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A general approach for mutual information

minimization and its application to Blind Source

Separation
Massoud Babaie-Zadeh� and Christian Jutten�

Abstract

In this paper, a non-parametric “gradient” of the mutual information is first introduced. It is used for showing that mutual

information has no local minima. Using the introduced “gradient”, two general gradient based approaches for minimizing mutual

information in a parametric model are then presented. These approaches are quite general, and principally they can be used in any

mutual information minimization problem. In blind source separation, these approaches provide powerful tools for separating any

complicated (yet separable) mixing model. In this paper, they are used to develop algorithms for separating four separable mixing

models: linear instantaneous, linear convolutive, Post Non-Linear (PNL) and Convolutive Post Non-Linear (CPNL) mixtures.

Index Terms

Mutual Information, Information theoretic learning, Gradient of mutual information, Score Function Difference (SFD), In-

dependent Component Analysis (ICA), Blind Source Separation (BSS), Convolutive mixtures, Post Non-Linear (PNL) mixtures,

Convolutive Post Non-Linear (CPNL) mixtures,

I. I NTRODUCTION

Let ������ ������ � � � � �� ��� be� statistically independent source signals, from which only� different mixtures� ����� �����,

� � � � �� ��� have been observed,i.e. :

����� � ��

�
������ � � � � �� ���

�
� � � �� � � � � � (1)

where�� denotes the unknown mixing system, which may be nonlinear and/or have memory. In vector form, the above equation

is written as���� � �
�
����

�
, where���� � ������� � � � � �� ����� and���� � ������� � � � � �� ����� are source and observation

vectors, respectively. Then, the goal of Blind Source Separation (BSS) is to recover the original source signals by knowing only

these observations. The problem is calledBlind since there is no or very little information about the sources or about the mixing

system. This problem has applications in different areas including feature extraction, brain imaging, telecommunications, speech
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enhancement,etc [1]. Throughout this paper, it is always assumed that the number of observations is equal to the number of

sources, that is,� � � .

Since the sole assumption is the independence of sources, the basic idea in blind source separation consists in estimating a

system�, only from the observed data����, such that the components of���� � ������� are statistically independent. This

method, based on statistical independence, constitutes a generic approach called Independent Component Analysis (ICA). In

general (nonlinear) case, it can be shown [2] that ICA does not lead to BSS. However, if some structural constraints are imposed

on mixing and separating systems, the ICA approach may result in BSS, with eventually a few indeterminacies. For example,

when both mixing and separating systems are assumed to be linear and memoryless (i.e. ���� � ����� and���� � �����,

where� and� are� � � regular matrices), then we have the well-known instantaneous linear mixtures, for which the

equivalency of ICA and BSS has been already proved [3]: if the components of� are independent, and if there is at most one

Gaussian source, then the outputs will be equal to the source signals up to a scale and a permutation indeterminacy.

Consequently, for using the ICA approach for source separation, we impose a structural constraint1 on mixing and separating

systems. Then, the separating system is a parametric mapping:

���� � ��������� (2)

where� is a “known” separating system with “unknown” parameters�. It is also required that this mixing-separating model be

“separable”, that is, the independence of the outputs (ICA) insures the separation of the sources (BSS). Under these conditions,

the problem of source separation reduces to finding the parameter� that maximizes the independence of the outputs.

To measure the degree of independence of the outputs, their mutual information may be used. The mutual information of

the random variables	�� 	�� � � � � 	� is defined as [6]:


��� �

�
�

����� ��
������
� ����	��

�� (3)

where� � �	�� � � � � 	� �
� . This is nothing but the Kullback-Leibler divergence between����� and

�
� ����	��. It is well-known

that 
��� is always nonnegative and vanishes if and only if the components of� are independent. Consequently, the solution

of the BSS problem for the model (2) is the vector� that minimizes
���. Mutual information has been already used in BSS

by several authors (e.g. [3], [7], [8], [4]).

For minimizing
��� with respect to�, gradient based methods may be applied. To construct such a method, knowing the

“differential” of the mutual information, that is, its variation resulting from a small deviation in its argument, is very useful.

Such a non-parametric differential has been recently proposed [9] (see also Section III).

The aim of this paper is to consider two general gradient based approaches (which are called “gradient” and “Minimization-

Projection” approaches) for minimizing mutual information of� in a model like (2). These new approaches, and the model

(2), are quite general and can be used in any mutual information minimization problem. In BSS, they provide powerful tools

for having a unifying approach for separating any complicated (yet separable) mixing model. As some examples, we use these

approaches for separating four separable mixing models (see Section VI). Moreover, it is shown in this paper that mutual

information has no “local minimum” (see Theorem 2 and Remark 2 after the theorem).

1Other regularization approaches have also been proposed, based on smooth mappings,i.e. multilayer perceptrons [4] or based on Bayesian models with

ensemble learning [5].
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The paper is organized as follows. In Section II, multi-variate score functions and Score Function Difference (SFD) are

introduced and their properties are discussed. Using SFD, the “gradient” of mutual information is presented in Section III.

Using properties of multi-variate score functions and SFD, we propose estimation algorithms for estimating multi variate score

functions in Section IV. Two general approaches for minimizing mutual information are then introduced in Section V. These

approaches are used for blind separating four separable models, presented in Section VI: linear instantaneous mixtures in

Section VII, linear convolutive mixtures in Section VIII, Post Non-Linear (PNL) mixtures in Section IX and Convolutive Post

Non-Linear (CPNL) mixtures in Section X.

II. M ULTI -VARIATE SCORE FUNCTIONS

Multi-variate score functions have been first introduced in [10], by extending the concept of score function of a random

variable to random vectors. The “gradient” of mutual information can be expressed in terms of these score functions (see

Theorem 1). This section starts with a review of definitions, and continues by discussing their properties.

A. Definitions

Recall the definition of the score function of a random variable:

Definition 1 (Score Function): The score function of a scalar random variable� is the opposite of the log derivative of its

density, that is,���� � � �
�� �� ����� � �

��
�
���

�����
, where�� denotes the probability density function (PDF) of�.

In conjunction with this definition, we define two different types of score functions for a random vector� � �� �� � � � � �� �
� :

Definition 2 (MSF): The Marginal Score Function (MSF) of� is the vector of score functions of its components, that is,

����� � ������� � � � � � ��� ��
� , where:

����� � �
�

���
�� ������� � �

��������

�������
(4)

Definition 3 (JSF): The Joint Score Function (JSF) of� is the gradient of “� �� � ����”, that is����� � ������� � � � � �� ����
� ,

where:

����� � �
�

���
�� ����� � �

	
	��

�����

�����
(5)

We will see that the difference of these two score functions contains a lot of information about the independence of the

components of a random vector. Thus, it worths to give it a formal name:

Definition 4 (SFD): The Score Function Difference (SFD) of� is the difference of its MSF and JSF, that is,� ���� �

����� ������.

B. Properties

The first property presented here points out that SFD contains information about the independence of the components of a

random vector:
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Property 1: The components of a random vector� � �� �� � � � � �� �
� are independent if and only if����� � �, that is, if

and only if����� � �����.

The proof is simple and can be found in [10].

Property 2: For a random vector� � ���� � � � � �� �
� :

����� �
�

���
�� ����� � � � � ����� ����� � � � � �� ���� (6)

where����� denotes the�-th component of the SFD of�.

