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ABSTRACT

This paper suggests to use a Block MAP-LMS (BMAP-
LMS) adaptive filter instead of an Adaptive Filter called
MAP-LMS for estimating the sparse channels. Moreover to
faster convergence than MAP-LMS, this block-based adap-
tive filter enables us to use a compressed sensing version
of it which exploits the sparsity of the channel outputs to re-
duce the sampling rate of the received signal and to alleviate
the complexity of the BMAP-LMS. Our simulations show
that our proposed algorithm has faster convergence and less
final MSE than MAP-LMS, while it is more complex than
MAP-LMS. Moreover, some lower bounds for sparse chan-
nel estimation is discussed. Specially, a Cramer-Rao bound
and a Bayesian Cramer-Rao bound is also calculated.

1. INTRODUCTION

Recently, sparse channels whose impulse responses consist
of many zero taps, have gained interest in signal processing
and communications [1, 2, 3]. Moreover, sparse channels
have been intensively studied in geophysics and seismic,
where each layer is associated to a reflection i.e. a delayed
and attenuated Dirac in the time response. The mathemati-
cal model of the channel is:

yl = xT
l w + rl (1)

where yl, xl, w and rl are scalar channel output, m × 1
input vector, m× 1 sparse channel impulse response vector
and the scalar additive Gaussian noise, respectively. In the
training mode for channel estimation, the input vector to the
channel is known and the problem is to estimate the sparse
channel response w from the observations yl.

Some approaches (refer to [1, 2, 3]) transmit a pulse
shaped symbol through the channel and then using all the
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sampled received data try to estimate the channel response
[2]. In [1], a Matching Pursuit (MP) algorithm is used to
estimate the channel from all the received signal. [2] sug-
gested to use some zero-tap detection schemes for channel
estimation. In [3], an order-recursive Least Square MP is
used for the same purpose.

One can exploit the sparsity response with adaptive fil-
tering algorithms [4, 5]. The method in [4] is based on min-
imizing a regularized mean square error criterion with spar-
sity being promoted by the regularization term [4]. In [5], a
Maximum A Posteriori (MAP) update of the adaptive filter
taps is proposed which is called MAP-LMS.

Compressed Sensing (CS) is an emerging field between
sampling and compression [6, 7, 8]. This field suggests to
use a few random measurements of the sparse signal to re-
construct the original sparse signal.

This paper is organized as follows. In Section 2.1, we
suggest to use a block-based MAP-LMS adaptive filter in-
stead of MAP-LMS adaptive filter to increase the conver-
gence rate. Then, in Section 2.2, we suggest to use a CS
measurement matrix to reduce the sampling rate of the out-
put channel to exploit the sparsity structure of the channel
outputs. In Section 3.1, a Cramer-Rao Bound (CRB) for the
problem will be computed and will be compared with the
bounds derived in [9]. A Bayesian CRB is also calculated
for our problem in Section 3.2. Finally, in Section 4, some
simulation results are presented.

2. THE CS BLOCK MAP-LMS ADAPTIVE FILTER

First of all, we generalize the MAP-LMS adaptive filter pro-
posed in [5] based on a block of data. Then, the update for-
mula for the block MAP-LMS adaptive filter and some sim-
pler updates are presented. Moreover, to estimate the chan-
nel more completely, a formula for computing the channel
noise variance is suggested. This block-based adaptive filter
enables us to use CS random matrices to reduce the number
of samples obtained from the channel outputs. So, the CS
version of the block adaptive filter is also suggested.
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2.1. Block MAP-LMS Adaptive Filter (BMAP-LMS)

In our algorithm, we use a block of sparse channel outputs
for updating the adaptive filter. We gather L successive out-
put samples of channel output in (1) in a vector called output
vector. So, this block of date can be represented in a vector
form as:

yl = Xlw + rl (2)

where yl = [yl, yl+1, ..., yl+L−1]T is an L × 1 vector ob-
tained from channel outputs. Xl is an L × m matrix with
the rows equal to xT

l , xT
l+1,... and xT

l+L−1 where xl ,
[xl, xl+1, ..., xl+L−1]T . The m × 1 sparse vector w is the
channel impulse response. Finally, rl , [rl, rl+1, ..., rl+L−1]T

