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ABSTRACT

In this paper we propose a fast and efficient algorithm for
learning overcomplete dictionaries. The proposed algorithm
is indeed an alternative to the well-known K-Singular Value
Decomposition (K-SVD) algorithm. The main drawback of
K-SVD is its high computational load especially in high-
dimensional problems. This is due to the fact that in the dic-
tionary update stage of this algorithm an SVD is performed
to update each column of the dictionary. Our proposed algo-
rithm avoids performing SVD and instead uses a special form
of alternating minimization. In this way, as our simulations
on both synthetic and real data show, our algorithm outper-
forms K-SVD in both computational load and the quality of
the results.

Index Terms— Sparse approximation, compressive sens-
ing, dictionary learning, alternative minimization

1. INTRODUCTION

1.1. Sparse signal approximation

Sparse approximation of signals has received a lot of attention
during the last decade [1]. This is due to its capability in var-
ious applications such as Compressive Sensing (CS) [2], im-
age processing tasks (e.g. denoising, compression, inpainting,
zooming) [3], and linear regression and variable selection [4].
The sparse approximation problem consists in approximating
a given signal as a linear combination of as few as possible
basis functions. Each basis function is called an atom and the
collection of them is called dictionary [5]. This dictionary is
overcomplete, i.e. the number of atoms is (much) more than
the dimension of each atom. Specifically, let y ∈ Rn be the
signal whose sparsest approximation is going to be found in
D ∈ Rn×K , with K > n. This amounts to solve the follow-
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ing problem:

P0 : min
x

∥x∥0 subject to ∥y −Dx∥2 ≤ ϵ, (1)

where ∥.∥2 is the ℓ2 norm, ∥.∥0 stands for the so-called ℓ0
(pseudo) norm, which counts the number of non-zero ele-
ments, and ϵ is a small positive constant. The above problem
needs a combinatorial search and is generally NP-hard [6].
So, alternative methods are used to solve it [1, 7]. One of the
most successful ideas is to replace the non-convex sparsity
measure ∥.∥0 with its best convex approximation based on ℓ1
norm [8]. This leads to the following convex problem:

P1 : min
x

∥x∥1 subject to ∥y −Dx∥2 ≤ ϵ. (2)

Many algorithms have been introduced to solve the problem
of finding the sparsest approximation of a signal in a given
overcomplete dictionary (for a good review see [9]). These al-
gorithms can be classified into two general categories, greedy
methods such as Orthogonal Matching Pursuit (OMP) [10]
and Compressive Sampling Matching Pursuit (CoSaMP) [11],
and relaxation methods, which replace the combinatorial P0

problem with a tractable one, e.g. P1 problem. Iterative
Shrinkage-Thresholding (IST) [12], Iteratively Re-weighted
Least Squares (IRLS) [13], and Smoothed ℓ0 (SL0) [7] are
some examples of the second category. Greedy algorithms
successively choose the appropriate atoms of the dictionary
that result in the greatest improvement in the quality of the
approximation. Theses algorithms benefit from high speed,
but their accuracy is usually less than that of the second cate-
gory.

1.2. Learning overcomplete dictionaries

For a given class of signals, e.g. class of natural facial im-
ages, the dictionary should have the capability of sparsely
approximating the signals. In some applications there is a
pre-defined and universal dictionary that is known to be well-
matched to the contents of the given class of signals, for ex-
ample, the overcomplete DCT dictionary for the class of nat-
ural images. These non-adaptive dictionaries are appealing
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because of their simplicity and in some cases their fast com-
putations. However, learning the atoms from some training
signals would result in dictionaries with the capability of bet-
ter matching the contents of the signals. In this way, the adap-
tive dictionaries would outperform the non-adaptive ones in
many applications such as image denoising [14], classifica-
tion tasks [15], and so on.

In this paper we are going to propose an efficient dictio-
nary learning algorithm, which is indeed a good alternative to
the well-known K-SVD algorithm [16]. As will be seen in
the experimental results, our proposed algorithm outperforms
K-SVD in both execution time and quality of the results.

The paper is organized as follows. In Section 2 we briefly
review the general dictionary learning problem together with
K-SVD algorithm. Then in Section 3 we detail our proposed
algorithm. Section 4 presents some experimental results. Fi-
nally, Section 5 concludes the paper.

