a corresponding theorem for the k-means
algorithm [7], insures the convergence FITLIN.

Theorem 1 The algorithm FITLIN converges in a finite number of iterations.

Proof: At each iteration, the cost function (10) cannot be increased. This
is because in the first step (fitting hyper-planes onto the clusters) the cost
function is either decreased or does not change. In the second step, too, the
redistribution of the points in the clusters is done such that it decreases the
cost function or does not change it. Moreover, for a finite number of points,
there is a finite number of possible clusterings. Consequently, the algorithm
must converge in a finite number of iterations.

5.3 Initialization

The proof of Theorem 1 shows that at each iteration of the algorithm FITLIN,
the cost function cannot be increased. Consequently, the algorithm may get
trapped in a local minimum. This is one of major problems of k-means, too. It
depends on the initialization of the algorithm, and become more severe when
the dimensionality increases.

In k-means, one approach for escaping local minima is to run the algorithm
with several randomly chosen initializations, and then to take the result which
produces the minimum cost-function. Here, too, we use the same idea for re-
ducing the probability of getting trapped in a local minimum: run the algo-
rithm FITLIN with several random initializations, and calculate the final cost
function (10) after convergence. Then take the answer which results in the
smallest final cost function.

6 Final Sparse ICA algorithm

The final separation algorithm is now evident. First, run the algorithm FITLIN.
After convergence, there are N lines (hyper-planes) li : αi1x1+· · ·+αiNxN = 0,
i = 1 . . . N . Then, the i-th row of the separating matrix is (αi1, . . . , αiN).

Figure 7 shows the final algorithm of this paper for blind separating sparse
sources. Note that, as explained in Section 5.3, to reduce the probability of
getting trapped in a local minimum, this algorithm must be run with several

12

• Initialization: randomly distribute the observation samples into
N clusters S1, . . . ,SN .

• Loop:

(1) For i = 1, . . . , N :
· Let αi be the direction of minimum principal component
of the points in Si (i.e. the eigenvector of the correlation
matrix of the points in Si which corresponds to its min-
imum eigenvalue).

(2) Calculate the separating matrix:

B = [α1,α2, . . . ,αN]T

(3) Recalculate the clusters:

Si = {x | αT
i x < αT

j x, ∀j 6= i}

• Repeat until convergence.

• Calculate the final cost:

C =
∑

xi∈S1

(αT
1 xi)

2 +
∑

xi∈S2

(αT
2 xi)

2 + · · ·+
∑

xi∈SN

(αT
Nxi)

2

Fig. 7. Sparse ICA algorithm based on cluster-wise PCA.

random initializations, and the answer which results in minimum final cost
should be taken.

7 Experimental Results

Many simulations have been conducted to separate 2, 3 or 4 sparse sources.
In all these simulations, typically less than 30 iterations are needed to achieve
separation. The experimental study shows that local minima depends on the
initialization of the algorithm and on the number of sources (in our simulations
local minima have been never encountered in separating two sources).

Here, the simulation results of 4 typical speech signals as an example of sparse
signals are presented. The sparsity of speech signals is because of many low
energy (silence and unvoiced) sections in it. The speech signals used in our ex-
periments are sampled at 8KHz. In all the experiments, the diagonal elements
of the mixing matrix are 1, while all other elements are 0.5. For each simu-
lation, 10 random initializations are used, and then the matrix which creates
minimum cost-function is taken as the answer.

13

5

Using DCT

without DCT

PSfrag replacements

5000 10000 15000 20000

Number of samples

d
B

0

10

20

30

4050
-10

15

25

35

(a)

(b)
(c)

Using DCT

without DCT

PSfrag replacements

5000 10000 15000 20000

Number of samples

d
B

0

0

10

20

30

40

50

-10

15
25
35
(a)

(b)

(c)

Using DCT

without DCT

PSfrag replacements

5000 10000 15000 20000

Number of samples

d
B

0

0

10

20

30

40

50

-10

15
25
35
(a)
(b)

(c)

Fig. 8. Separation result in separating N speech signals, a) N = 2, b) N = 3, c)
N = 4.

