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Abstract—By growing the size of signals in one-dimensional
dictionary learning for sparse representation, memory consump-
tion and complex computations restrict the learning procedure.
In applications of sparse representation and dictionary learning
in two-dimensional signals (e.g. in image processing), if one opts
to convert two-dimensional signals to one-dimensional ones, and
use the existing one-dimensional dictionary learning and sparse
representation techniques, too huge signals and dictionaries will
be encountered. Two-dimensional dictionary learning has been
proposed to avoid this problem. In this paper, we propose two
algorithms for two-dimensional dictionary learning. According
to our simulations, the proposed algorithms have noticeable
improvement in both convergence rate and computational load
in comparison to one-dimensional methods.

Index Terms—Two-dimensional dictionary learning, sparse
representation, 2D Signals, convex approximation.

I. INTRODUCTION

Dictionary learning for sparse representation [1], [2] has
many applications in signal and image processing. In one-
dimensional (1D) sparse representation, a signal y ∈ Rn

is to be represented as a linear combination of some basic
signals d1, . . . ,dm, where m > n and ∀i,di ∈ Rn. As
suggested in [3], di’s are called atoms, and their collection
is called dictionary, which can be represented by the matrix
D ∈ Rn×m, composed of all atoms as its columns. Finding the
sparse representation of a known signal y over the dictionary
D requires finding the sparse solution of the under-determined
system of linear equations y = Dx, that is, solving

min
x

∥x∥0 s.t. y = Dx, (1)

where ∥x∥0 denotes the ℓ0 (pseudo-) norm, that is, the number
of non-zeros entries of the vector x. This problem, called
sparse coding, is NP-hard, and many algorithms have been
proposed to estimate its solution, e.g. [3]–[7] to name a few.

In the above problem, the dictionary may be chosen from
fixed dictionaries such as wavelet and Over-complete Discrete
Cosine Transform (ODCT) dictionaries. However, to have a
better (i.e. sparser) representation for a class of signals, one
may opt to learn a dictionary for that class of signals. In
Dictionary Learning (DL) problem, a set of training signals
y1,y2, . . . ,yL is available and a dictionary D is to be learned
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such that it results in the sparsest representation for this set of
training signals. So, defining Y ≜ [y1,y2, . . . yL] ∈ Rn×L

the dictionary learning problem is expressed as

(D∗,X∗) = argmin
D∈D,X∈X

∥Y −DX∥2F , (2)

where D ≜
{
D : ∀i, ∥di∥22 = 1

}
, X ≜ {X : ∀i, ∥xi∥0 ≤ τ}

and X ∈ Rm×L. Many dictionary learning algorithms have
been proposed in the literature, e.g. [8]–[14]. Most of them use
alternating minimization over D and X to solve (2), so, each
iteration of them is composed of a sparse representation stage
(in which D is kept fixed) and a dictionary update stage (in
which X is kept fixed). Some of them differ only in the second
stage, for instance, Method of Optimal Directions (MOD) [9]
use gradient-projection approach to find the dictionary, and
K-SVD [8] updates the atoms consecutively by using the
SVD decomposition. In [10], a new jointly convex objective
function has been obtained for dictionary learning by using
first order series expansion instead of the term DX in (2).

In decomposition of two-dimensional (2D) signals, a signal
Y ∈ Rn1×n2 is to be represented as a linear combination
of 2D atoms Φij , i.e. Y =

∑m1

i=1

∑m2

j=1 xijΦij . However,
most 2D atoms that are used in image processing (e.g. Fourier
atoms) are separable [15, Chapter 2], meaning that there are
vectors ai ∈ Rn1 and bj ∈ Rn2 such that Φij = aib

