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ABSTRACT

This paper deals with blind separation of finite alphabet
sources where we have n sources and only one observation.
The method is applied directly in time (spatial) domain and
no transformation is needed. It follows a two stage proce-
dure. In the first stage the mixing coefficients are estimated,
and in the second stage the sources are separated using the
estimated mixing coefficients. We also study restrictions
of this method and conditions for which its performance is
acceptable. Simulation results are presented to show the abil-
ity of this method to source separation in images and pulse
amplitude modulation (PAM) signals.

1. INTRODUCTION

The main purpose of blind source separation (BSS) is sepa-
rating some source signals from a number of their mixtures.
BSS has found applications in different fields such as fea-
ture extraction, telecommunications, medical imaging and au-
dio separation [1]. A simple case is where source signals
are mixed linearly. By assuming source independance it has
been shown that linear mixtures are separable, provided that
the number of observed signals is equal to or larger than the
source number [1]. When the number of sources is less than
the number of the observed signals, then the problem is called
underdetermined BSS (UBSS). Most algorithms have been
developed for regular BSS, where the number of sources and
observations are equal, while UBSS methods are limited. The
main reason is that in the general form, the problem is not
solvable. The solution is however possible if the sources have
special characteristics. As an example, in [2] the sources are
separated using sparsity of the sources. Source sparsity can
be enhanced by using transforms like Fourier, wavelets or di-
crete cosine transform. Since these transforms preserve lin-
earity, the linear relationship between sources and observed
signals is preserved in the transformed space. This property
has led to some UBSS methods [2, 3, 4]. Some methods are
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based on Maximum Likelihood estimation of the mixing co-
efficients and then in the second step by using estimated mix-
ing coefficients, sources are separated [5, 6]. A third approach
for UBSS is mainly based on the geometric properties of the
signals [7, 8].

In this paper, we extend the idea presented in [8], which
has been proposed for the simple case where there are two
sources with finite alphabets, and only one mixture. The al-
gorithm of [8] separates the sources in two stages. In the
first stage mixing coefficients are estimated and in the second
stage the sources are estimated. In this paper, we consider
the extended case in which we have n finite alphabet sources
and only one observation signal. We extend the first stage of
the algorithm of [8] so we can use it for this general case. In
the second step, using the resulting mixing coefficients, we
separate the sources similar to the approach of [8].

This paper is organized as follows. In section 2, we de-
scribe the problem and basic assumptions. Section 3 is de-
voted to our separation method. In section 4, we discuss the
limitations of the proposed method. Finally, simulation re-
sults are presented in section 5.

2. PROBLEM DESCRIPTION

Consider n real source signals s1(·), s2(·), ..., sn(·) that only
take the values from the finite set V = {v0, v1, ..., vm−1} and
suppose that the values are equally spaced, that is, vi+1 −
vi = D for i = 0, . . . ,m− 2. Some practical signals such as
telecommunications signals produced using Pulse Amplitude
Modulation (PAM), in which V = {−(m − 1)D/2,−(m −
3)D/2, ..., (m− 3)D/2, (m− 1)D/2}, or digital images, for
which V = {0, 1, ..., 255}, satisfy this condition. Without
loss of generality assume D = 1.

Our problem is estimation of source signals s1(·), ..., sn(·),
using the observation signal:

x(t) = a1s1(t) + a2s2(t) + ...+ ansn(t), t = 1, ..., T, (1)

where n is assumed to be known, a1, a2, ..., an are real valued
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unknown mixing coefficients, and T is the number of avail-
able samples.

Since the input source signals have a finite number of val-
ues, the observation signal has also a finite number of values
belonging to the multiset1 S = {c1, c2, ..., cK}, where each
member of S comes from a linear combination:

ck = a1v1(k) + a2v2(k) + ...+ anvn(k), (2)

where v1(k), v2(k), ..., vn(k) ∈ V . In this paper, as in [8],
we assume that all members of the multiset S are distinct. It
means that:

ck = cl ⇒
v1(k) = v1(l), v2(k) = v2(l), . . . , vn(k) = vn(l).

(3)

Under this assumption S has K = mn distinct members and
thus mathematically would be a set with cardinality K = mn.

3. SEPARATION METHOD

In this section we present our idea for separating the n
sources. This idea is a method for estimating the mixing
coefficients ai’s. After estimating ai’s, separating the sources
would be easy because of the assumption (3).

