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Abstract—In graph signal processing (GSP), graph learning is
concerned with the inference of an underlying graph best capable
of modeling a dataset of graph signals. However, more complex
datasets are derived from multiple underlying graphs. In such
instances, it is necessary to learn multiple graph structures, each
corresponding to the graph signals residing on the same structure.
In other words, the graph signals need to be partitioned into a
set of clusters, with a designated topology for each cluster. In
this letter, inspired from classical K-means, a new algorithm for
multiple graph learning, called K-graphs, is proposed. Numerical
experiments demonstrate the high performance of this algorithm,
in both graph learning and data clustering.

Index Terms—K-graphs, graph signal processing (GSP), mul-
tiple graph learning, K-means, graph Laplacian matrix.

I. INTRODUCTION

GRAPH SIGNALS are generic mathematical tools for rep-
resentation of the data that lie on complicated structures,

such as social and computer networks or digital images. When
a well-defined graph is available for a dataset, the analysis
and inference of the data can be performed by the tools in
the emerging field of graph signal processing (GSP) [1], [2].
However, in many datasets, the underlying graph is not known,
and it should be learned from the data. Many GSP-based graph
learning algorithms have recently been proposed [3] to infer
an underlying graph topology from a dataset of graph signals
(e.g., based on the smoothness of the data over the underlying
graph), probably by also exploiting some prior knowledge such
as edge sparsity or connectivity of the graph [4].

There are still more complicated natural data that cannot be
well described by a single graph. In fact, there are multiple
latent graphs that rule such data structures. This type of data
arises the need for learning multiple graphs from a dataset
of graph signals. An example of such datasets are brain
fMRI data, where captured signals are related to various brain
networks corresponding to different human functions [5].

Before modeling the data on graphs as graph signals, the
domain knowledge was mainly represented by joint probability
distributions, and graphs were used to express the structural
properties of these distributions [6]. For example, in [7]–[9],
by assuming that the data follows a multivariate Gaussian
distribution, the graph learning problem has been reduced to
a Gaussian Markov Random Field (GMRF) estimation, which
can be defined entirely by the inverse covariance matrix (i.e.,
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precision matrix) of the data. Then, the graph learning has
been performed by precision matrix estimation based on some
prior information such as sparsity [7], [8]. In [7], [8], the
interpretation of the inferred graph suffers from self-loops and
negative weights, so [9] imposed a graph Laplacian matrix
structure on the precision matrix to overcome this problem.

By the advent of GSP and treating the data as graph signals,
more interpretable methods have been proposed for learning
the graph. In [10], the data is modeled using factor analysis
with a prior distribution that forces the signal to be smooth
on the graph. Then, applying a maximum a posteriori (MAP)
estimator results in a non-convex optimization problem, solved
by alternating minimization. A computationally more efficient
version of this algorithm is proposed in [4]. Other previous
works include graph learning by structural dictionary learning
[11], and using pre-defined spectral templates to learn the
eigenvalues of the Laplacian matrix [12].

However, none of the previously mentioned methods have
considered learning of multiple graphs from the data. Up to our
best knowledge, the only work addressing this problem is [5],
in which an algorithm called graph Laplacian mixture model
(GLMM) has been proposed for this purpose. In that work, the
dataset consists of smooth signals over different graphs, and a
Gaussian mixture model (GMM) is assumed for the data. To
obtain graph Laplacian matrices, a MAP estimation problem
has been introduced and solved via expectation maximization
(EM) algorithm, in which the covariance matrix estimation
step has been replaced by a graph learning algorithm.

In this letter, a new algorithm for multiple graph learning is
proposed. More precisely, we are interested to jointly cluster
a set of ‘graph signals’ coming from several unknown graphs
and learn the underlying graph for each cluster1. To this end,
K-means algorithm is reformulated based on the smoothness
of a signal on a graph, to provide a tool for learning multiple
graphs over data with a complicated structure. While [5]
assumes a Gaussian distribution for the data and proposes a
GMM based algorithm, our method is not limited to such an
assumption, and as will be seen in simulations, it results in
higher accuracy in both clustering and graph estimation, even
for a dataset generated with Gaussian distribution.