T
j ,

1 ≤ i ≤ m1, 1 ≤ j ≤ m2. Separable atoms are used in
sparse coding [16] and dictionary learning [17] to represent
images or learn a dictionary for a set of training signals.
This separable structure lets 2D signals to be represented as
Y = AXBT [16], where A = [a1,a2, ...,am1 ] ∈ Rn1×m1 ,
B = [b1,b2, ...,bm2 ] ∈ Rn2×m2 and X ∈ Rm1×m2 is
the representation of the signal. The 1D equivalent of this
expression is vec(Y) = Dvec(X), where ‘vec’ of a matrix
stands for the vector obtained by stacking its columns, and D
is a Kronecker product of A and B, i.e. D = B ⊗ A [16],
[18]. A trivial method to find the sparse representation of
2D signals is to convert them to 1D signals, then use the
proposed methods for 1D sparse coding. This approach results
in huge dictionaries specially for large 2D signals that requires
a tremendous amount of memory and computational load.
For example, finding the sparse representation of a 2D signal
Y ∈ R40×50 on dictionaries A ∈ R40×100 and B ∈ R50×100

results in the Kronecker dictionary D ∈ R2000×10000, which



is practically inefficient. The Kronecker dictionary requires
a memory of order O(n1n2m1m2), while dictionaries with
separable structure need a memory of order O(n1m1+n2m2).

To avoid the above problems, the authors of [16] have
proposed to use 2D sparse representation as

min
X

∥X∥0 s.t. Y = AXBT . (3)

To solve the above problem, the algorithms 2D-SL0 [16] and
2D-OMP [19] have already been proposed in the literature.

In dictionary learning, when dealing with 2D signals, the
same problems exists, so the 2D dictionary learning problem
for a set of 2D signals Y = (Y1,Y2, ...,YL) can be written
as

(A∗,X∗,B∗) = argmin
Xi∈Xi,A∈A,B∈B

L∑
i=1

∥Yi−AXiB
T ∥2F , (4)

where Xi ≜ {Xi : ∥Xi∥0 ≤ τ}, A ≜
{
A : ∀i, ∥ai∥22 = 1

}
and B ≜

{
B : ∀i, ∥bi∥22 = 1

}
. The first constraint imposes

the sparsity of signal representations and the other ones avoid
scaling ambiguity of dictionaries.

To solve (4), the authors of [17] have defined two regu-
larization terms for measuring sparsity of signals and mutual
coherence of the dictionaries, and by utilizing optimization on
matrix manifolds, have proposed an algorithm called Separable
Dictionary Learning (SeDiL).

In this paper, two new algorithms will be proposed to
solve 2D dictionary learning; besides, a new jointly convex
objective function will be achieved for it. The proposed
methods result in suitable recovery percentage for dictionary,
with faster convergence rate and much less computational
load and memory consumption. Moreover, 2D algorithms can
recover the dictionary with few training signals, unlike 1D
algorithms. SeDiL cannot recover the known dictionary and
fails in the experiments. Moreover, we study the proposed
algorithms in image denoising application.

The rest of this paper is organized as follows. Section II
presents the main ideas and our proposed methods. Then,
Section III evaluates the new algorithms numerically.

II. THE PROPOSED METHODS

In this section, two new algorithms are proposed to solve
the 2D dictionary learning problem.

A. 2D-MOD

Problem (4) is jointly non-convex over A, B and Xi, so
we can use alternating minimization to solve it. This approach
reduces to alternations between sparse coding for 2D training
signals where dictionaries A and B are kept fixed, and then
updating dictionaries A and B. This method is based on
MOD [9] algorithm for 1D dictionary learning, so we call
the proposed algorithm 2D-MOD, which has three steps:

1) Sparse representations: By keeping the dictionaries A
and B fixed, the objective function (4) becomes

X
(k+1)
i = argmin

Xi∈Xi

L∑
i=1

∥∥Yi −AXiB
T
∥∥2
F
, (5)

which is a usual 2D sparse representation for each training
signal, and could be solved by 2D-SL0 [16] or 2D-OMP [19].