Proof: Without loss of generality, let� � �. Then:

����� � ������ ����� �
�

���
�� ����� �

�

���
�� ������� �

�

���
��
������ � � � � �� �

�������

�
�

���
�� ���
���
�� ���� � � � � �� � ���

(7)

It is interesting to note the relationship between this property and Property 1. For example, for the two dimensional case,

(6) becomes:

������ ��� �
�

���
�� ���� � ��� (8)

������ ��� �
�

���
�� ���� � ��� (9)

In other words,������ ��� � � if �������� does not depend on��, that is, when�� and �� are independent. For the� -

dimensional case too,����� � � if “ �� and the other components of� are independent”, that is, if��� �� � � � � ����� ����� � � � � �� ���� �

����� � � � � ����� ����� � � � � �� �, or ���� � ����� � � � � ����� ����� � � � � �� ������, �� � �� � � � � �.

The next property is, in fact, the generalization of a similar property of the score function of a scalar random variable [11],

[12].

Property 3: Let � be a random vector with density�� and JSF�� (whose�-th component is denoted by� ����). Moreover,

let ���� be a multivariate function with continuous partial derivatives such that:

�	

�����

�
��
���
����
����
���
��

��������� ��� � � � ����� ����� � � � ��� � � (10)

then:

� 	���������
 � �

�
��

���
���

�
(11)

Note that the condition (10) is not too restrictive for usual sources, because for most physical signals,� ���� decreases

rapidly when��� goes to infinity. Indeed, most real signals are “bounded” (finite energy), and for them (10) holds.

Proof: Without loss of generality, let� � �. We write:

�	���������
 �

�
���������������� � �

�
��
���
��

�
��

����
������

���
��� ��� � � � ��� (12)
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Now, by applying integration by parts for the inner integral and using (10) the desired relation will be obtained.

Corollary 1: For bounded random vector�, � 	� ������
 is equal to one for� � � and is equal to zero for� �� �. In matrix

form, �
�
������

�
�
� �, where� denotes the identity matrix.

Corollary 2: Suppose we would like to estimate����� by a parametric function������, where� � ���� � � � � ��
� is the

parameters vector. Then:

��
	�
�

�
	�
����� � ������

��

� ��
	�

�

�
�
�
�������

�
� ��

�
��

���
�����

��
(13)

This corollary shows a nice property of JSF:even without priors about � ����, we can design a minimum mean square error

(MMSE) estimator for it.

Property 4: For a random vector� � ���� � � � � �� �
� we have:

���� � � 	����� � �� � �
 (14)

where�� and� denote the�-th component of JSF and MSF of�, respectively.

Proof: Without loss of generality let� � �. Then:

�	����� � ��
 �

�
��
���
��

����� ����� � � � � �� � ��� ��� � � � ���

� �

�
��
���
��

	
	��

�����

����
�

����

�������
��� � � � ���

� �
�

�������
�
�

���

�
��
���
��

���� ��� � � � ��� � �
�

�������
�
�

���
������� � �����

(15)

which proves the property.

The above property needs more discussion. Consider� � as a function2 of ��, denoted by������. If �� is independent from

the other variables, then Property 1 implies� ����� � �����. Now, if the other variables depend on� �, ������ is no longer

equal to�����, however, the above property states that its “mean” will be still equal to �����. In other words, the statistical

dependence, can introduce some fluctuations in� �����, but only around its constant “mean”. We will later use this property

for estimating SFD.

Example. Let �� and�� be two independent random variables with uniform distributions on the interval������ ����. Consider

now random variables�� � �� and�� � �� � ���. For � � �, �� and�� are independent and hence������ � �����. Now,

if � varies,����� remains unchanged (because it does not depend on�) but � ����� will change. However, Property 4 states

that its “mean” remains unchanged. Figure 1 shows the estimated3 ������ and����� for � � ���.

Therefore, it is concluded that:The SFD is, in fact, a measure of the variations of JSF (around its smoothed value).

Property 5: Let � � ��, where� and� are random vectors and� is a non-singular square matrix. Then:

����� � �������� (16)

2Strictly speaking, it is a “relation” not a “function”, because for each value of�� there are several values for��.
3These curves have been obtained by usingkernel estimators (see Section IV-A).
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Fig. 1. �� and�� versus�� in the presence of statistical dependence.

Proof: From� � �� we have:

����� �
�����

������
 �� ����� � �� ����� � �� ������ (17)

Therefore, for� � �� � � � � � :

��
���� � �
�

���
�� ����� � �

�

���
�� ����� � �

�
�

�

�	�
�� ����� �

�	�
���

�
�
�

��� ��
���� (18)

where��
���� and��
���� denote the�-th components of the JSFs of� and�, respectively. From the above relation, we have

����� � �������, which proves the property.

III. “G RADIENT” OF MUTUAL INFORMATION

In this Section, we use the multivariate score functions defined previously, for deriving a “gradient” for mutual information.

The variation of mutual information resulting from a small deviation in its argument (it may be called “differential” of mutual

information) is given by the following theorem [9].

Theorem 1 (Differential of mutual information): Let � be a bounded random vector, and let	 be a ‘small’ random vector

with the same dimension, then:


���	�� 
��� � �
	
	������



� ��	� (19)

where�� is the SFD of�, and��	� denotes higher order terms in	.

Remark. Equation (19) may be stated in the following form (which is similar to what is done in [13]):


��� ��� � 
��� � �
�
����������

�
� ���� (20)

where� and� are bounded random vectors,� is a matrix with small entries, and���� stands for a term that converges to

zero faster than���. This equation is mathematically more sophisticated, because it defines more formally the term ‘small

random vector’ which is used in (19) without any formal mathematical definition. Conversely, (19) is simpler, and easier to

use in developing gradient based algorithms for optimizing a mutual information.
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Recall that for a multivariate (differentiable) function���� we have:

����	�� ���� �	� � ������� � ��	� (21)

A comparison of this equation with (19) shows thatSFD can be called (or viewed as) the “stochastic gradient” of mutual

information.

Recall now the Property 1, which states that SFD is zeroif and only if 
��� is minimum (zero). For a usual multivariate

function ����, ����� � � is only a necessary condition for � to be a global minimum of� (because it holds for every

local minimum, too). However, if this condition becomes also asufficient condition for a function� , it can be concluded that

all minimums of� are global. Considering SFD as a “gradient” for mutual information, Property 1 states that vanishing the

gradient of mutual information is a necessary and also a sufficient condition for
 to be minimum (zero). This leads us to the

conclusion thatmutual information has no “local minima”. This fact is more formally stated in the following theorem:

Theorem 2: Let �� be a random vector with a continuously differentiable PDF. If for any “small” random vector	,


���� � 
��� �	� holds, then
���� � �.

Proof: Recall that for a usual multivariate function� , if ����� �� �, then a small variation in the opposite direction of

the gradient results in a reduction in the value of the function. In other words,����	� � ����, where	 � ������� and�

is a small positive constant. This result can be seen by letting	 � ������� in (21), and using the fact that������� � � �.

Now, we apply a similar reasoning for
 , and combining it with Property 1 proves the theorem.

Assuming�	, 
���� � 
��� �	� holds, if ������ �� � (which is, by Property 1, equivalent to
���� �� �), then a small

variation in its opposite direction must reduce mutual information. In other words, if we let	 � ��� ��
����, then using

Theorem 1 we have (up to first order terms):


��� �	�� 
���� � ���
	������������



� � (22)

(see also Remark 1 below). Hence
��� �	� � 
����, which is a contradiction. Consequently,������ must be zero. By

Property 1, this is equivalent to
���� � �, that is,
 is in its global minimum.