The rest of the paper is organized as follows. In Section II,
some basics of GSP are very briefly reviewed. Our method

1Note that this is fundamentally different from the algorithms such as
spectral clustering (SC) [13]–[16] or locally linear approaches for clustering
[17], [18]: If the dataset is composed of N data points x1, . . . ,xN , where
∀i,xi ∈ Rm, then in SC-based algorithms the graph has N nodes, while in
our work each graph has m nodes.
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for multiple graph learning, called K-graphs, is proposed in
Section III. Finally, Section IV is devoted to simulation results.

II. GSP BACKGROUND

In this section, a brief review on the GSP is presented which
provides the necessary basics/notations for the graph learning
problem. Let G = {V, E ,W} be an undirected, positive-
weighted graph without self-loops, where V is the vertex set, E
is the edge set, and W is the symmetric weighted adjacency
matrix. If there is an edge between nodes i and j, W[i, j]
(similarly W[j, i]) denotes the positive weight of that edge,
otherwise it is zero. In this paper, the square brackets [i, j]
after a matrix indicate the (i, j)-th entry of that matrix. A graph
signal is a mapping x : V → Rm that assigns a real value to
each vertex, where |V|= m is the number of nodes. The graph
Laplacian matrix for graph G is defined as L = D−W, where
D is the weighted degree matrix, that is, D = diag(W · 1),
in which 1 denotes the all-one vector. The set of valid graph
Laplacian matrices is defined as

L = {L∈ Rm×m :

L = LT ,L[i, j] ≤ 0 (∀i 6= j),L · 1 = 0
}
, (1)

where 0 is the all-zero vector, and (·)T denotes matrix
transposition. Under aforementioned constraints, L becomes a
symmetric positive semi-definite matrix. Therefore, it can be
decomposed as L = VΛVT , where Λ is a diagonal matrix
with ascending-ordered non-negative eigenvalues and V is an
orthonormal matrix containing the corresponding eigenvectors
as its columns. In the GSP context, these eigenvectors are used
as the basis for Graph Fourier Transform (GFT) [1]. So, GFT
is defined as x̂ = VTx, where x̂ denotes the GFT coefficients
of the graph signal x. A graph signal is called smooth over
L, if most of signal energy is concentrated in a few first GFT
coefficients.

An essential expression in GSP is the graph Laplacian
quadratic form [1], which measures the signal smoothness:

xTLx =
∑
i,j

W[i, j](xi − xj)2 =

m∑
k=1

λk|x̂k|2, (2)

where λk’s are the eigenvalues of L, and xi and x̂k are the i-th
and k-th entries of the vectors x and x̂, respectively. Clearly,
the quadratic form (2) is a non-negative value that penalizes
the difference between two strongly connected nodes, hence
it measures signal variations over the graph.

Based on the definition of GFT, graph filtering can be done
by modifying the eigenvalues of L via a function h(λk) [1].
For lowpass filtering, a common approach is to set h(λk) =
λ
−1/2
k (h(0) = 0) [10], which is equivalent to multiplying

the input signal x by the matrix L−1/2 , V(Λ†)1/2VT =
(L†)1/2, where (·)† indicates Moore-Penrose pseudo-inverse.

III. K-GRAPHS ALGORITHM

Let the dataset X consist of N graph signals xn ∈ Rm,
n = 1, . . . , N , and each signal comes from one of the K
undirected graphs G1, . . . ,GK . It is also not known that which
graph signal has come from which graph. Then, the objective

of multiple graph learning is to find the set of these K graphs
{Gk}Kk=1 from the data. This problem can also be seen as
partitioning the dataset into K clusters X1, . . . ,XK that have
the best fit on the graphs G1, . . . ,GK , respectively. We use the
Laplacian matrix Lk to represent the k-th undirected graph
Gk, and our criterion of fitness of a graph signal x on Gk is
the smoothness of the signal over the graph, as defined in (2).
In other words, the smaller xTLkx, the better fit of the signal
x on the k-th graph.