2. DICTIONARY LEARNING PROBLEM

Consider a set of L training signals in Rn as {yi}Li=1. Putting
these signals as the columns of the matrix Y, the general dic-
tionary learning problem is then to find a sparsifying dictio-
nary, D, by solving the following problem:

min
D∈D,X∈X

∥Y −DX∥2F , (3)

where ∥.∥F is the Frobenius norm and D and X are admis-
sible sets of the dictionary and the coefficient matrix, respec-
tively. D is usually defined as the set of all dictionaries with
unit column-norm. Since we require that each signal has a
sparse approximation, X is the set of all matrices X with
sparse columns.

The general approach to solve (3) is to use alternating
minimization in which the following two stages are repeated
several times:

1. Sparse approximation: with a fixed D, solve (3) for
X,

2. Dictionary update: with a fixed X, update the dictio-
nary to reduce the approximation error.

With a fixed D, the minimization of (3) over X is equiva-
lent to sparsely approximating the training signals over D.
Among the various sparse coding algorithms, OMP (or its
variants) is very appealing. This is due to two reasons. The
first reason is the high speed of OMP. The second one is its
capability to be efficiently implemented in batch mode. In
some applications, such as dictionary learning, in which we
need to find sparse approximations of a batch of signals in the
same dictionary, we can factor some common operations of
OMP. This fact along with the use of Cholesky factorization
results in the significant acceleration of OMP which leads to
Batch-OMP algorithm [17].

Up to our best knowledge, various dictionary learning al-
gorithms differ only in the way of updating the dictionary.
Some algorithms such as K-SVD are based on updating atoms
one-by-one whereas some others such as Method of Optimal
Directions (MOD) [18] update the whole set of atoms at once.

2.1. K-SVD

In the dictionary update stage of K-SVD, only one atom is
updated at a time. Moreover, while updating each atom, the
non-zero entries in the associated row vector of X is also up-
dated. In this way, only those signals participate in updating
one atom that have used it. This prevents each row vector in
X to be filled and thus violating the sparsity constraint of the
coefficient matrix. In what follows, we define x(ω) as a vec-
tor containing those entries of x that are indexed by ω, and
E(:, ω) as a matrix containing those columns of E that are
indexed by ω. Assume that we want to update the ith atom,
di, along with the non-zero entries of xT

[i], the ith row of X.

We define ωi =
{
j : xT

[i](j) ̸= 0
}

as the support of xT
[i], and

|ωi| as the cardinality of ωi. Then the problem of updating di

along with xT
[i](ωi) amounts to solve the following minimiza-

tion problem:

min
d,xr

∥Er
i − dxT

r ∥2F subject to ∥d∥2 = 1, (4)

where Er
i = Ei(:, ωi), in which Ei = Y −

∑
j ̸=i djx

T
[j]

denotes the approximation error matrix when di is removed,
and xT

r is a row vector of length |ωi| corresponding to the
non-zero entries of xT

[i]. The above problem actually finds the
closest rank-1 approximation to Er

i and can be easily solved
via SVD. For more details refer to [16].

3. PARALLEL ATOM-UPDATING DICTIONARY
LEARNING

In this section we introduce our proposed algorithm. This
algorithm like K-SVD is based on atom-by-atom updating.
The main drawback of K-SVD is its computational load es-
pecially in high dimensions. This is due to performing SVD
for atom updating. An alternative way of solving (4) is to
use the idea of alternating minimization [17]. In other words,
(4) is alternatively minimized over d and xr. A few (e.g. 3)
alternations give a fast approximation to SVD. The resulting
algorithm is known as the Approximate K-SVD (AK-SVD)
[17]. Although performing more alternations gives a better
approximation, the average performance will not exceed the
performance of the exact solution, i.e. via SVD.

We describe a different way of performing alternating
minimization to update the atoms and their associated row
vectors in the coefficient matrix. To this aim, consider the
overall error matrix,

E = Y − (A1 +A2 + . . .+AK), ∀i : Ai = dix
T
[i]. (5)



Algorithm 1 PAU-DL algorithm
1: Task: Learning an overcomplete dictionary to sparsely

approximate Y = {yi}Li=1.
2: Initialization: Set k = 0, D(k) = D0.
3: The main loop: Repeat until convergence:
4: Sparse Approximation: X(k) =

Batch-OMP(Y,D(k), τ).
5: Dictionary Update: Set D = D(k), X = X(k), E =

Y −DX, and repeat the following loop A times (A = 3
works well):

6: for i = 1, . . . ,K do
7: Ei = E+ dix

T
[i]

8: Er
i = Ei(:, ωi) where ωi =

{
j : xT

[i](j) ̸= 0
}

9: xr = x[i](ωi)
10: di = Er

ixr

11: di = di/∥di∥2
12: xT

[i](ωi) = dT
i E

r
i

13: E = Ei − dix
T
[i]

14: end for
15: Set k = k + 1, D(k) = D, and go back to the sparse

approximation stage.