Remark 1: In the above proof, for writing (22), we need to conclude�
	������������



�� � by knowing that������ is not

identically zero. This certainly holds if the PDF of�� is continuously differentiable, as assumed in the theorem. However, it

also holds for every “usual” random vector, and the required restriction is highly less than having a continuously differentiable

PDF for��.

Remark 2: Although the above theorem guarantees that the mutual information has no local minimum, it expresses nothing

about the local minimum of a parametric separating system with respect to the parameter space. In other words, for the nonlinear

separating system� � ������, the function���� � 
��� may have some local minima with respect to the parameter vector

�. For example, if we consider the following mixing system (corresponding to a rotation with angle�):
� 	�

	�

�
� �


� ��� � � �	� �

�	� � ��� �

�
�

� ��

��

�
� (23)

then it has been shown [14], [15] that���� � 
�	�� 	�� may contain local minima with respect to�, specially when�� and��

have multimodal PDF’s. This is not in contradiction with the above theorem, because it is a minimization of mutual information
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under constraints. For clarity, think about a two-variate function� � ���� 	�. Even if � has no local minima with respect

to ��� 	�, the function���� � ������� 	���� may have local minima with respect to�. In fact, � represents a ‘surface’ in the

3-dimensional space which has no local minima, but� represents a ‘curve’ on this surface, which may have local minima.

The same problem exists, for example, in MMSE estimation of a nonlinear model: although the function��� � has no local

minima, the function���� � �
�
�� � ��������

�
may contain local minima (as a function of�). The local minimum, can

also be introduced by the estimation method of SFD.

Finally, the theorem does not imply the uniqueness of the minimum ; mutual information may have several global minima,

all of them correspond to
 � �.

IV. ESTIMATING MULTI -VARIATE SCORE FUNCTIONS

For using SFD in minimizing mutual information, it must be first estimated from the observed data. The MSF of a random

vector is nothing but the score functions of its components, and hence it can be estimated by any estimation method of a score

function (see for example [12], [11], [16]). In this section, the estimation of JSF and SFD is considered.

A. Estimating JSF

The methods presented here for estimating JSF are, in fact, the generalizations of the corresponding methods for estimating

uni-variate score functions.

1) Kernel Estimators: A multi-variatekernel function���� � ����� � � � � �� � is defined as the PDF of a zero mean random

vector. That is,���� is a kernel function if and only if: (a)�� � �� � ���� � �, (b)
�
��

���� �� � � and (c)
�
��

� ���� �� � �.

Thebandwidth of the kernel in direction� is defined as the variance of the�-th component of the corresponding random vector:

�� �
�
��

��� ���� ��.

Let now� be a random vector, from which the samples	� ����� � � � ��� 
 have been observed. Then the kernel estimation

of the PDF of� is [17], [18]:

������ �
�

 

��
���

���� ��� (24)

And from there, the kernel estimation of the�-th component of JSF will be:

������ � �
	
	��

������

������
� �

��
���

	�
	��

�� � �����
��� ���� ���

(25)

Remark 1. The bandwidth parameter in the above equations determines the degree of smoothness of the estimator: the

larger bandwidth, the smoother estimated PDF. If it is chosen too small, the estimated PDF will be too fluctuating, and if it is

chosen too large, the estimated PDF will be a rough shape of the kernel itself. Optimal choice can be done by cross-validation

(see [18] for instance). However, a rule of thumb is given in the Remark 3 below.

Remark 2. The bandwidth of the kernel can be different in each direction, which depends on the spread of data in that

direction. However, as suggested by Fukunaga [19], after a whitening process on data, we can use isotropic kernels (kernels

with equal bandwidths in all directions). To state this idea more clearly, let
� denote the covariance matrix of�, and� be

its Cholesky decomposition,i.e. � is an upper triangular matrix which satisfies
� � ��� . If we now define the random

vector� � ����, then
� � �, that is, the variance of� is the same in any directions, and moreover the variables	 � are
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uncorrelated. Hence, it is natural to use isotropic kernels for estimating PDF and JSF of�, and then we can use the equations

(see Property 5):

������ �
������

������
� ������ � ��� ������ (26)

for estimating PDF and JSF of�.

Remark 3. When the above prewhitening is done, as a rule of thumb the value� ��� � !��������� can be used for the

bandwidth [18], where� is the dimension of the random vector, and! is a constant which depends on the type of the kernel.

For �-dimensional Gaussian kernels:

! �

�
�

��� �

� �
���

(27)

For example, for scalar Gaussian kernels! � ����, and for 2-dimensional Gaussian kernels! � ����.

2) Minimum Mean Square Error (MMSE) estimation: Property 3 can be used in designing Minimum Mean Square Error

(MMSE) estimators for����� (see also Corollary 2 of the property). Here we consider a parametric model which is linear

with respect to the parameters.

Let����� be estimated as a linear combination of multi-variate functions	� ����� � � � � �����
, that is,������ �
��

��� ������� �

�� ����, where���� � ������� � � � � ������
� , and� � ���� � � � � ���

� . � must be computed by minimizing the error:

� � �
	�
������ ������

��

(28)

Orthogonality principle [20] implies that�
�
����

�
������ ������

��
� �, and by using Property 3 we obtain the following

equation which determines�:

�
�
������ ���

�
� � �

�
��

���
���

�
(29)

B. Estimating SFD

Since SFD is the gradient of mutual information, we are mainly interested in estimating SFD, and not only JSF. Therefore,

in this section, we consider some methods for SFD estimation.

1) Independent estimations of JSF and MSF: One method for estimating SFD, is to estimate independently JSF and MSF,

and then to compute their difference. That is,������ � ������ � ������. We may apply kernel or MMSE estimation of the

joint and marginal score functions.

Example. (Polynomial estimation of SFD) The following estimator is applied successfully in [10] for separating convolutive

mixtures of two sources.������ ��� is estimated by the polynomial������� ��� �
�	

��� ��� ������ ���, where:

������ ��� � �� ������ ��� � ��� �
���� ��� � ���� ������ ��� � �
�

������ ��� � ��� ������ ��� � ���� �	���� ��� � �
�

(30)

Consequently:

����� ��� �
�
� �� ��� �
� �� ��� �
�

��
(31)

�

���
����� ��� �

�
� � ��� ���� � � �

��
(32)

�

���
����� ��� �

�
� � � � � ��� ����

��
(33)
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Then from (29) we have:

�
�
����� �������� ���

�
�
�� � �

�
�

���
����� ���

�
(34)

�
�
����� �������� ���

�
�
�� � �

�
�

���
����� ���

�
(35)

where�� � ����� ���� � � � � ��	�
� and�� � ����� ���� � � � � ��	�

� . These equations determine�� and��, which determine

������� ��� and ������� ���.

Similarly, ����� is estimated by������ � �
���
� � �

���
� �� � �

���

 ��� � �

���
� �
� , and the optimal values of the coefficients are

obtained from:

�

��
� �� ��� �
�

�� �
� �� ��� �
�

��
���� � �

��
� � ��� ����

���
(36)

where���� �

�
�
���
� � � � � � �

���
�

��
for � � �� �.