To solve the above problem, we adopt an algorithm inspired
from K-means. In K-means, the goal is to find cluster centers
ck and cluster sets Xk, k = 1, . . . ,K, that minimize the
objective function [19], [20]∑

x∈X1

d(x, c1)
2 +

∑
x∈X2

d(x, c2)
2 + · · ·+

∑
x∈XK

d(x, cK)2

=

K∑
k=1

∑
x∈Xk

d(x, ck)
2, (3)

where x is a multi-dimensional point in the dataset X , and
d(x, ck) is a distance function measuring the dissimilarity
between x and ck. For minimizing (3), K-means uses al-
ternating minimization for ck’s and Xk’s, which contains an
initialization and then iterating between two steps:
Initialization: Partition x1, . . . ,xN randomly into K clusters
X1, . . . ,XK .
Step 1: Fix Xk’s and recompute the centers by ck =
argminc

∑
x∈Xk

d(x, c)2 for k = 1, . . . ,K. For the Eu-
clidean distance, ck is the centroid of the points in Xk, i.e.
1
|Xk|

∑
x∈Xk

x.
Step 2: Fix ck’s and assign each data point x ∈ X to one
of the K clusters X1, . . . ,XK such that ∀x ∈ Xk we have
k = argmink′ d(x, ck′).

Now, inspired from (3), we express the multiple graph
learning problem as

minimize
L1,...,LK
X1,...,XK

K∑
k=1

∑
x∈Xk

xTLkx +

K∑
k=1

f(Lk), (4)

s. t. Lk ∈ L, 1 ≤ k ≤ K,

where the set L is defined in (1). The term xTLkx measures
the smoothness of the signal x on Lk, and f(Lk) consists of
regularization terms. The main roles of these terms are 1) to
prevent the trivial solution ∀k,Lk = 0, and 2) to be able to
control the number of off-diagonal, non-zero entries of Lk,
which is twice the number of edges in the graph Gk [4].

Here, instead of finding a center point ck for each cluster
Xk, we are performing a single graph learning algorithm to
compute a Laplacian matrix Lk such that the graph signals
in Xk are smooth on the corresponding graph Gk. Replacing
center points with Laplacian matrices helps K-graphs to
understand the structures of the clusters using the Laplacian
matrices, unlike K-means that can only represent each cluster
with a single center point.

For the initialization of the algorithm, we can randomly and
independently partition the graph signals into K clusters.

After initialization, at the first step of our algorithm, each Lk

is updated by a single graph learning from the graph signals
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in Xk. Many single graph learning algorithms [3], [4] for
obtaining Lk from the signals of Xk can be described as

Lk = argmin
L∈L

∑
x∈Xk

xTLx + f(L). (5)

In the second step of our algorithm, the Laplacian matrices
Lk’s are fixed, and the graph signals are assigned to the
clusters based on smoothness over the graph, using

in = argmin
1≤k≤K

xT
nLkxn

trace{Lk}
, (6)

where in ∈ {1, . . . ,K} denotes the cluster index of the graph
signal xn, and then Xk is formed as Xk = {xn : 1 ≤ n ≤
N, in = k} for k = 1, . . . ,K. The term trace{Lk} in the
denominator of (6) eliminates the dependency of xT

nLkxn on
the scale of the Laplacian matrix Lk. As in K-means, to escape
from local minima, it is appropriate to run the algorithm with
various initializations and report the best clustering result.

The final proposed multiple graph learning algorithm (called
K-graphs) is summarized in Alg. 1.

Theorem 1. K-graphs algorithm converges in a finite number
of iterations.