To measure the performance of the algorithm, let C , BA be the global
mixing-separating matrix. Then, we define the Signal to Noise Ratio by (as-
suming no permutation):

SNRi(in dB) , 10 log10

c2ii
∑

j 6=i c
2
ij

(11)

This criterion shows how much the global matrix C is close to the identity
matrix. For having just one performance index, we take the mean of the SNR’s
of all outputs: SNR = 1

N

∑

i SNRi. To justify this, note that for calculating the
performance indices, we run the algorithm with 50 different sources, and then
for each output the averaged output SNR’s are taken over these simulations.
Consequently, the averaged SNR’s (over 50 experiments) for different outputs
are not very different, and taking their mean as the performance criterion
seems reasonable.

To virtually create different source signals, each speech signals is shifted ran-
domly in time (more precisely, each speech signal is shifted 128k samples,
where k is a randomly chosen integer). This results in a completely different
source scatter plot, and virtually creates a new set of source signals. Then,
for each experiment, the algorithm is run 50 times (with 50 different random
shifts), and the averaged SNR is calculated.

Figure 8 shows this averaged SNR’s with respect to number of samples, for
separating 2, 3 and 4 speech signals. In each simulation, in addition of ap-
plying the algorithm on the original observations, we applied them on the
Discrete Cosine Transform (DCT) of observations, too. This is because the
DCT transform increases the sparsity of speech signals, without affecting the
mixing matrix, since the DCT transform is linear.

Figure 8 shows the ability of the algorithm for separating sparse signals,
and points out the interest of DCT pre-processing which increases the sig-
nal sparsity: sparser the signals, better the separation. This result suggests

14

that any linear transform improving the signal sparsity (but preserving the
mixing model, since linear) can be used before the Sparse ICA algorithm for
improving its performance.

It is also seen in Fig. 8 that when the number of sources increases, more data
samples are required to reach a given separation quality. This is expected,
because the algorithm is based on the sparsity of the sources and hyper-plane
fitting. For forming the hyper-plane si = 0 in the s-plane, it is required that
the source sample si are near zero, while all the other source samples have
large values. Denoting P (|Si| < u) = p is the probability of a source to have
a value smaller than u, the probability of the above situation is p(1− p)(N−1),
which decreases exponentially with N . Consequently, it is expected that the
required number of data samples for achieving a predetermined separation
quality grows exponentially with N .

8 Conclusion

In this paper, we showed that sparse ICA can be seen as a cluster-wise PCA
(more precisely cluster-wise MCA), and hence it can be done by a combination
of a clustering algorithm and PCA. Proposing a clustering algorithm inspired
from k-means, we obtained an algorithm for sparse ICA.

Although using a clustering algorithm we proposed a sparse ICA algorithm, it
must be noted that the main point of the paper is not the final sparse ICA al-
gorithm, but it is the fact that sparse ICA can be done through a cluster-wise
PCA (MCA). Consequently, one may think about other clustering approaches
for the clustering part, and obtaining other sparse ICA algorithm. Moreover,
the problem of the current algorithm is the existence of local minima. In this
paper, this problem was treated using several random initialization. Consid-
ering other clustering approaches, or modifying the initialization step of the
proposed algorithm is currently under study. Finally, one shows that it is pos-
sible to improve the algorithm performance by increasing the signal sparsity:
this can been done, for example, by DCT pre-processing for speech signals (as
proposed in this paper) or by any other linear pre-processing which preserves
the mixing matrix and increases the sparsity.

References

[1] P. Comon, Independent component analysis, a new concept?, Signal Processing
36 (3) (1994) 287–314.

15

[2] J.-F. Cardoso, Blind signal separation: statistical principles, Proceedings IEEE
9 (1998) 2009–2025.

[3] C. Puntonet, A. Mansour, C. Jutten, A geometrical algorithm for blind
separation of sources, in: Actes du XVème Colloque GRETSI 95, Juan-Les-Pins,
France, 1995, pp. 273–276.

[4] A. Prieto, B. Prieto, C. G. Puntonet, A. Cañas, P. Mart́ın-Smith, Geometric
separation of linear mixtures of sources: Application to speech signals, in: ICA99,
Aussois, France, 1999, pp. 295–300.

[5] K. Pearson, On lines and planes of closest fit to systems of points in space, The
London, Edinburgh and Dublin Philosophical Magazine and Journal of Science
2 (1901) 559–572.

[6] W. F. Massy, Principal component regression in exploratory statistical research,
Journal of American Statistical Association 60 (1965) 234–256.

[7] A. Gersho, R. M. Gray, Vector Quantization and signal compression, Kluwer
Academic Publishers, 1992.

16