is the Gaussian channel noise vector with the covariance
matrix equal to σ2

nI.
Now, with the block-based notation of (1) in (2), we can

derive our Block MAP-LMS adaptive filter (BMAP-LMS).
Similar to [5], a MAP criterion can be used for estimating
the vector w based on the block yl at time index l. So, at
each time index l, given the output block yl and input train-
ing signals in Xl, we want to update the vector w based on
knowing previous vector wn−1. Hence, by MAP criterion,
the posterior p(w|yl, wn−1) should be maximized. Using
Bayes rule, the posterior can be written as:

p(w|yl, wn−1) ∝ p(w|wn−1)p(yl|w, wn−1) (3)

where p(w|wn−1) is the prior and p(yl|w, wn−1) = p(yl|w)
is the likelihood. The log-likelihood can be easily written
as:

log p(yl|w) = K +
−1
2σ2

n

||yl − Xlw||22 (4)

where K is a constant not depending on w. The log-prior
can also be written as [5]:

log p(w|wn−1) ∝ −1
2

(w− wn−1)T Q−1(w− wn−1) (5)

where a Gaussian distribution is assumed for z , w−wn−1

with covariance matrix Q. So, the overall MAP update is
equal to wn = argmaxw H(w) where function H(w) is:

−1
2

(w−wn−1)T Q−1(w−wn−1)+
−1
2σ2

n

||yl−Xlw||22 (6)

To find the maximum, we write the above function in terms
of z which is:

H(z) =
−1
2σ2

n

(en − Xlz)T (en − Xlz)− 1
2

zT Q−1z (7)

where en , yl − Xlwn−1. If zn is the maximizer of H(z),
then its gradient satisfies ∇H(zn) = 0. Some manipula-
tions show that the gradient is equal to:

∇H(z) =
1
σ2

n

XT
l ê−Q−1z (8)

where ê , en−Xlz. It is easily obtained that ê = yl−Xlw.
So, ên = yl − Xlwn = en − Xlzn. At the maximum point
we have 1

σ2
n

XT
l ên − Q−1zn = 0. Hence, zn = 1

σ2
n

QXT
l ên.

Finally, replacing ên with the (en − Xlzn) results in:

zn = (Im + CXT
l Xl)−1CXT

l en (9)

where C , 1
σ2

n
Q. Finally, the BMAP-LMS update will be:

wn = wn−1 + (Im + CXT
l Xl)−1CXT

l en (10)

For the matrix Q which is the covariance matrix of z, we
assume that Q = αIm. Then, defining a parameter τ , α

σ2
n

for BMAP-LMS, we can reach to a tradeoff in the perfor-
mance of our adaptive filter. Moreover, using this parameter
prevents that our adaptive filter design be dependent on the
noise levels of the channel. This free parameter provides us
a flexibility for choosing between the rate of convergence
and the final level of Mean Square Error. It has the same
role of parameter τ in [5]. Using the definition of τ , the
matrix C will be C = τIm and the BMAP-LMS update will
be:

wn = wn−1 + τ(Im + τXT
l Xl)−1XT

l en (11)

where τ is the free parameter of the BMAP-LMS. Our sim-
ulations show that a small value of this parameter yields to
better results. By this new formulation, we can reduce the
complexity of our adaptive filter. Since the length of the
sparse impulse response may be large in some applications,
the value of m in some cases may be large and inversion of
a matrix with a large size is very complex. So, we use a Ma-
trix Inversion Lemma (MIL) to compute the inverse of the
matrix in formula (11). This leads to the following formula:

wn = wn−1 + τ [Im−XT
l (

1
τ

IL + XlXT
l )−1Xl]XT

l en (12)

where inversion is done with an L× L matrix instead of an
m×m matrix in (10). The length of the block L can be less
than m and hence using (12) is less complex than (11).

To further reduce the complexity, we can assume that
matrix B , τXT

l Xl will be a matrix with small elements.
This can be satisfied by selecting the small input training se-
quences or selecting a small parameter τ for BMAP-LMS.
Therefore, the the inverse matrix (Im+B)−1 can be approx-
imated by:

(Im + B)−1 = Im − B + B2 − ... + (−1)KBK (13)

where only K term of the Tailor matrix series are used for
the approximation. This approximation can avoid the ma-
trix inversion in BMAP-LMS. In the simulation results, we
show that approximating the inverse with (13) with a small
value for K has a very low effect on decreasing the perfor-
mance of BMAP-LMS.