Finally, the SFD is estimated by using the above estimations, that is,������� ��� � ������ � ������� ��� and ������� ��� �

������� ������� ���.

2) Smoothing JSF: The problem of the previous method is that the estimation errors of JSF and MSF are independent.

Recall that a gradient based algorithm for minimizing the mutual information stops when SFD (the difference between MSF and

JSF) vanishes. However, small estimation errors�
�
����� � �������

�
and�

	
����� � �������



does not necessarily results

in a small estimation error�	����� � �������
. In other words, when the MSF and JSF estimation errors are independent,

their difference does not necessarily vanish for independent variables. In linear mixtures, the limited degree of freedom of the

separating system overcomes this problem and the above estimator works well. On the contrary, nonlinear mixtures require

more accurate estimation of the SFD.

Then we suggest to estimate MSF from the estimated JSF. From the Property 4 we know that MSF is the smoothed version

of JSF. Therefore, we can estimate MSF as the smoothed version of the estimated JSF. With this trick, the estimation errors in

JSF and MSF are no longer independent, and they partially cancel each other when calculating their difference. In other words,

in this method, SFD is estimated as the variations of JSF around its mean (see Fig. 1), and hence the separation algorithm

tries to minimize these variations.

Practically, following Property 4,����� is a regression from�� to �����, which can be calculated for instance using

smoothing splines [21]. The final estimation procedure is summarized in the following steps:

1) From the observed values	������ � � � ��� 
 estimate���
� � �������� � � �� � � � �  (e.g. by kernel estimators).

2) Compute the smoothing spline (or another regressor) which fits on the data�� �
�� ���
��� � � �� � � � �  . This spline will be

the estimated MSF������.

3) Estimate SFD by������ � ������ � ������.

3) Histogram estimation method: Another method for estimating SFD (in two dimensional case) is based on a simple

histogram estimation of the PDF of�. Histogram is not a very accurate estimator for PDF, but since we estimate SFD directly,

we do not need a very good estimation of PDF. In fact, despite of its simplicity, this estimator works very well for separating

instantaneous linear mixtures.
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In this method, a histogram is first used for estimating the joint PDF of�. For two-dimensional vectors, let��� �� ���

denote the number of observations in the bin���� ���, then the histogram estimation of�� is:

����� ��� �
����� ���

 
(37)

where is the number of observations. From there, a histogram estimation of� �� is obtained by������ �
�

��
����� ���,

and then we will have an estimation of��������:

�������� �
����� ���

������
�

����� ���

�����
(38)

Finally, from (8) we have������ ��� � � 	
	��

���������"����������, consequently a histogram estimation of������ ��� is

obtained by:

������ ��� �
��������� ������� � ��

��������
(39)

������ ��� will be estimated in a similar manner. Note that the value����� ��� will be assigned to all the points of the bin

���� ���.

Note. �������� is not defined in the bins where������ � �, but this is not important, because we don’t need the value of

SFD in these bins, since there is no point in these bins. However, in the bins with smallest� �, computing������ ��� from

(39) requires the value of������� � �� which is not defined. In our simulations, we have used� for these values, too.

4) Pham’s method: Recently D. T. Pham has proposed [22] a method for estimating the “conditional score function”, which

appears in separating temporary correlated sources. The conditional score function of the random vector� � �� �� � � � � �� �
�

is defined by:

��� ������������� ������ � � � � ��� � �� �� ��� ������������� ������ � � � � ��� (40)

where��� ������������� ������ � � � � ��� is the conditional density of�� given��� � � � � ����. From the Property 2, it is seen

that this is closely related to the SFD of�, and its estimation can be used to estimate SFD. The Pham’s method uses cubic

splines for this estimation, which results in a fast algorithm.

V. TWO GENERAL APPROACHES FORMUTUAL INFORMATION MINIMIZATION

In this section, we propose two gradient-based approaches for minimizing
��� with the model of equation (2). These

approaches are both based on Theorem 1 and SFD as a non-parametric gradient for mutual information.

A. Gradient approach

In the first approach, Theorem 1 is used to calculate�
���"��, and then applying the steepest descent algorithm on the

parameter vector:

� � � � �
�
���

��
(41)

For calculating�
���"�� using Theorem 1, one can let�� � � � Æ whereÆ is a ‘small’ deviation in the parameters. Then

using Theorem 1 the effect of this deviation on the output can be calculated, which leads to the calculation of�
���"��.
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Example 1. For linear instantaneous mixtures,� � ��. Here the separation parameter is the matrix�. Let �� � �� � ,

where� is a ‘small’ matrix. Then the new output is�� � ��� � ��� �� � � � ��. Consequently, from Theorem 1:

�
 � 
 � �
	
��� �����



�
�
� � �

�
������

�
��

(42)

Where��� �� stands for the scalar (Euclidean) product of matrices4. Finally (42) shows that:

�
���

��
� �

�
������

�
�

(43)

and the separation algorithm will be�� �� ��
�
������

�
�

, where� is a small positive constant.

Example 2. In convolutive mixtures, the separating system is:

���� � ������ ������� �� � � � �������� �� (44)

To calculate�
������"���, let ��� � ���� , where� denotes a ‘small’ matrix. This implies that����� � ������������,

and then by a reasoning similar to the above example, we conclude:

�
������

���
� �

	
�����

�
����

�
�� ��� ��



(45)

However, the above gradient cannot be directly used for separating convolutive mixtures, since some other points must be

taken into account (see Section VIII).

B. Minimization-Projection (MP) Approach

Since SFD can be seen as the ‘gradient’ of mutual information, one may think about the following “steepest descent”-like

algorithm for minimizing
��� in a parametric model� � ������:

� � � � ������ (46)

where� is a small positive constant. This algorithm has no local minimum and converges to a random vector� with statistically

independent components (provided that� is small enough). To show this fact, let� � denote the value of� at the�-th iteration.

Then���� � �� � ��������, and from Theorem 1:


������� 
���� � ���
	������������



� � 
������ � 
���� (47)

Moreover the equality holds if and only if������� � �, that is, if the components of�� are independent (Property 1).

Consequently, the algorithm (46) converges to an independent vector without trapping in any local minimum.

However, after the convergence of the algorithm (46), there may be no particular relation between� and �. On one

hand, the transformation� �� � may be non-invertible, and on the other hand, it does not necessarily belong to the desired

family � � ������, and hence the independence of� does not imply the source separation (recall that without structural

constraints, output independence does not insure separation). Then, the idea of the Minimization-Projection (MP) approach [23]

for overcoming this problem is to replace, at each iteration, the transformation� �� � by its “projection” on the desired family.

In other words, each iteration of the separating algorithm is composed of the following steps:

4The scalar (Euclidean) product of two�� � matrices� and� is defined by����� �
�

��� ������ . Moreover, it can be easily seen that for vectors

� and� and matrix� we have���� �
�
�����

�
.



13

� Minimization:

1. � � � � ������.

� Projection:

2. �� � ��
	�
�
�	�� � �������

�

.

3. � � �������.

Note that the dependence of the algorithm to the separating system appears only in the projection step: the minimization step

is the same for all separating models.

Remark. The minimization part of the MP approach has no local minimum, and the outputs are directly manipulated

regardless of the structure of the separating system. Consequently, it can be conjectured that it is less probable that this

approach traps in a local minimum compared to the gradient approach, in which a steepest descent algorithm is applied on

each parameter of the separating system. In other words, the MP approach is expected to have better convergence behavior

than the gradient approach.