3.1. Estimating mixing coefficients

Assume all the observation signal values are put in the column
vector x with length T . Subtracting any two entries of x we
obtain the difference:

δi,j = xi − xj = ck − cl = a1(v1(k)− v1(l))+

a2(v2(k)− v2(l)) + . . .+ an(vn(k)− vn(l)),
(4)

where 1 ≤ i, j ≤ T , xi and xj are the ith and jth entry of x
respectively and ck and cl are corresponding values of xi and
xj , respectively.

We call every pair in the form v(k) − v(l) a difference
pair. The value of every difference pair in (4) belongs to the
set:

∆ = {vi − vj |∀vi, vj ∈ V } =

{−(m− 1),−(m− 2), ..., 0, ...,m− 2,m− 1}.
(5)

We assume the input sequence [s1(·), ..., sn(·)] is rich enough
in the sense that it contains all possible pairs of input values
in V n.

We put all the differences into the multiset:

X∆ = {xi − xj |∀i, j : 1 < i, j < T}. (6)

If the observation vector x has T entries, then X∆ has(
T
2

)
= T (T−1)

2 members but since ∆ has only 2m − 1 mem-
bers we conclude that X∆ will have members with repeated

1By a multiset, we mean a set that can have repeated members.

values (assuming T > m). We now look at the distribution
of the elements of X∆ (assuming that the elements of ∆ are
equiprobable).

Consider the case δi,j = 0. For having this case, accord-
ing to (3), every difference pair in (4) must be equal to zero.
Since for each pair this can happen in m different ways when
v(k) = v(l) for some v(k) = 0, 1, . . . ,m− 1, in general δi,j
can be equal to zero in mn different cases. Next consider the
case δi,j = ±aq for some q = 1, . . . , n. This situation occurs
in (m − 1)mn−1 different cases, since except the difference
pair vq(k)−vq(l) which must be equal to ±1, other pairs must
be equal to zero. The latter can happen in mn−1 cases and the
former occurs in m − 1 cases. Based on the rule of products
we have (m− 1)mn−1 different cases overall. In general, for
greater |δi,j | the cases that it happens decrease so that for the
case |δi,j | = (m− 1)(|a1|+ |a2|+ . . .+ |an)| we have only
one possible case, while the most probable case is δi,j = 0.
We propose to use this property to estimate mixing coeffi-
cients. These results suggest that if sources take all the values
relatively uniformly, most likely (6) will have a nonuniform
distribution with δi,j = 0 as the most frequent value. Using
this property we propose the following algorithm for estima-
tion of mixing coefficients:

1. Supposes we have the observation vector x which is a
T × 1 vector, then calculate M as follows:

Y = x · 1T

M = Y − YT ,
(7)

where 1 is T dimensional all ones column vector and (·)T
stands for matrix transposition. So, M contains all members
of the multiset (6).

2. Convert all nonzero entries of M into the vector k and
compute the histogram of this vector.

3. Set ±â1,±â2, . . . ,±ân equal to the n most frequent
values in the histogram of k.

3.2. Separation

Since our sources have finite alphabet, the observation signal
has mn alphabets. We assumed these values to be completely
distinct. As an important result, each value of the observation
signal corresponds to unique values of source signals. There-
fore the values of sources s1(·), s2(·), . . . , sn(·) at point t can
be estimated by finding the source values v1, v2, . . . , vn by
minimizing the reconstruction error, that is:

[ŝ1(t), . . . , ŝn(t)] = argmin
v1,...,vn

[x(t)− (â1v1 + . . .+ ânvn)]
2.

(8)
This minimization is done using a full search over all possible
values for v1, ..., vn.

An ambiguity that remains is the order of the sources
which is resulted from ambiguity in the order of the mixing
coefficients. This is a common ambiguity in BSS problems.
However, we don’t have scaling ambiguity, as in usual BSS.
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4. RESTRICTIONS OF THE ALGORITHM

In this section, we describe the conditions for which this algo-
rithm performs well. Consider mixing coefficients estimation
first. Our method is based on the probability of values in the
difference set. Now suppose that we have four 10-level sig-
nals with V = {0, 1, . . . , 9}. If we form the difference set we
have the following probability of happening (assuming that
all levels occur with the same probability in the sources):

P0 =
104

(102)4
= 0.0001, P±ai =

(10− 1)103

(102)4
= 0.00009.

(9)
The difference between these probabilities is very small, so
the cardinality of the difference set must be large enough so
we can detect this difference between probabilities.