2) A-update: The problem of updating dictionary A is:

A(k+1) = argmin
A∈A

L∑
i=1

∥∥∥Yi −AX
(k+1)
i BT

∥∥∥2
F
. (6)

Gradient Projection (GP) is used to solve (6). The final
equation for updating A is as follows

normalize
{( L∑

i=1

YiBXT
i

)( L∑
i=1

XiB
TBXT

i

)−1}
, (7)

where ‘normalize’ stands for a matrix that all its columns have
unit Euclidean norm.

3) B-update: The problem is very similar to (6), and the
final equation after applying GP is

normalize
{( L∑

i=1

YT
i AXi

)( L∑
i=1

XT
i A

TAXi

)−1}
. (8)

B. 2D-CMOD

In this subsection, a new jointly convex objective function
is achieved for 2D dictionary learning by using the con-
vexification idea, which is proposed in [10]. The proposed
optimization approach is a gradient method based on a first
order approximation. Writing A = Aa + (A − Aa), B =
Ba + (B−Ba) and X = Xa + (X−Xa), we have

AXBT = AaXaB
T +AXaB

T
a +AaXBT

a − 2AaXaB
T
a+

Aa(X−Xa)(B−Ba)
T + (A−Aa)Xa(B−Ba)

T+

(A−Aa)(X−Xa)B
T
a + (A−Aa)(X−Xa)(B−Ba)

T .
(9)

The last four terms contain higher order differences, and
become negligible if the first order differences, i.e. (A−Aa),
(B−Ba) and (X−Xa), are small. So

AXBT ≈ AaXaB
T +AXaB

T
a +AaXBT

a − 2AaXaB
T
a .

(10)
By substituting (10) in (4), the following new convex dictio-
nary learning problem is achieved

(A∗,X∗,B∗) = argmin
Xi∈Xi,A∈A,B∈B

L∑
i=1

∥Yi + 2AaXa,iB
T
a

−AaXa,iB
T −AXa,iB

T
a −AaXiB

T
a ∥2F .

(11)

To solve the above problem while maintaining the constraints,
alternating minimization is used. The minimization is done
over A, B and Xi, where Aa, Ba and Xa,i represent previous
values of these parameters. More precisely, the following three
steps are repeated iteratively1:

1Actually, there are several scenarios to set the fixed parameters, as is
discussed in [20] for the 1D problem. Our choice here is inspired from the
choice #4 proposed in [20] for the 1D problem.



Algorithm 1: 2D-CMOD

Input: Signal set: Y , Sparsity level: s, Number of training
signals: num train, Algorithm iterations: iter.

Output: Sparse representations: Xi’s, Dictionaries: A and B.
1: Initialize dictionaries A and B.
2: Set: A(0) = A(−1) = A,B(0) = B(−1) = B.
3: for k = 0 to iter − 1 do
4: for i = 1 to num train do
5: Zi = Yi − (A(k) − A(k−1))Xi(B

(k−1))T −
A(k−1)Xi(B

(k) −B(k−1))T

6: Xi = Sparse Coding(Zi,A
(k),B(k), s)

7: end for
8: A(k+1) = Update dictionary A as in (7).
9: B(k+1) = Update dictionary B as in (8).

10: end for

1) Sparse representation: Let

Aa =A(k−1),A = A(k)

Ba =B(k−1),B = B(k)

Xa =X(k)

Zi =Yi − (A(k) −A(k−1))X
(k)
i (B(k−1))T

−A(k−1)X
(k)
i (B(k) −B(k−1))T ,

where k denotes the iteration number, and Zi merges all the
first four terms inside the norm in (11), which does not depend
on the optimizing variables of this step (Xi’s). Then, the sparse
representation problem of step k + 1 is

X
(k+1)
i =argmin

Xi∈X

L∑
i=1

∥Zi −A(k−1)Xi(B
(k−1))T ∥2F ,

which is a usual 2D sparse coding for all Zi’s.
2) A-update: Let{

Xa = X = X(k+1)

Ba = B = B(k) .