Proof. At each iteration of Alg. 1, the objective function of (4)
does not increase, because in line 4 the minimization problem
(5) is solved by a single graph learning algorithm for each
k = 1, . . . ,K, and in line 5 the graph signals are assigned to
the clusters such that the objective function decreases or does
not change. Moreover, the possible number of ways to assign
N graph signals to K clusters is a finite number. Consequently,
the algorithm must converge in a finite number of iterations.

Remark. Note that the above theorem is valid for Alg. 1, in
which line 4 is solved exactly. However, where line 4 is going
to be solved with another iterative algorithm, the imperfections
of that algorithm may affect the convergence of K-graphs.
Theorem 1 shows that such imperfections are not intrinsically
from K-graphs, but from the algorithm used to solve line 4
of K-graphs.

IV. NUMERICAL RESULTS

In this section, the performance of K-graphs is numerically
studied. We compare K-graphs with GLMM [5]. To generate
synthetic graph signals, we create the random graphs with
gsp_sensor command from GSPBOX toolbox [21]. Then,
to create smooth signals for each graph, we use lowpass
filtered version of white noises on that graph. In more details, a
graph signal sG on graph G is created as sG = L−1/2 w, where
w is a white multivariate Gaussian signal with w ∼ N (0, I), L
is the Laplacian matrix of the graph, and I denotes the identity
matrix. Then, the lowpass filtered graph signal sG is corrupted
by a white Gaussian noise n ∼ N (0, σ2

nI) independent of w,
i.e. x = sG + n. In the following experiments, the dataset
X = {xn}Nn=1 consists of N = 1000 graph signals, and xn’s
are 30× 1 vectors (m = 30). Each graph signal in the dataset
comes with the equal probability (1/K) from the K graphs
G1, . . . ,GK . The signal to noise ratio (SNR) of the dataset is
defined as SNR , 10 log10(E{‖sG‖22}/E{‖n‖22}), where E{·}

Algorithm 1 K-graphs
Input: dataset X = {xn}Nn=1, number of clusters K.
Output: graph Laplacian matrices Lk for k = 1, . . . ,K and

cluster indices in for n = 1, . . . , N .
1: Initialize cluster indices i(0)n for n = 1, . . . , N .
2: j ← 0
3: repeat
4: Update L

(j)
k with partition Xk by solving (5) for all

k = 1, . . . ,K.
5: Calculate i(j+1)

n from (6) with L
(j)
k ’s for n = 1, . . . , N .

6: j ← j + 1
7: until convergence

indicates the statistical expectation and E{‖sG‖22} is obtained
by iterated expectations as

E{‖sG‖22} = Ek{E{‖sGk‖22}} =
1

K

K∑
k=1

trace{L†k}. (7)

From E{‖n‖22} = mσ2
n and (7), we have

SNR = 10 log10

( 1

Kmσ2
n

K∑
k=1

trace{L†k}
)
. (8)

For initialization of the algorithms, K-graphs randomly
partitions the dataset into K clusters, and GLMM starts with
K random Laplacian matrices [5]. Both algorithms are run
with 50 different random starting points in each realization
and the final output is the one that minimizes the following
clustering objective function:

K∑
k=1

∑
x∈Xk

xTLkx

trace{Lk}
. (9)

For the regularization term f(Lk), as proposed in [4], we
use

f(Lk) = −α
m∑
i=1

log(Lk[i, i]) + β
∑
i∼j
|Lk[i, j]|2, (10)

where α and β are controlling parameters. The first (loga-
rithmic) term in the right-hand side of (10) eliminates the
possibility of zero trivial solution by forcing the degrees of the
nodes to be positive, and the second (quadratic) term is added
to control the number of off-diagonal, non-zero elements in
the Laplacian matrices. For more details on the effects of
regularization terms and choosing the parameters α and β,
interested readers are redirected to [4]. We use the command
gsp_learn_graph_log_degrees in GSPBOX toolbox
[21] to solve the single graph learning problem (5) with the
algorithm of [4].

