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Abstract. In this paper, an adaptive algorithm for blind source sepa-
ration in linear instantaneous mixtures is proposed, and it is shown to
be the optimum version of the EASI algorithm. The algorithm is based
on minimization of mutual information of outputs. This minimization is
done using adaptive estimation of a recently proposed non-parametric
“gradient” for mutual information.

1 Introduction

Blind Source Separation (BSS) is a relatively new subject in signal processing,
which has been considered extensively since mid 80’s [1]. It consists in retrieving
unobserved independent mixed signals from mixtures of them, assuming there
is information neither about the original sources, nor about the mixing system.
The simplest BSS model is the linear instantaneous model. In this case, the
mixture is supposed to be of the form x = As, where s is the source vector,
x is the observation vector, and A is the (constant) mixing matrix which is
supposed to be an unknown matrix of full rank. The separating system, B, tries
to estimate the sources via y = Bx. For linear mixtures, it can be shown that
the independence of the components of y, is a necessary and sufficient condition
for achieving the separation up to a scale and a permutation indeterminacy,
provided that there is at most one Gaussian source [2].

The early works on BSS were concerned linear instantaneous mixture and
by now a lot of algorithms are available for separating them (see [1, 3] for a
review and extensive references. These methods can not be easily generalized to
more complicated models. Source separation can be obtained by optimizing a
“contrast function” i.e. a scalar measure of some “distributional property” of the
outputs [4]. One of the most general contrast functions is mutual information,

� This work has been partially funded by the European project Blind Source Sepa-
ration and applications (BLISS, IST 1999-13077), Sharif University of Technology,
and by Iran Telecom Research Center (ITRC).

C.G. Puntonet and A. Prieto (Eds.): ICA 2004, LNCS 3195, pp. 9–17, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



10 Samareh Samadi et al.

which has been shown [4] to be an asymptotically Maximum-Likelihood (ML)
estimation of source signals. Recently a non-parametric “gradient” for mutual
information has been proposed [5], which has been used successfully in separating
different mixing models [6]. The proposed algorithms based on this gradient are
all batch algorithms, which makes them unsuitable for being used in real-time
applications.

In this paper, we propose an adaptive method for estimating this “gradient”
of mutual information, and we use it to construct a new adaptive algorithm for
separating linear instantaneous mixtures. This approach not only leads to good
separation results, but also constructs a framework that can also be generalized
to more complicated models. More interestingly, we will show that, for linear
instantaneous mixtures, this new approach has a close relation to the famous
EASI algorithm [7], and is, in fact, an optimal version of EASI. The paper is
organized as follows. Section 2 reviews the essential materials to express the
“gradient” of mutual information. The iterative equations of the algorithm are
developed in Section 3, and its relation to EASI is considered in Section 4. The
proposed algorithm is introduced as an optimum verion of EASI in section 5. This
algorithm can be adaptively implemented using the adaptive estimation method
of Section 6. In Section 7, the normalization method of the output energies is
explained. Finally, Section 8 presents some experimental results.

2 Preliminary Issues

The objective of this section is to review mutual information definition, as the
independence criterion, and its “gradient”. Expressing this gradient, requires
reviewing the definition of multivariate score functions of a random vector, which
have been first introduced in [8].

2.1 Multivariate Score Functions
In statistics, the score function of a random variable y is defined as−p′y(y)/py(y),
where py(y) is the probability density function (PDF) of y. For anN -dimensional
random vector y = (y1, . . . , yN)T , two forms of score function are defined in [8]:
Definition 1 (MSF) The marginal score function (MSF) of y, is the vector of
score functions of its components, i.e.:

ψy(y) = (ψ1(y1), . . . , ψN (yN ))T (1)

where:

ψi(y) = − d

dyi
ln pyi(yi) = −p

′
yi

(yi)
pyi(yi)

(2)

and pyi(yi) is the marginal PDF of yi.

Definition 2 (JSF) The joint score function (JSF) of y, is the vector function
ϕy(y), such that its i-th component is:

ϕi(y) = − ∂

∂yi
ln py(y) = −

∂
∂yi

py(y)

py(y)
(3)

where py(y) is the joint PDF of y.
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Definition 3 (SFD) The score function difference (SFD) of y, is the difference
between its JSF and MSF, i.e.:

βy(y) = ψy(y) −ϕy(y) (4)

2.2 Mutual Information and Its Gradient

For measuring the statistical independence of random variables y1, . . . , yN , one
can use their mutual information, defined by:

I(y) = D

(
py(y) ‖

∏
i

pyi(yi)

)

=
∫
y

py(y) ln
py(y)∏
i pyi(yi)

dy

= E

{
ln

py(y)∏
i pyi(yi)

}
(5)

where y = (y1, . . . , yN )T , and D denotes the Kullback-Leibler divergence. This
function is always positive, and is zero if and only if the yi’s are independent.