Another limitation that we encounter is the value of the
mixing coefficients. Mixing coefficients must be greater than
D, the quantification level. If the mixing coefficients values
are less than D, we cannot identify them using this method,
since our method is based on differences. This is because
when we subtract observation signal values, the minimum
possible value would be zero and the next number would be
D, so we cannot detect mixing coefficients if this difference
is less than D.

Next consider the reconstruction step. This stage is based
on a search among linear combination of the mixing coeffi-
cients. So it is an important issue that there should be no
repeated values in S. If S has repeated values during search
we encounter more than one possible combination of source
signals, so the sources cannot be recovered.

5. SIMULATION RESULTS

5.1. PAM coded signals

In this experiment we used four randomly generated PAM sig-
nals, taking values from the set V = {− 3

2 ,−
1
2 ,

1
2 ,

3
2} (m =

4) each containing 10000 samples. The mixing model is de-
scribed below:

x(t) = a1s1(t)+a2s2(t)+a3s3(t)+a4s4(t), t = 1, ..., 10000.
(10)

Results of separation are given for three different set of mix-
ing coefficients in Table 1. As the performance measure, we
used SNR = 10 log(∥x∥22/∥x − x̂∥22), where ∥ · ∥2 stands for
the Euclidean norm of a vector.

It can be seen that the output SNR in the third case is
not acceptable, though mixing coefficients have been es-
timated well. This problem has occurred due to repeated
values in S. For example [s1, s2, s3, s4] = [ 12 ,

1
2 ,

1
2 ,

1
2 ] and

[s1, s2, s3, s4] = [−3
2 ,

3
2 ,

1
2 ,

1
2 ] both result in x = 5, thus if

x = 5 we cannot use (8) for reconstruction.

Table 1. Results of separation on PAM coded signals
a1/â1 a2/â2 a3/â3 a4/â4 SNR1,SNR2,SNR3,SNR4

1.22/1.18 1.92/1.92 2.32/2.36 0.82/0.86 32.21, 36.53, 37.21, 34.11
0.37, 0.36 0.63/0.61 1/0.99 2.07/2.09 27.32, 34.32, 30.21, 21.21
1/0.99 2/2.04 3/2.98 4/3.96 −15.53,−12.22,−16.87,−8.43

5.2. Images

We do this experiment in two stages to show that quantization
noise can decrease the quality of separation.

First we used two images of size 240 × 140 (see Fig. 1).
In order to meet the conditions of the method, the original
image gray levels were reduced from 256 down to 6. Next, for
executing our algorithm for each image, we stacked rows next
to each other to form a 1-dimensional signal. The observed
image x(t) was generated by the following linear mixture x
quantized to levels 0, ..., 255, (see Fig. 1.b)

x(t) = 24.1s1(t) + 16.9s2(t) + ν(t), (11)

where ν(·) is quantization noise (resulting from rounding x(t)
to an integer between 0 to 255).

We applied our method to obtain the following estimated
coefficients: â1 = 24, â2 = 17.

The reconstructed images are shown in Fig. 1. The recon-
struction has been done perfectly (si(t) = ŝi(t) for all t). So
the performance of the algorithm is perfect in this example.

Next we used three images of size 170 × 150 (Fig. 2).
The original image gray levels were reduced from 256 down
to 4. The observed image x(t) was generated by the following
linear mixture quantized to levels 0, ..., 255 (see Fig. 2)

x(t) = 35.6s1(t) + 19.5s2(t) + 29.7s3(t) + ν(t). (12)

After executing the first step we obtain the following esti-
mated coefficients: â1 = 35.5, â2 = 19.5, â3 = 30.

The reconstructed images are shown in Fig. 3. It can be
seen that in some parts of images the separation is not perfect.
This situation has happened due to more gray level values
in the observation signal. The observation signal has 43 =
64 levels (in the range 0 to 255). So the levels are close to
each other and quantization noise has resulted in the change
of levels in the observation signal.

6. CONCLUSIONS

In this paper, we extended a previously introduced method
for blind separation of two sources and one sensor to the gen-
eral case when we have multiple sources. This method ap-
plies to finite alphabet sources. We showed necessity of some
conditions for the method to work properly. We studied ex-
perimentally the performance of the algorithm on separating
PAM signals and image signals. An important assumption is
the knowledge of the number of the sources. One good moti-
vation for future work is solving its weaknesses and extending
it to noisy cases.
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Fig. 1. Top: Original images; Middle: The observation im-
age; Bottom: Separated images using the algorithm.

Fig. 2. The original images and observation image.
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