In addition to the channel estimation, this method al-
lows to estimate the noise level of the channel. The noise
level of the channel is determined by the variance of the
Gaussian noise which is σn. To estimate σn, we use the L
samples of the block. If L is large, then the parameter σn

can be approximated by σ̂n ≈ 1
L

∑L
l=1 r2

l . Using (1) for
rl, it is obtained that

∑L
l=1 y2

l ≈ Lσ̂2
n +

∑L
l=1 xT

l wwT xl.
Therefore, the following formula estimates the variance of
the noise:

σ̂2
n =

||yl||22 − trace(XlwwT XT
l )

L
(14)

2.2. Compressed Sensing BMAP-LMS (CS-BMAP-LMS)

Compressed Sensing or Compressive Sampling (CS) is an
emerging field in signal processing [6, 7, 8]. The theory of
CS suggests to use only a few random linear measurements
of a sparse signal (in a basis) for reconstructing the original
signal. The mathematical model of noise free CS is:

y = Φx (15)

where x = Ψw is the original signal with length m and is
sparse in the basis Ψ and Φ is an n ×m random measure-
ment matrix where n < m. For near perfect recovery, in
addition to the signal sparsity, the incoherence of the ran-
dom measurement matrix Φ with the basis Ψ is needed.
The incoherence is satisfied with high probability for some
types of random matrices such as i.i.d Gaussian elements or
i.i.d Bernoulli±1 elements. Recent theoretical results show
that under these two conditions (sparsity and incoherence),
the original signal can be recovered from only a few linear
measurements of the signal within a controllable error, even
in the case of noisy measurements [6, 7, 8].

Since the channel response w is sparse, the channel out-
put vector yl is sparse in the domain Xl which is determined
by the training sequences. So, we can use a K × L ran-
dom measurement matrix Φ which converts the L×1 block
data yl to a smaller block data ỹ , Φyl with K elements
(K < L). Therefore, (2) can be written as:

ỹl = X̃lw + r̃l (16)

where X̃l , ΦXl and r̃l = Φrl can be viewed as the new
training matrix and new noise vector. To ensure the Gaus-
sianity of the new noise vector, we can normalize the rows
of the matrix Φ to have unit norm. The main advantage of
the CS scheme for BMAP-LMS is the complexity reduction
both in terms of hardware complexity and memory require-
ments. As we can see in the simulation results, another
benefit of CS scheme is that the CS-BMAP-LMS has less
final Mean Square Error (MSE) than BMAP-LMS and also
MAP-LMS.

3. BOUNDS

3.1. Cramer-Rao bound

The CRB, which is the inverse of Fisher information matrix,
bounds the performance of any unbiased parametric estima-
tor in terms of the mean square error [10]. This lower bound
gives a measure that if the performance of parameter estima-
tion algorithms is near this lower bound or not and hence an
effort is needed to solve the problem more efficiently or not.
Channel response estimation can be regarded as a paramet-
ric estimation of w by observations yl in (2). The CRB for
estimating w in (2) is given by [10]:

CRB = σ2
n(XT

l Xl)−1 (17)

where this is the Cramer-Rao matrix when Xl is known and
fixed. Similar to [11], when the matrix Xl is known but
random which is in the case, we should add the matrix Xl

as the additional observation1. So, the Fisher information
matrix will be:

Jij = EXl,yl

{
∂ log p(yl, Xl|w)

∂wiwj

}
(18)

where by the Bayes rule we have p(yl, Xl|w) = p(Xl)p(yl|X, w).
So, the Fisher matrix will be:

JRv,Known = EXl
{J} (19)

where JRv,Known is the notation for Fisher information ma-
trix when the training matrix Xl is known but random and
J = 1

σ2
n

XlXT
l is the Fisher matrix when the training ma-

trix is known and fixed. Hence, JRv,Known = 1
σ2

n
E{XlXT

l }
where:

E{XlXT
l } = E{

L∑

i=1

xixT
i } =

L∑

i=1

E{xixT
i } (20)

where E{xixT
i } is the covariance matrix of xi and is equal

to σ2
rI since the training sequences are independent and zero

mean random variables with variance σ2
r . Therefore, the

CRB will be:

CRBRv,Known =
σ2

n

Lσ2
r

Im =
1

L.SNR
Im (21)

where SNR , σ2
r

σ2
n

is a measure of Signal to Noise Ratio
(SNR) and L À 1 can be regarded as the number of train-
ing sequences. Then, if we add all inequalities E{(wi −
ŵi)2}) ≥ CRBii, we have the following CRB for the `2-
norm of the error (w− ŵ):

E[||ŵ− w||22] ≥
mσ2

n

Lσ2
r

(22)

1Because knowledge of Xl effects the estimation of w.