Then, by the above assumptions, dictionary A is updated
using (7).

3) B-update: Let{
Xa = X = X(k+1)

Aa = A = A(k+1) .

Then, by the above assumptions, dictionary B is updated
using (8). We call the resulting algorithm 2D-CMOD (Convex
MOD), and its pseudo-code is summarized in Algorithm 1.

III. SIMULATION RESULTS

In this section, the proposed methods are simulated on
both synthetic and real data. For all algorithms, Orthogonal
Matching Pursuit (OMP) [5] has been used as the sparse
coding algorithm. As a rough measure of the complexities
of the algorithms, their run times will be reported. Our

simulations were performed in MATLAB 2018b environment
on a system with 4.0 GHz CPU, and 16 GB RAM, under
Microsoft Windows 10 64-bit operating system.

A. Successful Recovery of Known Dictionaries & RMSE

In this test, 2D signals are assumed to be of size n × n,
where n will take different values from 10 to 25 in our
experiments. We generate two random dictionaries A and
B ∈ Rn×2n with zero mean and unit variance independent
and identically distributed (i.i.d) Gaussian entries, followed
by normalization. Sparse representation matrices, i.e. Xi’s,
are randomly produced with different sparsity levels s, i.e. s
non-zero elements. Then, a collection of L training signals
are generated as Yi = AXiB

T + Ni, where Ni shows
the additive white Gaussian noise with Signal to Noise Ratio
(SNR) level of 30dB. Dictionary learning methods are applied
to these signals by assuming that the sparsity level is known.
For 1D methods, the vec(Yi)’s are used as training signals.
Successful recovery of the Kronecker dictionary D, which
could be computed as the ratio of successfully recovered
atoms to the number of all atoms (an atom would be called
successfully recovered if the correlation between the atom and
the true one be more than 0.99 ), and RMSE, which is defined

as RMSE =

√
L∑

i=1

∥Yi −AXiBT ∥2F

/
n2L, are used as the

criteria of the efficiency of the algorithms.
Figure 1 shows the successful recovery percentage and

RMSE for simulations with n = 10, L = 500n, 1000n and
s = 7, 15. All the reported values are averaged over 25 trials.
SeDiL [17] is not included in the figure because it failed to
recover the dictionary2. By comparing the Figs. 1a and 1b, we
can say that 1D methods need more training signals than 2D
methods. If the number of training signals is small, 1D meth-
ods’ performance and their convergence rate will decrease.
Moreover, we observe that when the number of training signals
decreased from 500n to around 150n, 1D methods failed to
recover the dictionary, while our 2D algorithms could still
recover it. The second observation, which can be seen from
Figs. 1b and 1c is that when the sparsity level increases, the
performance of 2D methods will improve, and the convergence
rate of 1D methods will decrease. As the experiment’s result,
the proposed methods need much fewer training signals and
perform better in simulations with high sparsity level.

To roughly measure the complexity of the algorithms, the
average required time to recover 80 percent of the Kronecker
dictionary is reported. In this experiment, the parameters are
set as s = n and L = 1000n. Table I shows the sufficient
number of iterations and run times that are needed for the
algorithms to successfully recover 80 percent of the original
atoms. Table I shows that the 2D methods need fewer iterations
and much less time to recover the dictionary. Moreover,
the average time of each algorithms’ iteration, which grows
exponentially for 1D methods, is shown in Fig. 2.

2For SeDiL, we have used the codes available at http://www.gol.ei.tu-
m.de/index.php.
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Fig. 1. Successful recovery percentage and RMSE for n = 10 with different sparsity levels (s) and number of training signals (L) at SNR = 30 dB.
SeDiL [17] is not included because it failed to recover the dictionary.

TABLE I
AVERAGE NUMBER OF ITERATIONS AND REQUIRED TIMES TO ACHIEVE 80
PERCENT RECOVERY(TIMES IN SECONDS, REPORTED BETWEEN BRACES).