For designing a source separation algorithm, one can use mutual information
as a criterion for measuring output independence. In other words, the parame-
ters of the separating system must be computed in such a way that the mutual
information of the outputs be minimized. For doing this, the gradient based algo-
rithms may be used. To calculate the gradient of the output mutual information
with respect to the parameters of the separating system, the following theorem
[5] will be quite helpful.

Theorem 1 Let ∆ be a ‘small’ random vector, with the same dimension as x.
Then:

I(x +∆)− I(x) = E
{
∆Tβx(x)

}
+ o(∆) (6)

where o(∆) denotes higher order terms in ∆.

This theorem points out that SFD can be called the “stochastic gradient” of
mutual information.
Remark. Equation (6) may be stated in the following form (which is similar to
what is done in [9]):

I(x + Ey)− I(x) = E
{
(Ey)Tβx(x)

}
+ o(E) (7)

where x and y are bounded random vectors, E is a matrix with small entries,
and o(E) stands for a term that converges to zero faster than ‖E‖. This equation
is mathematically more sophisticated, because in (6) the term ‘small random
vector’ is somewhat ad-hoc. Conversely, (6) is simpler, and easier to be used in
developing gradient based algorithms for optimizing a mutual information.
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3 Estimating Equations

In linear instantaneous mixture, the separating system is:

y = Bx (8)

and B must be computed to minimize I(y), where I stands for mutual informa-
tion. For calculating B, the steepest descent algorithm may be applied:

Bn+1 = Bn − µ ∂I

∂B

∣∣∣∣
B=Bn

(9)

where µ is a small positive constant. However, to design an equivariant algorithm
[7], that is, an algorithm whose separation performance does not depend on
the conditioning of the mixing matrix, one must use the serial (multiplicative)
updating rule:

Bn+1 =
(
I− µ [∇BI]B=Bn

)
Bn (10)

where I denotes the identity matrix, and ∇BI � ∂I
∂BBT is the relative (or natu-

ral) gradient [7, 10] of I(y) with respect to B.
Using theorem 1, ∇BI can be easily obtained [5] (although, for this simple

linear instantaneous case, this gradient may be directly calculated):

∇BI = E
{
βy(y)yT

}
(11)

By dropping the expectation operation, the stochastic version of (10) is ob-
tained:

Bn+1 =
(
I− µβy(y)yT

)
Bn (12)

For developing the above algorithm in adaptive form, adaptive estimation of
SFD is required, which will be discussed in Section 6.

4 Relation to EASI

The EASI algorithm has been proposed by Cardoso and Laheld [7]. In developing
this algorithm, they showed that if the separation is achieved by minimizing a
contrast function φ(B) = E{f(y)} with respect to B, the performance of the
following serial updating algorithm, is independent of the mixing matrix:

Bn+1 =
(
I− µ∇φ(Bn)

)
Bn (13)

where the relative gradient ∇φ(B) is:

∇φ(B) = ∇E {f(y)} = E
{
f ′(y)yT

}
(14)

Consequently, the stochastic version of (13) becomes:

Bn+1 =
(
I− µg(y)yT

)
Bn (15)
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where g � f ′. Developing EASI is then continued by choosing a “component-
wise” g, and implementing a pre-whitening stage in the above algorithm, which
is required by some contrast functions. This makes the final EASI equation more
complicated than (15).

Now, let the contrast function be the mutual information:

φ(B) = I(y) = E

{
ln

py(y)∏
i pyi(yi)

}
(16)

Comparing with (14), we have:

f(y) = ln
py(y)∏
i pyi(yi)

(17)

Then, the relative gradient (14) becomes (11), and the algorithm updating rule
is (12). In fact, it is a special case of (15), where the contrast function is the
mutual information of the outputs, and g is the SFD of y. However, contrary to
the “standard” EASI, where g is a “component-wise” and fixed function, here
g(y) = βy(y) is a multi-variate function and depends on the distribution of y.

5 Optimum EASI

As mentioned in sectin 4, φ(B) is a contrast function in EASI. Recall now that
minimizing mutual information of outputs for source separation tends asymp-
totically towards a Maximum Likelihood (ML) estimation of sources [4]. Conse-
quently, the optimal (in ML sense) contrast function in the EASI algorithm is
mutual information of outputs and hence, the algorithm (12) can be considered
as an optimal version of EASI (in ML sense). In other words, we have shown that
the optimum choice of the non-linearity (g(y)) in the EASI algorithm is not a
fixed and component-wise non-linearity, it is a multi-variate function which de-
pends on the output statistics.

Moreover, in the “standard” EASI, one must take into account the necessity
of existence of a pre-whitening stage, and implementing it in the algorithm. This
makes the final equation of EASI [7] more complicated than (15). However, when
using mutual information contrast, no pre-whitening is required.

Finally, besides its performance (see Section 8), one great advantage of this
new algorithm is that it can be generalized to more complicated mixtures. In
fact, it is based on SFD, which has been successfully used in separating other
mixtures (especially, post-nonlinear and convolutive) in batch algorithms [6].

We recall that these advantages are obtained at the expense of higher com-
putational load: a multi-variate nonlinear function (SFD) has to be estimated,
based on the output statistics.

