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ABSTRACT
In dictionary learning, a desirable property for the dictionary
is to be of low mutual and average coherences. Mutual coher-
ence is defined as the maximum absolute correlation between
distinct atoms of the dictionary, whereas the average coher-
ence is a measure of the average correlations. In this paper,
we consider a dictionary learning problem regularized with
the average coherence and constrained by an upper-bound on
the mutual coherence of the dictionary. Our main contribution
is then to propose an algorithm for solving the resulting prob-
lem based on convexly approximating the cost function over
the dictionary. Experimental results demonstrate that the pro-
posed approach has higher convergence rate and lower rep-
resentation error (with a fixed sparsity parameter) than other
methods, while yielding similar mutual and average coher-
ence values.

Index Terms— Compressed sensing, sparse coding, mu-
tual coherence, average coherence, dictionary learning

1. INTRODUCTION

1.1. Dictionary learning
Dictionary learning (DL) has been extensively utilized in a
wide range of machine learning and signal processing appli-
cations, including image/signal enhancement and reconstruc-
tion [1, 2], and pattern recognition and classification [3]. A
lot of algorithms have been proposed for this problem. To for-
mally define it, given a training dataset Y , [y1,y2, ...,yl],
yi ∈ Rm, a dictionary D , [d1,d2, ...,dn], di ∈ Rm,
is learned in such a way that it provides sparse coefficients
for yi’s. That is, the representations X , [x1,x2, ...,xl],
xi ∈ Rn are sufficiently sparse. To achieve this, the DL prob-
lem is usually formulated as follows [4]

(D∗,X∗) = argmin
D∈D,X∈X

‖Y −DX‖2F (1)

in which, D and X are defined as D =
{
D : ∀i, ‖di‖22 ≤ 1

}
and X = {X : ∀i, ‖xi‖1 ≤ τ}, where, ‖.‖1 denotes `1 norm.
To solve (1), many dictionary learning algorithms have been
introduced [2, 4, 5, 6, 7], which are mainly based on alternat-
ing minimization on D and X. Some methods impose addi-
tional constraints on the dictionary D which can improve the
performance [1, 8, 9]. Two important properties are reviewed
in the next section.

1.2. Mutual and average coherences
One of the important properties of a dictionary is the maxi-
mum correlation between the columns of the dictionary which
is called mutual coherence and denoted by µ(D) [10]. An-
other important property of a dictionary is the average corre-
lation of dictionary columns, which is called average coher-
ence and denoted by µavg(D). For a dictionary D, these two
parameters are respectively defined as:

µ(D) = max
i 6=j

|dT
i dj |

‖di‖2‖dj‖2
,

µavg(D) =

√
‖DTD− I‖2F
n(n− 1)

.

(2)

In dictionary learning, it is usually desired that the mutual
coherence of the learned dictionary is small. This is because
of two main reasons: On the one hand, it has been shown in
[11] that a dictionary with low mutual coherence has well-
conditioned sub-matrices. On the other hand, a signal with a
sparse representation x with sparsity parameter s, i.e. with s
nonzero coefficient s, can be recovered from y = Dx through
`1 minimization when [12]:

s ≤ 1

2
(1 +

1

µ(D)
). (3)

According to (3), dictionaries with low mutual coherence are
better for high s. However, the mutual coherence is lower
bounded [13], and it can be shown that:

D ∈ Rm×n → µwelch ≤ µ(D) ≤ 1, (4)

where the µwelch is the Welch bound [13], defined as:

µwelch ,

√
n−m
m(n− 1)

.

Furthermore, dictionaries with low average coherence are fa-
vorable in compressed sensing applications [14].

During recent years, many dictionary learning algorithms
have been proposed trying to reduce mutual coherence [8,
9, 15]. A recent approach, called Gradient-based ISDL [16]
(GSD), has been proposed in [17], which minimizes the fol-
lowing cost function:

min
D∈D,X∈X

‖Y −DX‖2F +
λ

2
‖DTD−H‖2F , (5)



where

H ,

{
H ∈ Rn×n : H = HT , hii = 1, ∀i max

i 6=j
|hij | ≤ µ0

}
,

in which µ0 ≥ µwelch. To solve the above problem, an al-
ternative minimization approach has been used in [17], while
this problem does not yield closed form solution for updat-
ing the dictionary. In other words, the gradient of the cost
function, F (D), over D is computed as follows:

F (D) , ‖Y −DX‖2F +
λ

2
‖DTD−H‖2F ⇒ (6)

∇DF (D) = 2(DX−Y)XT + 2λD(DTD−H). (7)

Then solving F (D) does not result to a closed-form solution,
because (7) is non-linear over D. For this reason, [17] uses
gradient descent to update the dictionary, that is,

Dk+1 = Dk − α∇DF (Dk). (8)

Then, H is updated using the following formula, in which k
denotes the iteration number:

hkij =

 µ i 6= j, |µ| ≤ µ0

sgn(µ)µ0 i 6= j, |µ| ≥ µ0

1 i = j
(9)

in which, µ = ukij , the (i, j) entry of Uk = DT
kDk.