In K-SVD (or AK-SVD), to update (the non-zero columns of)
for example Ai, the updated versions of A1, . . . ,Ai−1 are
used to compute Ei; while Ai+1, . . . ,AK have not been yet
updated. Keeping this point in mind, we propose to update
the atoms in parallel. In other words, instead of fully updat-
ing each Ai by performing “A” alternations between di and
xr, we perform “A” alternations in such a way that in each
alternation all of Ai’s are partially updated (using only one
alternation). In this way, in the subsequent alternations all
Ai’s have been partially updated. As our experimental results
in Section 4 suggest, parallel updating of the atoms results in
further accelerating the convergence rate and even the quality
of the final result.

To update each Ai, we need to compute the error matrix
Ei. It can be easily seen that this matrix can be updated as
follows. The overall error matrix is firstly computed as E =
Y −DX using the current dictionary and coefficient matrix.
Then Ei = E+Ai and after updating Ai to A

(new)
i , the error

matrix E is updated as E = Ei −A
(new)
i . In this way, there

is no need to completely re-compute the error matrix for each
atom, but instead it is updated in a ranked-1 manner.

Algorithm 1 gives a description of the proposed algo-
rithm, which we have called it Parallel Atom-Updating Dic-
tionary Learning (PAU-DL) algorithm. By Batch-OMP(Y,D, τ)
we mean the sparse approximation of Y in D and with thresh-
old τ . Depending on the application at hand, τ may be the
threshold on the approximation error (ϵ in (1)) or the maxi-
mum allowed number of atoms in the sparse approximation
of each training signal.

4. SIMULATIONS

We evaluate the efficiency of our proposed algorithm and K-
SVD1 with three sets of experiments. In the first set we aim
to evaluate the capability of the two algorithms in recovery
of a known dictionary. The second experiment is on an au-
toregressive (AR) signal, where there is no underlying dictio-
nary, and we just evaluate the capability of the algorithms in
learning a good (i.e. sparsifying) dictionary form the training
signals. To further evaluate the advantage of PAU-DL over
K-SVD, we consider as the third experiment the problem of
image denoising over a learned overcomplete dictionary as in
[14].

It is worthwhile mentioning that, as previously stated, al-
though AK-SVD has much smaller computational load com-
pared to original K-SVD algorithm, but as we saw in our sim-
ulations, its quality of results is inferior to that of K-SVD. So,
we have reported here the results of simulating K-SVD; not
AK-SVD. Also, the computational complexities of AK-SVD
and PAU-DL are nearly the same.

Our simulations were performed in MATLAB R2010b en-
vironment on a system with 3.8 GHz CPU and 8 GB RAM,
under Microsoft Windows 7 operating system. As a rough
measure of complexity, we will mention the run times of the
algorithms.

4.1. Reconstruction of a known dictionary

We generated the underlying dictionary by normalizing a ran-
dom matrix of size 20 × 50, with zero mean and unit vari-
ance independent and identically distributed (i.i.d.) Gaus-
sian entries. A collection of 2000 training signals, {yi}2000i=1 ,
were produced, each as a linear combination of s different
columns of the dictionary, with zero mean and unit variance
i.i.d. Gaussian coefficients in random and independent posi-
tions. We varied s from 3 to 6. We then added white Gaussian
noise with Signal to Noise Ratio (SNR) levels of 10, 20, 30,
and 100 dB. We applied the two algorithms onto this noisy
training signals, and compared the resulting recovered dictio-
naries to the generating dictionary as follows. Assume that
di is a generating atom and d̄i is the atom in the recovered
dictionary that best matches di among the others. We say
that the recovery is successful if |dT

i d̄i| is above 0.99 [16].
The percentage of the correct recovery was used as the mea-
sure of successfully reconstructing the generative dictionary.
We performed 100 alternations between sparse approximation
and dictionary update stages for both algorithms. The initial
dictionary was made by randomly choosing different columns
of the training signals followed by a normalization.

The average percentage of successfully recovery of the
underlying atoms (APSRA) is shown in Table 1. To see the

1For K-SVD and OMP we have used K-SVD-Box v10 and OMP-Box
v10 available at http://www.cs.technion.ac.il/˜ronrubin/
software.html



Table 1. Percentage of successful recovery.