In addition to the CRB, in [9], a deterministic lower
MSE for an oracle channel estimator is computed as:

E[||w∗ − w||22] ≥
Sσ2

n

||xl||22
(23)

where S is the number of nonzero taps in sparse vector w
and w∗ is a special oracle estimator which is defined in [9].
We prove that this bound is compatible with our CRB and
we also generalize it to all oracle estimators which know
the nonzero locations of the channel response. If we know
the location of active taps, we can write E[||w∗ − w||22] =∑S

i=1 E[(wi − ŵi)2]. Each error variance satisfying (21),
the CRB oracle estimator is:

E[||w∗ − w||22] ≥
Sσ2

n

Lσ2
r

(24)

where w∗ is a general oracle estimator (not a deterministic
one as in [9]). The oracle CRB bound (24) is approximately
the same as the deterministic oracle bound (23) because we
can write ||xl||22 ≈ Lσ2

r for large values of L.

3.2. Bayesian Cramer-Rao bound

The Posterior Cramer-Rao Bound (PCRB) or Bayesian
Cramer-Rao Bound (BCRB) of a vector of parameters θ es-
timated from data vector y is the inverse of the Fisher infor-
mation matrix, and bounds the estimation error in the fol-
lowing form [12]:

E
[
(θ − θ̂)(θ − θ̂)T

]
≥ J−1 (25)

where θ̂ is the estimate of θ and J is the Fisher information
matrix with the elements [12]:

Jij = Ey,θ

[
−∂2 log p(y, θ)

∂θi∂θj

]
(26)

where p(y, θ) is the joint Probability Density Function (PDF)
between the observations and the parameters. Unlike CRB,
the BCRB (25) is satisfied for any estimator (even for biased
estimators) under some mild conditions [13], [12] which we
assume that are fulfilled in our problem. Using Bayes rule,
the Fisher information matrix can be decomposed into two
matrices [12]:

J = JD + JP (27)

where JD represents data information matrix and JP rep-
resents prior information matrix which their elements are
[12]:

JDij , Ey,θ

[
−∂2 log p(y|θ)

∂θi∂θj

]
= Eθ(Jsij ) (28)

JPij , Eθ

[
−∂2 log p(θ)

∂θi∂θj

]
(29)

where Js is the standard Fisher information matrix [10] and
p(θ) is the prior distribution of the parameter vector.

Now, we want to find the BCRB for our problem which
is the estimation of w by the observations yl. In this case,
following the previous section, the standard Fisher infor-
mation matrix is Js = L.SNR.Im. It is independent of w
which is the parameter vector. Hence, the data information
matrix is equal to JD = Js = L.SNR.Im.

To compute the prior information matrix JP from (29),
we should assume a sparse prior distribution for our param-
eter vector elements wi. We assume wi’s are independent
and have a Gaussian distribution similar to [14]:

p(wi) =
1

σi

√
2π

exp(− w2
i

2σ2
i

) (30)

where the variance σ2
i determines the prior information about

the corresponding coefficient. It can be easily seen that in
this case, the prior information matrix is:

JP = diag(
1
σ2

i

) (31)

Finally, the BCRB results in:

E
[
(wi − ŵi)2

] ≥
(

L.SNR +
1
σ2

i

)−1

(32)

and finally the bound derived from CRB for the `2-norm of
the error (w− ŵ) is:

E[||ŵ− w||22] ≥
m∑

i=1

(
L.SNR +

1
σ2

i

)−1

(33)

If we have only S nonzero elements of the channel response
with the variance σ2

w and the other elements are zero (vari-
ances are equal to zero), then the above BCRB is reduced
to:

E[||ŵ− w||22] ≥ S

(
L.SNR +

1
σ2

w

)−1

(34)

If we assume L.SNR À 1
σ2

w
, then we can neglect 1

σ2
w

in
comparison to L.SNR. So, the final approximated BCRB is
the same as the oracle bound (24).