In some older papers, e.g. [8, 9, 15], a cost function sim-
ilar to (6) has been used by having identity matrix I instead
of H. And in [18], a combination of these two cost function
have been used. In all of these papers, the cost function is
non-linear over D, so they all use an update equation of the
form (8).

In this paper, we propose a new approach that approxi-
mates these non-convex cost functions over the dictionary by
a convex function. This leads to a closed-form solution for
the dictionary. As our simulations will confirm, the new algo-
rithm results in improved performance in dictionary recovery.

The rest of the paper is organized as follows. Section 2
presents the main idea of our algorithm and related discus-
sions. Then, the new algorithm is experimentally evaluated in
Section 3.

2. THE PROPOSED ALGORITHM

To develop our proposed algorithm, consider the pair (Da,Xa),
which is assumed to be known. Then, following [4], we can
write {

D = Da +D−Da

X = Xa +X−Xa
(10)

DX = (Da+D−Da)(Xa +X−Xa) = DaX+DXa

−DaXa + (D−Da)(X−Xa) (11)

DTD = (Da +D−Da)
T (Da +D−Da) = DT

aD

+DTDa −DT
aDa + (D−Da)

T (D−Da). (12)

Assuming that ‖(D−Da)(X−Xa)‖F and ‖(D−Da)
T (D−

Da)‖F are small, we can write

DX ≈ DaX+DXa −DaXa (13)

DTD ≈ DT
aD+DTDa −DT

aDa, (14)

from which we can propose the following approximate prob-
lem which is convex over D:

min
D∈D,X∈X

‖Y −DX‖2F +
λ

2
‖DTD−H‖2F ≈ (15)

min
D∈D,X∈X

‖Y +DaXa −DaX−DXa‖2F

+
λ

2
‖DT

aD+DTDa −DT
aDa −H‖2F , (16)

To solve the above new problem, we use an alternating min-
imization approach, by optimizing the cost over one variable
while fixing the other one. This procedure is summarized as
follows.

2.1. Updating sparse coefficients (first term of (16)):
In this stage, suppose Da = Dk−1,D = Dk,Xa =
Xk,Zk = Y − (Dk −Dk−1)Xk, then we can write:

Xk+1 = min
X∈X

‖Zk −Dk−1X‖2F . (17)

To solve (17), we note that it is a sparse coding problem, with
a lot of solvers existing in the literature [19].

2.2. Updating the dictionary (the two terms of (16)):
In this stage, we assume X = Xa = Xk+1 and Da = Dk.
Then, the cost function for updating the dictionary of iteration
k + 1 would be as follows:

G(D) = ‖Y−DXk+1‖2F+
λ

2
‖DT

kD+DTDk−DT
kDk−Hk‖2F .

∇DG(D) = (DXk+1 −Y)XT
k+1 + λDk(D

T
kD+DTDk−

DT
kDk −Hk) = DXk+1X

T
k+1 + λDkD

T
kD+ λDkD

TDk

−YXT
k+1 − λDk(D

T
kDk +Hk)

To minimize G(D), ∇DG(D) is set to zero. By defining the
auxiliary variables Wk = (Xk+1)(Xk+1)

T

Ak = Hk +DT
kDk

Ck = Y(Xk+1)
T + λDkAk

, (18)

the following equation is obtained to be solved in D:

DWk + λDkD
TDk + λDkD

T
kD = Ck. (19)

By using the substitutions M1 = DWk + λDkD
T
kD

M2 = λDkD
TDk

M1 +M2 = Ck → vec(M1) + vec(M2) = vec(Ck)
,

(20)



and using [20]:∑
n

AnXBn = R→ (
∑
n

BT
n ⊗An)vec(X) = vec(R),

where ⊗ denotes Kronecker product, one obtains{
vec(M1) = (WT

k ⊗ Im + In ⊗ (λDT
kDk))vec(D)

vec(M2) = λ(DT
k ⊗Dk)vec(DT )

(WT
k ⊗ Im + In ⊗ (λDT

kDk))vec(D)

+ λ(DT
k ⊗Dk)vec(DT ) = vec(Ck). (21)

To solve the above equation with respect to D, we first deter-
mine a matrix Bk such that (DT

k ⊗Dk)vec(DT ) is equal to
Bkvec(D). It is not difficult to see that such a Bk is obtained
as:{

Qk , (DT
k ⊗Dk),Dk ∈ Rm×n, 1 ≤ i ≤ n, 1 ≤ j ≤ m

Bk(:, ((i− 1)m+ j)) , Qk(:, (i+ (j − 1)n))

So

(WT
k ⊗ Im + In ⊗ (λDT

kDk) + λBk)vec(Dk+1) = vec(Ck)

⇒ vec(Dk+1) = (WT
k ⊗ Im + In ⊗ (λDT

kDk) + λBk)
−1

vec(Ck),
(22)

which determines Dk+1 in closed-form.