VI. SOME SEPARABLE MODELS FORBLIND SOURCE SEPARATION

In the following sections, we will use the presented gradient and MP approaches for Blind Source Separation. In BSS, a

parametric model for the separating system is required, because general non-linear mixtures are not separable [2] (that is,

the output independence does not insure source separation). Four separable models, for which, separation algorithms will be

addressed in the following sections are:

1) Linear Instantaneous Mixtures:This is the simplest case, in which the mixing system is� � �� and the separating system

is � � ��, where� and� are constant (and regular) matrices. For these mixtures, it is shown [3] that the independence

of the outputs insures source separation, up to a scale and a permutation indeterminacy (provided that there is at most one

Gaussian source).

2) Convolutive mixtures:In convolutive mixtures, the mixing matrix composed of finite order Linear Time-Invariant (LTI)

filters instead of scalars. For these mixtures, the separation system is:

���� � ���������� �

��
���

������ �� (48)

As it has been proved in [24], convolutive mixtures are separable, too: if���� is determined to produce statistically independent

outputs, then the sources are separated.

In convolutive mixtures, the scale indeterminacy of instantaneous mixtures extends to afiltering indeterminacy. However, it

can be shown [25] that the effect of each source on each sensor (that is, what a sensor would receive if all other sources were

zero), can be found after the source separation.

In convolutive mixtures, the independence of outputs cannot be reduced to instantaneous independence of	 ���� and	����

[10]. In effect, in convolutive mixtures,	� and	� must be treated as stochastic processes, not random variables. Recall that

two stochastic processes	� and	� are independent if the set of random variables		������ � � � � 	�����
 is independent from

the set		������� � � � � 	���
�
��
, for every choice of� and��� � � � � ��� �

�
�� � � � � �

�
� [20]. This independence cannot be deducted

from the instantaneous independence of	���� and	����.
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Mixing System� � Separating System� �

Fig. 2. The mixing-separating system for PNL mixtures.

However, for separating convolutive mixtures, it is sufficient that	 ���� and 	��� �#� be independent for all�’s and all

#’s. This comes from the fact that this independence results in cancelling output bi-spectra, which is shown to be sufficient

for separating convolutive mixtures [24]. Consequently, as proposed in [26] the separation criterion may be chosen:

$ �

���
����



�
	����� 	����#�

�
(49)

where� � ����, and� is the degree of the separating filter (����). This criterion is computationally expensive. To reduce

its computational cost, we use
�	����� 	��� �#�� as the separation criterion, but at each iteration a different random# is

chosen form	��� � � � ��
.

3) Post Non-Linear (PNL) mixtures:Post Non-Linear (PNL) mixtures have been first considered by Taleb and Jutten [16], as

a (practically important) special case of non-linear mixtures which is separable. The PNL mixing-separating system is shown

in Fig. 2. This model corresponds to a linear mixing system followed by non-linear sensors. For this model, it is shown that the

independence of outputs insures that� � � ���� and� is a separating matrix [16] up to scale and permutation indeterminacies

like in linear mixtures (see [27] for a simple geometric proof for bounded sources). In other words, PNL mixtures are separable:

independence is sufficient for estimating the separating structure and restoring the sources.

4) Convolutive PNL (CPNL) mixtures:This model is a generalization of PNL models, in which the mixing and separating

matrices are convolutive,i.e. � and� (with scalar entries) are replaced by filter matrices���� and���� (where entries are

filters) in Fig. 2. The separability of this model can be deduced from the separability of PNL mixtures [28], for finite impulse

response filters.

VII. A PPLICATION TO LINEAR INSTANTANEOUS MIXTURES

Here, as an illustration of the “gradient” and “MP” approaches, we utilize them for separating linear instantaneous mixtures.

All of the algorithms and programs of this section are available as a MATLAB package with a graphical interface at:

http://www.lis.inpg.fr/pages_perso/bliss/deliverables/d20.html

A. Gradient approach

For these mixtures, the gradient of
��� with respect to� has been obtained in equation (43). However, in linear instantaneous

mixtures, it is preferable to use the equivariant algorithm [29], [30], which results in a separation quality independent of the

mixing matrix. In equivariant algorithm, instead of	�	� , the natural [29] (or relative [30]) gradient is used:

��
 �
�


��
�� � �

�
������

�
�

(50)
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� Initialization:� � � and� � �.
� Loop:

1) Estimate ����� (e.g. by histogram
method).

2) ��� � 	
�

�����

�
�

3) �� ��� ������.
4) � � ��.
5) Normalization:

– Let �� � ����, where�
� is the energy

of ��.
– Divide the �-th raw of� by �.

� Repeat until convergence.

Fig. 3. Gradient algorithm for separating linear instantaneous mixtures.

and the updating algorithm for� is:

�� ��� ���
�� (51)

where� denotes the identity matrix.

The scale indeterminacy must also be taken into account. The algorithm (51), which is based on output independence,

imposes no restriction on the output energies. Moreover,� � � is a trivial solution of the algorithm, which must be prevented.

To solve this problem, the output energies may be normalized at each step of the algorithm. This results in the algorithm of

Fig. 3 for separating linear instantaneous mixtures.

Experimental results. To examine the performance of the algorithm, we use two uniform random sources with zero means

and unit variances. The mixing matrix is:

� �


� � ���

��� �

�
� (52)

and the parameters of the separating algorithm are: (a) Histogram estimation of SFD (using a�� � �� histogram), (b) 500

point data block, and (c)� � ���. The experiment has been repeated 100 times (for 100 different realizations of the sources).

In this paper, for measuring the quality of separation, we use two performance indices. The first, is the mean of output

Signal to Noise Ratios (SNR). At each output, the SNR is defined by (assuming there is no permutation):

SNR� � �� ����
�
�
���
�

� 	��� � 	���

(53)

Then, as a performance index, we use the mean of output SNR’s, that is, SNR� �SNR� � SNR��"�. This is done for having

just a single number as the performance index. Moreover, it must noted that we use averaged SNR’s over several (say 100)

runs of the algorithm, for which SNR� and SNR� are essentially equal.

The second performance index is the number of iterations required for the SNR to reach at 90% of its final value.

In this experiment, averaged output SNR, taken over 100 runs of the algorithm was 32.4dB, and the number of iterations

was 31 (the results of the experiments of the paper are collected in the Table I at the end of paper).

As it can be seen in this experiment, despite of the simplicity of the SFD estimator (a����� histogram), a good separation

performance has been obtained. This fact can be explained as follows. First note that (50) can be rewritten as (see the corollary 1

of the Property 3):

��
 � �
�
������

�
�
� �

�
������

�
�
��

�
������

�
�
� �

�
������

�
�
� � (54)
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� Initialization: � � �.
� Loop:

1) �� �� ������.
2) Remove the DC of each output, and nor-

malize its energy to 1.
3) � � 	

�
���

� �
	
�
���

��
��

4) � � ��.
� Repeat until convergence.

Fig. 4. Minimization-Projection algorithm for separating linear instantaneous mixtures.

which is the equation used in the previous methods of separating linear instantaneous mixtures by mutual information

minimization [11]. Practically, this equation is simpler than (50), because it only requires estimation of marginal score functions.