In the following, the clustering capability of the algorithm is
studied in subsection IV-A. In subsection IV-B, the multiple
graph learning performance of K-graphs is compared with
GLMM based on the deviation of the Laplacian matrices from
the ground truth. In all simulations, each point in the figures
is the average of 200 independent realizations. The maximum
number of iterations for GLMM algorithm is set to 50.
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Fig. 1. Comparing clustering accuracy ratio (CAR) of K-graphs, GLMM,
and K-means for a) different number of clusters (K) and b) for different
values of SNR, with m = 30 and N = 1000.

A. Clustering Performance of K-Graphs

In the first experiment, the clustering accuracy of K-graphs
is assessed for different number of clusters K and different
values of SNR. To find the mapping of the true cluster
labels to the calculated cluster labels, we search through all
K! permutations in calculated labels and consider the best
matching with the true labels as the correct mapping. Then,
the ratio of the matching between the true and calculated labels
to the total number of graph signals is defined as clustering
accuracy ratio (CAR).

In Fig. 1, the clustering accuracy ratio of K-graphs is
compared with GLMM. Moreover, the result of classical K-
means is added as an algorithm that does not benefit the
graphical structure of the data. k-means++ [22] is used
for initialization of K-means and again the best clustering
result of 50 runs with different initialization points is chosen
as the output (objective function (3) is used for finding the
best result). As it can be seen from the curves in Fig. 1a, the
accuracy of K-graphs is close to 1 and the accuracy of GLMM
is lower than K-graphs. The worst performance belongs to
K-means, which fails to cluster the graph signals properly.
Figure 1b shows that K-graphs outperforms the two other
algorithms for different SNRs.

It seems that the higher performance of K-graphs compared
with GLMM stems from the hard clustering property, which is
inherited from K-means. Particularly, in K-graphs, each data
point is used in the learning of only the graph on which the
data point is the smoothest. On the other hand, each data point
in GLMM participates partially (proportional to its posterior
probabilities) in the learning of the other graphs as well, which
may have negative effects on estimating the corresponding
Laplacian matrices.
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Fig. 2. Estimation accuracy of the Laplacian matrices (SNRL) for K-graphs
and GLMM along with the case that the Laplacian matrices are learned from
true clusters (using L̃

(exact)
k ) for a) different number of clusters (K) and b)

for different values of SNR, with m = 30 and N = 1000.

B. Multiple graph Learning Performance of K-Graphs

In the second experiment, the similarity of the estimated and
true graphs is measured for both algorithms. Our similarity
criterion is the following SNR

SNRL = 10 log10

( ∑K
k=1‖L̃

(true)
k ‖2F∑K

k=1‖L̃
(true)
k − L̃k‖2F

)
, (11)

where ‖·‖F indicates the Frobenius norm, and L̃
(true)
k and L̃k

are the normalized versions of true (L(true)
k ) and estimated

(Lk) Laplacian matrices divided by their traces, respectively,
for k = 1, . . . ,K. Additionally, we introduce another Lapla-
cian matrix L̃

(exact)
k which is learned from the true clustered

graph signals in cluster k. Calculating SNRL with L̃
(exact)
k

instead of L̃k can offer a good performance criterion for our
proposed algorithm.

Figure 2 illustrates SNRL for K-graphs and GLMM along
with the one obtained from L̃

(exact)
k . As Fig. 2a depicts, K-

graphs follows the ideal case, while in GLMM algorithm
SNRL drops as K increases. In Fig. 2b, it is seen that the
estimation accuracy of both algorithms are far below the ideal
case in low SNR, and K-graphs gets closer to the ideal case
compared with GLMM.

V. CONCLUSION

In this paper, we proposed an algorithm called K-graphs
for multiple graph learning problem, where signal smoothness
on the underlying graph is used as a dissimilarity measure.
Numerical simulations demonstrated that K-graphs achieves
a good performance in both clustering accuracy and multiple
graph learning.
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