6 Adaptive SFD Estimation

For estimating the MSF, one must simply estimate the score functions of its
components. It can be seen that for a function f with continuous first derivative
and bounded sources we have [11]:
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E {f(x)ψx(x)} = E {f ′(x)} (18)

where ψx is the MSF of the random variable x. Now, let the score function ψx

be modeled as a linear combination of some basis functions k1(x), k2(x), . . . ,
kL(x):

ψ̂x(x) =
L∑

i=1

wiki(x) = k(x)T w (19)

where k(x) � (k1(x), . . . , kL(x))T and w � (w1, . . . , wL)T . For calculating w,
we minimize the mean square error:

E � E

{(
ψx(x)− ψ̂x(x)

)2
}

(20)

Expanding the above expression and using (18), it is seen that the minimizer of
E minimizes also:

ξ � 1
2
E

{
ψ̂x(x)2

}
− E

{
∂

∂x
ψ̂x(x)

}
(21)

For minimizing ξ with respect to w, the Newton method can be used:

w← w − µE
{( ∂2ξ

∂w2

)}−1

E

{( ∂ξ
∂w

)}
(22)

where:
∂ξ

∂w
= k(x)k(x)T w − ∂k(x)

∂x
(23)

and:
∂2ξ

∂w2
= k(x)k(x)T (24)

This method can be easily generalized for estimating JSF. It has been shown
[8] that for bounded sources and an arbitrary multivariate function f(x) with
continuous derivative with respect to xi:

E {f(x)ϕi(x)} = E

{
∂

∂xi
f(x)

}
(25)

Let now ϕi(x), the i-th component of JSF, be estimated as the linear com-
bination of the (multivariate) basis functions k1(x), ..., kL(x), that is:

ϕ̂i(x) =
L∑

i=1

wiki(x) = k(x)T w (26)

and w is the minimizer of E
{
(ϕi(x)− ϕ̂i(x))2

}
.

Following similar calculation as above, we obtain the same algorithm given
by equations (22), (23) and (24), where in this case:

ξ =
1
2
E

{
ϕ̂i(x)2

}− E {
∂

∂xi
ϕ̂i(x)

}
(27)

Finally, SFD is estimated by calculating the difference of the estimated MSF
and JSF.
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7 Normalization of Output Energies

From the scale indeterminacy it is deducted that the algorithm (12) has no
restriction on the energy of outputs. Consequently, this algorithm does not con-
verge to a unique solution. To overcome this indeterminacy, and making the
algorithm to converge to unit energy outputs, we replace the i-th diagonal ele-
ment of βy(y)yT by 1−y2

i to force the separating system to create unit variance
outputs. This is similar to what is done in [11].

8 Experimental Result

As an experiment, two independent sources with normal and uniform distribu-
tions and with zero means and unit variances are mixed by:

A =
[

1 0.7
0.5 1

]
(28)

Basis functions for estimating ψi(yi) are:

k1(y) = 1, k2(y) = y, k3(y) = y2, k4(y) = y3 (29)

and basis functions for estimating ϕi(y) are:

k1(y1, y2) = 1,
k2(y1, y2) = y1, k3(y1, y2) = y2

1 , k4(y1, y2) = y3
1

k5(y1, y2) = y2, k6(y1, y2) = y2
2 , k7(y1, y2) = y3

2

To compare the separation result of the proposed algorithm with EASI, we
have separated this mixture, using both algorithms. In our method, the adapta-
tion rate of the Newton algorithm is 0.1 and the adaptation rate of the sep-
aration algorithm is 0.001. In EASI, the component-wise nonlinear function
g(yi) = yi|yi|2 has been used, with the same adaptation rate (0.001). Figure
1 shows the averaged output signal to noise ratios (SNR) taken over 50 runs of
the algorithms. SNR is defined as:

SNR = 10 log10

E
{
s2

}
E {(y − s)2} (30)

where y is the output corresponding to the source s. The figure shows that the
proposed algorithm has better separation performance than EASI, as was ex-
pected because this algorithm is an optimal version of EASI (see Section 4).
However the cost of this better performance is a higher complexity (which in-
creases with the source number), since a multivariate non-linear function must
be estimated at each iteration.
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Fig. 1. Output SNRs versus iteration for EASI and our method.

9 Conclusion

In this paper an adaptive algorithm for blind separating linear instantaneous
mixtures has been proposed, which is based on adaptive estimation of SFD. It has
been shown that this algorithm can be seen as an optimum version of the EASI
algorithm. Moreover, it is conjectured that this method can be generalized to
separating more complicated (than linear instantaneous) mixing models, such as
convolutive and non-linear mixtures. This is because SFD has been successfully
used in separating these models [6]. Such a generalization is currently under
study. The drawback of this method is that, despite of EASI, this algorithm
requires the estimation of multivariate score functions (which are related to
joint PDFs). This estimation becomes too difficult, and requires a lot of data,
when the dimension (i.e. number of sources) grows. Practically, this method is
suitable only up to 3 or 4 sources.
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