However, the separation information (independence) is contained in the averaged SFD, as the gradient of the mutual information,

and the separating algorithms will stop when it vanishes. Moreover, SFD is the difference of two terms. In (54), one of these

terms is theoretically computed. Hence, a good estimation of the other term is required for source separation (because the

difference of the two terms must vanish for the convergence of the algorithm). But in our method which is based on the direct

use of the SFD, since it is directly estimated, a good estimation of� can be achieved even with a coarse estimation of the

SFD (e.g. a simple histogram).

Another advantage of this method (based on SFD) is that it can be readily generalized to more complicated mixtures (as it

will be shown in the following sections), while the use of (54) is restricted to linear instantaneous mixtures. The drawback of

the methods based on SFD is the necessity of the estimation of a multi-variate density, which is quite difficult, and requires

a high computation cost and a lot of data, when the dimension (i.e. the number of sources) increases. Practically, this method

is applicable only for a small number of sources (at most 3 or 4).

B. Minimization-Projection approach

In the MP approach, the minimization stage (step 1) does not depend on the separating model. The projection stage for

linear instantaneous mixtures requires calculating the matrix� which minimizes�
	
�� ����

�



(step 2), and then replacing

� by �� (step 3). The solution of step 2 is given by the following well-known lemma.

Lemma 1: The matrix� which minimizes�
	
�� ����

�



is:

�opt � �
�
���

� �
�
�
���

����
(55)

Taking into account the scale indeterminacy, the final MP algorithm for separating linear instantaneous mixtures is given in

Fig. 4.

Experimental results. We repeat the experiment of Section VII-A using the MP approach. The source signals are two

uniform random signals with zero means and unit variances. The mixing matrix is the same as (52). The parameters of the

separating algorithm are like Section VII-A: (a) Histogram estimation of SFD, (b) 500 point data block, and (c)� � ���. The

averaged SNR’s taken over 100 runs of the algorithm, and the number of required iterations for convergece are given in the

Table I.
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Here, for linear instantaneous mixtures and the histogram estimation of SFD, the MP approach shows no advantages or

disadvantages to the gradient approach. However, as our experiences shows for more complicated mixtures (and for other

estimation methods of SFD), the MP approach has, in general, better convergence behavior (as discussed at the end of

Section V-B) and converges in fewer iterations, while the gradient approach leads to slightly higher output SNRs.

VIII. A PPLICATION TO CONVOLUTIVE MIXTURES

In this section, we show how the gradient and the MP approaches can be used in separating convolutive mixtures of two

sources.

A. Gradient approach

To use the gradient approach,		�� 
�	����� 	����#�� must be first calculated. Although this gradient is directly calculated

in [10], here, we recalculate it using the general approach of Section V-A and Theorem 1, to show how this general approach

can be used in convolutive mixtures.

For calculating this gradient, we first define the following notation for any signal���� � �	 ����� 	�����
� :

������� �


� 	����

	����#�

�
� (56)

In other words,������� shows a shift operation on the second component of���� with respect to the first one.

Now, the gradient of

�
�������

�
must be calculated. Let�� � �� for � �� � and �� � �� � � , where� is a “small”

matrix. Then, from (48) we conclude that���� � � ��������� � ���� � ���� � ��. Denoting	��� � ���� � ��, we will

have������� � ������� �	������, and hence from Theorem 1:



�
�������

�
� 


�
�������

�
� �

	
���������	������



� �

	
�����
�����

���
� ���




��
	
�����
�����

���
� ���



� �

�
�����
���������

�
��

�
�����
���������#�

�

� �
�
�����
���������

�
��

�
�����
����#������

�
where�������� stands for�����

�
�������

�
. Note that in writing the above equations, the sources are assumed to be stationary.

Now, we define:

����� � �
����

���� ��� �


� �����
����

�����
����#�

�
� (57)

In other words, for obtaining�����, the second component of���� must be shifted# times, then after calculating its SFD,

the second component of SFD must be shifted back# times:
� 	����

	����

�
� Shift
����


� 	����

	����#�

�
� SFD
����


� ��� ���

��� ���

�
� Shift back
��������


� ��� ���

��� ���#�

�
� � �����

By using this notation, we can write:

�
 � 
 � �
�
�����

�	���
�
� �

�
�����

� ����� ��
�
�
�
� � �

�
��������� ���

��

and finally:
�

���


�
	����� 	����#�

�
� �

�
��������� ���

�
(58)
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� Initialization:
1) �� � �.
2) For � � � � � � �, �� � �.
3) ���� � ����.

� Loop:
1) Choose a random� from the set���� � � � ����.
2) Estimate�����, the SFD of

�
������ �������

��
.

3) Let ����� � �
�� ���� 

�
� ������� .

4) For � � � � � � � :

�� � �� � �	
�
��������� ���

�

5) Calculate���� � ����������.
6) Normalization:

– Let �� � ����, where�
� is the energy of��.

– Divide the �-th raw of���� by �.
� Repeat until convergence.

Fig. 5. Gradient algorithm for separating convolutive mixtures.

Now, taking into account the scale indeterminacy, the separation algorithm is obtained as shown in Fig. 5.

Experimental results. Here, an experimental result with the algorithm of Fig. 5 is presented. Because of the filtering

indeterminacy, instead of (53), the SNR is defined here as:

SNR� � �� ����
�
�
	��
�

�
	
	�� �����


 (59)

where 	������ stands for what is at the�-th output, where the�-th input is zero (assuming there is no permutation). By using

this definition, SNR will be a measure of “separation”, that is, a high SNR means that there is not a large leakage from the

other sources to this output. However, it can be a filtered version of the actual source, and a post-processing can be done for

recovering the effect of this source on each sensor [25] (as mensioned at the begining of this section).

Now, we mix two uniform random sources with zeros means and unit variances. The mixing system is:

���� �


� � � ������ � ������ ��� � ������ � ������

��� � ������ � ������ � � ������ � ������

�
� (60)

The separation parameters are: Second order filters (� � �), � � �� � � � �, � � ���, 500 samples data block, and the

Pham’s method [22] for estimating SFD. The averaged SNR’s (taken over��� repetitions of the experiment), and the number

of required iterations for convergence are given in the Table I.

B. Minimization-Projection Approach

In this section, an algorithm based on the MP approach (Section V-B) is developed for separating convolutive mixtures.

The minimization step of this algorithm (Equation (46)) does not depend on the separating model. The projection step for

convolutive mixtures consists of first finding the filter���� which minimizes the error�
	
����� � ������������



, and then

replacing���� by ����������.

After doing some algebric calculations, it can be found that the filter���� which minimizes�
	
����� � ������������




is given by the following system of linear equations (see [26] for details):
��

���

��
����� �� � 
����� �� � � � �� � � � � � (61)
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� Initialization: ���� � ����.
� Loop:

1) Choose a random� from the set
���� � � � ����.

2) Estimate����� , the SFD of
�
������ �����

��
��

.
3) Update the outputs by:

�
��� � �

��� � ������ ��
����

4) Remove the DC of each output, and nor-
malize its energy.

5) Compute the matrices��, � � �� � � � � �,
from (61).

6) Let ���� � ����������.
� Repeat until convergence.

Fig. 6. Projection algorithm for separating convolutive mixtures.

where:


����� �� � �
�
���� ���� ��� ��

�
(62)


����� �� � �
�
��� � ���� ��� ��

�
(63)

Finally, taking into account the scale indeterminacy, the MP algorithm for separating convolutive mixtures is obtained as

shown in Fig. 6.