4. SIMULATION RESULTS

In this section, we investigate our proposed adaptive filter
for sparse channel estimation. In our experiment, we used
a sparse channel impulse response with length m = 100
and with only 10% nonzero coefficients (i.e., S = 10). The
training sequence xl is selected randomly from a zero-mean
Gaussian random variable with variance σ2

r = 1. We used
T = 2000 samples of the training input sequence and so
we had T −m = 1900 samples of the channel output. The
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convergence ( τ = 50).

0 500 1000 1500 2000
−50

−40

−30

−20

−10

0

10

Iteration

M
S

E
 (

dB
)

 

 
MAP−LMS (taw=50)
CS−BMAP−LMS (n=60,K=30,taw=.01)
BMAP−LMS (n=60,taw=.01)
CRB
Oracle−CRB
BCRB

Fig. 2. Performance of CS-BMAP-LMS in comparison with
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standard deviation of the Gaussian noise is selected as σn =
0.1. To compare the performances, we compute the MSE
between the true sparse vector w and the estimated vector ŵ
which is defined as MSE(dB) = 10 log10 ||w− ŵ||22.

In the first experiment, we investigated the effect of pa-
rameter τ on the performance of the CS-BMAP-LMS. The
effect of τ on the performance of MAP-LMS is investigated
in [5]. Here, we just report the performance of MAP-LMS
for τ = 50 because it results in the fastest rate of conver-
gence among all values of τ . Similar to [5], the parameter
γ was selected as γ = 0.98 (refer to [5] for the details). In
CS-BMAP-LMS, we used the block length as n = 60 and
then a random measurement matrix Φ with K = 30 rows
and L = 60 columns is used to reduce the sampling rate
by a factor of 0.5. Figure 1 shows the simulation results of

CS-BMAP-LMS for various values of τ in comparison to
MAP-LMS with the fastest convergence (τ = 50). As we
can see the best value for parameter τ with respect to the
convergence rate is τ = 0.01. We use this value for the next
experiment.

In the second experiment, we compared the CS-BMAP-
LMS with BMAP-LMS and MAP-LMS. For MAP-LMS
and CS-BMAP-LMS, the parameters are selected as the first
experiment. The CS-BMAP-LMS was compared with BMAP-
LMS with the same block length n = 60 and with the
same parameter τ = .01. This parameter is selected for
fastest rate of convergence as explained in the first experi-
ment. Figure 2 shows the simulation results. It can be seen
that the CS-BMAP-LMS and BMAP-LMS are faster than
MAP-LMS (the convergence is approximately three to four
times faster than MAP-LMS convergence). This fast rate of
convergence is very useful in the cases where we have rapid
time-varying channels [3]. Another benefit of CS-BMAP-
LMS and BMAP-LMS is that they have lower final MSE
than MAP-LMS. Moreover, CS-BMAP-LMS has slightely
lower final MSE than BMAP-LMS.

To compare the complexity of our proposed algorithms
and MAP-LMS, we use the average CPU time of the sim-
ulations. Our simulations were performed in MATLAB7.0
environment using an AMD Athlon Dual core 4600 with
896 MB of RAM and under Windows Xp operating sys-
tem. The average simulation times for CS-BMAP-LMS,
BMAP-LMS and MAP-LMS are 12.2, 13.2 and 3.6 seconds
for processing 1900 samples of the channel output. So, our
suggested methods are approximately four times more com-
plex in terms of simulation time.

Finally, we compare the performance of BMAP-LMS
and CS-BMAP-LMS with CRB (33) and Oracle bound (24)
and BCRB (34). As it was stated, since L.SNR À 1

σ2
w

is
satisfied in our simulations, the BCRB is coincided with the
oracle bound. The final note is that there is a gap between
the performance of the adaptive filters and the BCRB. So,
in spite of devising the fast adaptive filters with high con-
vergence rate (what we did in this paper), enhancing the
performance (reducing the final MSE) of the adaptive filters
is remained as future works.

5. CONCLUSIONS

In this paper, we introduced a block-based adaptive filter for
estimating sparse channels. We also suggested to use a CS
scheme of the previous adaptive filter to exploit the sparsity
of the channel outputs. We also calculated a CRB and a
BCRB where training data are zero-mean random variables.
Our simulation results show that the proposed algorithm has
faster convergence rate than MAP-LMS algorithm and less
final MSE, while it is more complex than MAP-LMS. We
also showed that with some conditions, the BCRB is ap-



proximately equivalent to the Oracle bound (24).
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