SNR (dB) Algorithms s = 3 s = 4 s = 5 s = 6

10 K-SVD 87.40 78.20 4.47 0
PAU-DL 87.43 79.37 18.47 0

20 K-SVD 93.87 94.4 85.47 0
PAU-DL 93.88 95.2 91.13 13.6

30 K-SVD 94.40 92.87 88.4 2
PAU-DL 94.47 94.20 93 43.13

100 K-SVD 94 94.2 90.27 1.8
PAU-DL 94 95.13 92.93 40.93

convergence behaviour of the two algorithms, the improve-
ment of APSRA along the alternation number for SNR =
20 dB and s = 4, 5 is shown in Fig. 1. The average execution
times of K-SVD and PAU-DL were 27.68 and 5.41 seconds,
respectively. With these results in mind, we deduce the fol-
lowing observations:

• PAU-DL has a better APSRA compared to K-SVD in
average. This is especially evident at s = 5 and s = 6.

• The convergence rate of PAU-DL is faster than K-SVD.
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Fig. 1. Convergence behaviour of PAU-DL and K-SVD in
recovery of a known dictionary (SNR = 20 dB).

4.2. AR(1) signal

In this experiment, we consider an AR(1) signal (according
to [19]) that is generated as v(k) = 0.95v(k − 1) + e(k),
where e(k) is Gaussian noise with zero mean and unit vari-
ance. A collection of L = 2000 training signals were made
by chopping this signal into vectors of length n = 20. Num-
ber of atoms was set to m = 40, and s = 5 atoms were used
to approximate each training vector. For both algorithms 100
alternations were done. As in [19], we computed SNR as
SNR = 10 log ∥Y∥2F⧸∥Y −DX∥2F .

SNR versus alternation number is plotted in Fig. 2. From
this figure we see that PAU-DL has reached a higher SNR

value compared to K-SVD. The average execution times of K-
SVD and PAU-DL were 15.88 and 2.79 seconds, respectively.
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Fig. 2. SNR in dB is plotted versus the alternation number
during the learning process.

4.3. Image denoising over learned dictionaries

We evaluate here the efficiency of PAU-DL relative to K-SVD
in an image denoising experiment. We aim to find an estimate
of a clean image contaminated with an additive white Gaus-
sian noise with zero mean. The approach of sparse approx-
imation is to firstly divide the noisy image into some small
blocks (typically of size 8 × 8), then learn an overcomplete
dictionary using these blocks as the training signals, and fi-
nally denoise each block over the learned dictionary [14]. As
in [14], we used Peak Signal to Noise Ratio (PSNR), as the
criterion for comparison of the denoising quality. We consid-
ered four test images, all of size 256× 256. To learn a dictio-
nary for each image, we randomly selected 30000 blocks of it
as the training signals. We repeated each experiment (corre-
sponding to a certain level of noise) 5 times and averaged the
results.

The final PSNR values are shown in Table 2, in which σ is
the standard deviation of noise. As can be seen, the results are
similar for the two algorithms (with PAU-DL slightly better).
However, the average execution times of K-SVD and PAU-
DL were approximately 90 and 30 seconds, respectively.

As a conclusion, these results together with those in the
previous experiments all suggest the advantage of PAU-DL
compared to K-SVD.

5. CONCLUSION

We proposed a fast and efficient alternative to K-SVD. Our
algorithm is based on updating the atoms of the dictionary
in parallel using the idea of alternating minimization. As the
simulations results on both synthetic and real data showed,
our algorithm outperforms K-SVD in both average execution
time and quality of the results.



Table 2. Image denoising PSNR results in dB. In each cell
two results are reported. Top: results of K-SVD, and Bottom:
results of PAU-DL. The average execution times of K-SVD
and PAU-DL were 90 and 30 seconds, respectively.

σ, PSNR House Boat Lena Barb. Avg.

2, 42.11
44.48 43.66 44.50 43.96 44.15
44.50 43.67 44.53 43.98 44.15

5, 34.16
39.44 37.41 38.86 38.13 38.46
39.46 37.43 38.89 38.18 38.50

10, 28.11
36.08 33.32 35.02 34.10 34.63
36.14 33.37 35.10 34.15 34.69

15, 24.62
34.44 31.04 32.85 31.83 32.54
34.51 31.08 32.91 31.86 32.59

20, 22.11
33.27 29.54 30.26 30.17 30.81
33.31 29.57 30.28 30.19 30.84

25, 20.16
32.19 28.33 30.00 29.02 29.89
32.21 28.35 30.04 29.04 29.91

50, 14.15
28.07 24.81 26.14 25.33 26.09
28.08 24.85 26.16 25.34 26.11

100, 8.12
23.68 21.80 22.57 21.90 22.49
23.69 21.82 22.60 21.91 22.51
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