Experimental results. The experiment of Section VIII-A is repeated here using the MP method. The separation parameters

are: Second order filters (� � �), � � ���� � �, � � ���, 500 samples data block, and the Pham’s method [22] for estimating

SFD. The averaged SNR’s (taken over 100 runs of the algorithm), and the number of required iterations for convergence are

given in Table I.

A look at the Table I shows that the quality of the projection approach is slightly less than the gradient approach. However,

as discussed at the end of section V-B, it has better convergence behavior.

IX. A PPLICATION TO PNL MIXTURES

In this section, we consider the application of the general mutual information minimization approaches of Section V (gradient

and MP approaches) in separating PNL mixtures (Fig. 2).

A. Gradient approach

The gradient approach for separating PNL mixtures has been first reported in [31]. The parameters of the separating system

(Fig. 2) are the matrix� and the functions� �’s, and for using the gradient approach, the gradients of
��� must be calculated

with respect to these parameters.

The gradient with respect to� can be obtained by repeating the calculations done in Example 1 of Section V-A, and hence

(43) gives the desired gradient (or (50) for the relative gradient).

For calculating the gradients of
��� with respect to the functions� �, two different approaches may be used. The first is

a ‘parametric’ approach, in which, a parametric model for these functions is assumed, and then the gradients of
��� with
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respect to these parameters are calculated. Finally the steepest descent gradient algorithm is applied on each parameter of the

model. For example, neural networks and polynomial models have already been used for modeling� �’s [16], [32].

Another approach, which is used in this paper, is ‘non-parametric’ [33], [31]. In this approach, no parametric model is

assumed for��’s, and the ‘gradient’ of the criterion with respect to these functions, which is itself a function, is directly

calculated. To clarify the idea, suppose that a cost function� is to be minimized with respect to a function����. Moreover,

suppose that for any ‘small’ function%��� we have:

��� � %�� ���� �

� ��

��

%��� ���� ���� �� � ��%� (64)

where���� is a non-negative function and��%� stands for higher order terms. Then, it can be said that the gradient of� with

respect to the function���� is the function��������. Equivalently, it can be said that the gradient of� with respect to� via

the weighting function���� is ����. The main point here is that a little movement in the opposite direction of these gradients

(that is,� � � � ��� or � � � � �� ) insures a reduction in the cost function.

Now, for calculating the gradients of
��� with respect to the functions� �, suppose there is a small perturbation in these

functions of the form��� � �� � %� Æ ��, where%� denotes a ‘small’ function. This is equivalent to�� � � �� � %�����. Using

Theorem 1 and after doing some algebric calculations (see [31] for details), we will have:


���� 
��� �
�
�

� �

��

%����� 	&���� � �� � �
 �������� (65)

where:

���� � ������� (66)

From the above equation, we conclude that the (natural) gradient of
��� with respect to� � via the weighting function��� is:

����
���� � � 	&���� � �� � �
 (67)

We emphasize again thet���
 is itself a function.

In PNL mixtures, there are scale indeterminacies on both� � and 	� signals, and a mean (DC) indeterminacy on� � [16].

Moreover, when using nonparametric methods, a smoothness constraint is necessary on functions� � [31]. Without any

smoothness constraint, the value of�� at each data point acts as a parameter, and the number of parameters will be equal

to the number of data points, which is mathematically ill-posed. To insure this smoothness, smoothing splines [21] may be

used [31]: at each iteration,�� is the smoothing spline which has the best fit on the data points�� �� &���

Taking into account these indeterminacies, the separation algorithm is obtained as shown in Fig. 7.

Experimental results. As an experiment, two uniform random sources with zero means and unit variances are mixed. The

mixing system composed of:

� �


� � ���

��� �

�
� � ����� � ����� � ����� ��� ���� (68)

Then, we have used the separation algorithm of Fig. 7 with 1000 data samples, kernel estimation of SFD (by Gaussian kernels),

and�� � �� � ���.

The separation quality is measured by mean of output SNR’s, where each output SNR is defined in (53). The averaged

SNR’s taken over 100 runs of the algorithm, and the number of required iterations for convergence are given in the Table I.
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� Initialization:
1) � � �
2) � � �
3) � � �

� Loop:
1) Estimate����� (SFD of �).
2) Let����� � �������.
3) For � � �� � � � � � , estimate ��	�������, by

fitting a smoothing spline on���� ���.
4) For � � �� � � � � � , modify �� by �� � �� �

����	�������.
5) Let �� be the smoothing spline which fits on the

���� ��� points.
6) For � � �� � � � � � , normalize �� by �� �


������
����

.
7) Absorb the effect of the above normalization in

�:

�� �

�
�	

	
� �
. . .

� 	
�



��

8) Estimate���, using (50).
9) Modify � by �� ��� �������.

10) Compute outputs by� � ��.
11) Normalization:

– Let �� � ����, where�
� is the energy of��.

– Divide the �-th raw of� by �.
� Repeat until convergence

Fig. 7. The gradient approach for separating PNL mixtures.

B. Minimization-Projection Approach

In this section, an algorithm for separating PNL mixtures is developed based on the MP approach (Section V-B). As usual,

the minimization step of this algorithm (Equation (46)) is the same for all mixing-separating models. The projection step for

PNL mixtures (see Fig. 2), consists in first finding functions� � and matrix� which minimize�
	
�� �������

�



, and then

replacing� by �����, where���� � ����'��� � � � � �� �'� ��
� .

For finding functions�� and matrix� which optimally map� to �, an iterative algorithm is proposed in [23]. It is based on

the fact that the invertibility of��’s implies their monotonicity, and without loss of generality they can be assumed ascending.

If � was known, then the matrix� which optimally maps� to � were given by (55). Knowing�, � can be re-calculated

using� � ����. It automatically defines a set of��’s, which are not necessarily ascending. To make� � ascending, we change

the order of the values������ ������ � � � � ��� � ( is the length of data block) in such a way that for any' ����� � '����� we

have������ � ������. This may be better explained by its MATLAB code:

[temp, index_i] = sort(e_i);

x_i(index_i) = sort(x_i);

It defines a new�, and the above process is repeated. This results in the algorithm of Fig. 8 for finding the optimal mapping.

It is experimentally shown in [23] that this algorithm converges very fast, typically in 2 to 5 iterations.

Having this algorithm for finding the projected mapping, the final MP algorithm for separating PNL mixtures can be easily

obtained. However, two modifications is done in the algorithm of Fig. 8: (a) instead of initializing by� � �, the value of�
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� Initialization: � � �.
� Loop:

1) Let � � 	
�
���

��
	
�
���

��
��

.
2) Let � � ����.
3) For � � �� � � � � � , change the order of

����� such that the function�� � ������
become ascending (see the text).

� Repeat until convergence

Fig. 8. Finding the projected PNL mapping.

� Initialization: � � � � �.
� Loop:

1) Estimate�����, the SFD of�.
2) Modify the outputs by�� �� ������.
3) For � � �� � � � � �, do:

a) Let� � 	
�
���

��
	
�
���

��
��

.
b) Let � � ����.
c) For � � �� � � � � � , change the order

of ����� such that the function�� �
������ be ascending.

4) For � � �� � � � � � , remove the mean of��
and normalize its energy.

5) For � � �� � � � � � , let �� be the smoothing
spline which fits on���� ���.