SPARSITY LEVEL s = n, AND L = 1000n.

Signals size n = 10 n = 15 n = 20 n = 25

1D-MOD 62(90) 59(584) 70(5110) —
1D-KSVD 52(527) 48(3339) 65(18720) —
2D-MOD 59(47) 36(72) 34(146) 40(352)

2D-CMOD 24(20 ) 23(49) 28(129) 25(235 )
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Fig. 2. Average time of each algorithms’ iteration (in seconds). Sparsity level
equals to n. The difference of computational times to recover 80 percent of
the dictionary is more than the above difference because 2D algorithms need
much fewer iterations, as shown in Table I.

B. Image Denoising

Based on [21], forty thousand 12×12 patches are extracted
from an image corrupted by additive white Gaussian noise with
different standard deviations σnoise = 10, 20, 30, 50. These
signals are used as training signals for dictionary learning. In
1D methods, a dictionary of size 144× 576 is learned, and in
2D case, two dictionaries of size 12×24 are learned. Therefore,
the 1D and 2D representations have both 576 atoms, but the
difference is in terms of memory; the memory of 1D methods

is of order 82944 against 576 for 2D methods. The ODCT
dictionary is used as an initial dictionary in both cases. 2D-
OMP with stopping criteria ∥Y−AXBT ∥2F ≤ (1.15σnoise)

2

is used for denoising all the overlapping image-patches. The
same parameters as [21] are chosen, and all the algorithms are
run for 30 iterations to have fair results. Peak Signal to-Noise-
Ratio (PSNR) between the original and recovered images is
used as a performance criterion, and the results are shown
in Table II. Also, the total running times of algorithms (in
seconds) are reported. Timings include dictionary training.

As we expected, the final quality of our proposed methods
is a little bit less than the KSVD, because of the separable
structure assumed for the dictionary. However, the reconstruc-
tion time is much less than KSVD, and the quality is better
than fixed dictionaries. Moreover, the simulations illustrate
that the approximation (10) is very efficient since the PSNR
is very close to the PSNR obtained with 2D-MOD. More
importantly, note that the difference of computational time
grows by growing the patch size, as seen in Fig. 2.

IV. CONCLUSION

In this paper, we introduced two algorithms for 2D dic-
tionary learning. The first one was based on MOD. Then,
a new objective function was achieved by using first order
series expansion of AXBT , and 2D-CMOD algorithm was
proposed to minimize it. Experimental results showed that the
convergence rate of 2D-CMOD is much faster than 2D-MOD.
Moreover, it was seen that the Kronecker dictionary is recov-
ered better than 1D methods with much fewer training signals
and much less computational cost. Also, the proposed methods
were evaluated in image denoising application. Applying these
methods to image compression and extending them to higher
dimensions are as future works.



TABLE II
PSNR IN DB, AND TOTAL RUNNING TIMES IN SECONDS FOR DENOISING TWO IMAGES IN LEARNED DICTIONARIES. PARAMETERS ARE SET THE SAME

AS [21], AND ALL THE ALGORITHMS ARE RUN FOR 30 ITERATIONS. THE VALUES ARE REPORTED BY AVERAGING OVER FIVE EXPERIMENTS.

Images boat house Total Time
σnoise (PSNR(dB)) 10(28.12) 20(22.12) 30(18.61) 50(14.13) 10(28.18) 20(22.12) 30(18.60) 50(14.15)
ODCT (Not Trained) 33.24 29.47 27.33 24.92 35.19 31.86 29.43 27.13 13

2D-MOD 33.33 29.70 27.60 25.19 35.22 32.16 29.76 27.47 524
2D-CMOD 33.26 29.59 27.57 25.17 35.03 31.98 29.69 27.44 636

SeDiL 31.14 27.20 25.20 23.47 32.91 29.00 26.39 24.32 573
KSVD 33.47 30.04 27.93 25.47 35.98 33.36 31.33 28.60 3130
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