6) Let � � �����.
7) For � � �� � � � � � , remove the mean of��

and normalize its energy.
� Repeat until convergence

Fig. 9. Minimization-Projection algorithm for separating PNL mixtures.

obtained in the previous iteration of MP algorithm is used, which is a better initial estimation of�. (b) we do not wait for the

projection algorithm of Fig. 8 to converge (even, it is possible that it does not converge, when the outputs cannot expressed

as�����). Instead, we simply repeat the loop for some fixed number of iterations, say 5 or 10 times (even 1 iteration seems

sufficient in many cases, because the whole MP algorithm is itself iterative, and the value of� in the previous iteration is used

as initial value in the current iteration).

Finally taking into account the indeterminacies (similir to what is done for the gradient approach), the final separation

algorithm is obtained as shown in Fig. 9.

Experimental results. Now we repeat the experiment of Section IX-A using the MP algorithm with parameters:� � ���,

1000 samples data block, Pham’s estimation of SFD, and( � �. The averaged SNR’s taken over 100 runs of the algorithm,

and the number of required iterations for convergece are given in the Table I.

X. A PPLICATION TO CPNL MIXTURES

We terminate the applications of gradient and MP approaches by using them in separating Convolutive Post Non-Linear

(CPNL) mixtures of two sources. In CPNL mixtures, the separation system composed of the linear FIR filter (48) and non-linear

functions��. Consequently, the separation algorithms can be obtained by combining the algorithms obtained for convolutive

and PNL mixtures.
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� Initialization:
1) ���� � �, that is:�� � � and for � � � � � � �,

�� � �.
2) ���� � ����.
3) ���� � ����.

� Loop:
1) Choose a random � from the set

���� � � � ����.
2) Compute�����, the SFD of

�
������ ���� �

��
��

.
3) Let ����� � �
�� ���� 


�
� ������� .

4) Estimate ��	�������, by fitting a smoothing
spline on���� ���.

5) Modify ��: �� � �� � ��� 	�	�������.
6) Let �� be the smoothing spline which fits on the

���� ��� points.
7) Normalize��: �� � ��� � 	�
�� �	
� .
8) Absorb the effect of the above normalization in

����:

����� ����

�
�	

	
� �
. . .

� 	
�



��

9) For � � � � � � � :

�� � �� � ��
		
�
��������� ���

�

10) Calculate���� � ����������.
11) Normalization:

– Let �� � ����, where�
� is the energy of��.

– Divide the �-th raw of���� by �.
� Repeat until convergence.

Fig. 10. Gradient algorithm for separating CPNL mixtures.

A. Gradient Approach

Similar to convolutive mixtures, the separation criterion is
�	����� 	��� � #���, where# is randomly chosen at each

iteration from����� �� to ��� �. To use the gradient approach in separating CPNL mixtures, the gradient of this criterion

must be calculated with respect to both�� ’s and��’s.

Following the same calculations done in Section VIII-A, the gradient with respect to� � ’s is given by (58). The gradient

with respect to functions�� can be obtained using a method similar to what is done for PNL mixtures at Section IX-A. The

final result is given by (67), where in this case� is [28]:

���� �

��
���

��
� ����� �� �

�
��

�
�

�

��
����� (69)

Taking into account the DC and scale indeterminacies, the final separation algorithm is obtained as shown in Fig. 10.

Experimental results. As an experiment, two uniform radom sources with zero means and unit variances are mixed by

a system composed of the mixing matrix (60) and sensor nonlinearities given by (68). Each output SNR is defined as (59).

Moreover, there are a lot of parameters to be estimated and to not encounter “over-learning”, a new data set is used at each

iteration. Here, the main parameters are: observation blocks of 2000 samples,� � �, � � � and� � ���. The averaged SNR’s

taken over 100 runs of the algorithm, and the number of required iterations for convergence are given in the Table I.
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� Initialization: � � � � �.
� Loop:

1) Choose a random� from the set���� � � � ���.
2) Estimate����� ���, the SFD of����.
3) Modify the outputs by ���� � ���� �

������������.
4) For � � �� � � � � �, do:

a) Find the best���� which maps���� to
����, using (61).

b) Compute���� � �inv����������� using the
recursive equation (70).

c) For � � �� 
, change the order of����� such
that the function�� � ������ be ascending.

5) For� � �� 
, remove the DC of�� and normalize
its energy.

6) For� � �� 
, let �� be the smoothing spline which
fits on ���� ���.

7) Let ���� � �������
�
����

�
.

8) For � � �� 
, remove the DC of�� and normalize
its energy.

� Repeat until convergence

Fig. 11. Minimization-Projection algorithm for separating CPNL mixtures.

TABLE I

SUMMARY OF THE RESULTS OF THE EXPERIMENTS OF THE PAPER. SNR’S ARE AVERAGED OVER100EXPERIMENTS.

Mixture type Algorithm SNR (in dB) Number of

iterations

Linear Instantaneous Gradient 32.4 31

MP 31.7 22

Convolutive Gradient 25.4 86

MP 20.4 108

PNL Gradient 21.4 22

MP 18.7 19

CPNL Gradient 24 1090

MP 24.7 328

B. Minimization-Projection Approach

The MP approach for separating CPNL mixtures can be obtained by directly combining the corresponding approaches for

separating convolutive and PNL mixtures. However, step (2) of the projection algorithm of Fig. 8 (for finding the optimum

mapping) must be replaced by���� � �inv�����������. This inverse function can be found using the recursive equation:

���� � ���
�

�
���� ������� ��� � � � ������� ��

�
(70)

Consequently, the final MP separation algorithm is obtained as shown in Fig. 11.

Experimental results. The same experiment of Section X-A is repeated here, but with block lengths of 1000 samples and

� � ���. The averaged SNR’s taken over 100 runs of the algorithm, and the number of required iterations for convergece are

given in the Table I.
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XI. CONCLUSION

In this paper, we introduced the concept of SFD, which can be considered as a non-parametric ‘gradient’ of the mutual

information. We also showed that SFD is a powerful tool for minimizing mutual information of a parametric model, and

we proposed two general approaches called gradient and Minimization-Projection (MP) approaches. These approaches give a

unifying view and powerful tools for separating any complicated (yet separable) mixing model (for example, up to our best

knowledge there is currently no other method for separating CPNL mixtures). Finally, we showed how these approaches can

be used for separating sources in four mixing models: linear instantaneous, linear convolutive, PNL, and CPNL mixtures.

Moreover using the properties of SFD, it was shown that mutual information has no local minimum (Theorem 2).

In general, because of direct manipulation of outputs in the MP method, and since mutual information has no local minimum,

this method has better convergence behavior (faster convergence and lowest risk of a local minimum) than gradient method,

especially when the number of parameters are large (e.g. convolutive mixtures with long separating filters). Moreover, in the

gradient-based algorithms, it is very tricky to select parameters which insures the algorithm convergence. On the contrary, the

convergence of MP algorithms is very robust with respect to the parameters. However, if convergence is achieved, the gradient

approach may result in a slightly better separation performance. Finally, for linear instantaneous mixtures, gradient approach

may be simplified (as done in (54)) such that it only uses marginal distribution estimations, which is a great advantage for

large number of sources.

The limitation of methods based on mutual information minimization with SFD is the requirement of multi-variate PDF

estimations which is quite difficult and requires a large number of data when the number of variables grows. Practically, they

are currently limited to 3 or 4 sources.
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