2.3. Updating H:
It is updated by (9).

Note that our approach can be used on many dictionary
learning algorithms to convexify the cost function. As an
example, we apply it here on GSD [17] and RAMC [18].
The two new obtained methods are called Convex-GSD and
Convex-RAMC.

The final algorithm (Convex-RAMC) is summarized in
Algorithms 1 and Convex-GSD algorithm is achieved when
β1 = 0 in Algorithm 1.

Algorithm 1 The proposed algorithm (Convex-RAMC)

Input:Y,D0, s (sparsity parameter)
Initialization: Set initial dictionary D1 = D0.
for k = 1 to MaxIteration do

Sparse approximation:Xk+1 =OMP(Zk, Dk−1, s).
Dictionary update:Dictionary is updated by equations
(22).
Normalize the columns of Dk+1.
Update Hk+1 using (9) and replace Hk+1 with
β1I+β2Hk+1 in (18), in which 0 ≤ β1 ≤ 1, 0 ≤ β2 ≤

1 and β1 + β2 = 1.
end for

3. SIMULATION RESULTS

In this section, we experimentally evaluate Convex-GSD and
Convex-RAMC, and compare them with GSD [17], RAMC
[18] and MOD [6] for recovering a known dictionary. Our

simulations were performed in MATLAB R2017b environ-
ment on a system with 4.00 GHz I7 CPU and 16 GB RAM,
under Microsoft Windows 10 operating system. As a rough
measure of complexity, we will mention the run times of the
algorithms. The performance measures are root mean square
error (RMSE) defined as εk = ‖Y−DkXk‖F√

ml
[18], percentage

of atom recovery, mutual coherence and average coherence
(2). Assuming that Dt is the true dictionary and D is the re-
covered dictionary, we say that the ith atom of the dictionary
D is successfully recovered if

min
i 6=j

(1− | D(:, i)
T
Dt(:, j) |) < 0.01. (23)

For OMP, we used the available MATLAB code at http://
www.cs.technion.ac.il/˜ronrubin/software.
html. We generated a Gaussian random matrix Dt ∈
R20×50 with zero mean and unit variance. Then 2500 training
data {yi}2500i=1 were generated by random linear combinations
of dictionary atoms. According to the size of the dictio-
nary, the Welch bound (4) is computed as µwelch = 0.1749
and we chose µ0 = µwelch. In our simulation, we assume
β1 = 0.2, β2 = 0.8, SNR = 30dB and s = 7 (sparsity param-
eter). In all simulations, the sparsity parameter (s) is constant
while the hyper-parameter λ (balancing the two terms of the
cost F (D)) has two values 5 and 10. We performed 2000
iterations between the sparse coding and dictionary updating.
The dictionary was initialized by randomly choosing different
signals from the training set followed by a normalization. We
repeated all simulations 400 times and the averaged results
are reported here.

Run times of algorithms are also compared as a rough
measure of computational complexity. The average running
times and iterations number of the algorithms for achieving a
percentage of recovery equal to 80 are shown in Table I.

Figures 1 to 8 are the results of the simulation of our
algorithms and its comparisons with other mentioned algo-
rithms. According to all the figures and table, our methods
have higher convergence rate and lower RMSE than the other
algorithms while mutual and average coherence of our meth-
ods are similar to those achieved by GSD and RAMC. The
overall running time to converge of our methods are lower
than the other methods. According to Fig 3 and 4, for λ = 5
mutual and average coherences are similar for all the meth-
ods, while our methods have higher convergence rate than the
other methods. In Figs.7 and 8, mutual and average coherence
of GSD are a little bit lower than Convex-GSD but the final
percentage of recovery of Convex-GSD is 15 percent higher
than GSD (see Fig. 5 ).

4. CONCLUSION
In this paper, we proposed a new approach to convexify the
cost function of dictionary learning problem with low mutual
and average coherence. According to our simulations on syn-
thetic dictionary recovery, our approach increases the conver-
gence rate and decreases RMSE, while mutual and average
coherence of our algorithms are reduced well.
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Fig. 1: Evaluation of percentage of recovery with assump-
tions: λ = 5.
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Fig. 2: Evaluation of RMSE with assumptions: λ = 5. The
graphs of Convex-GSD and Convex-RAMC are almost super-
imposed.
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Fig. 3: Evaluation of average coherence with assumptions:
λ = 5.
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Fig. 4: Evaluation of mutual coherence with assumptions:
λ = 5.
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Fig. 5: Evaluation of percentage of recovery with assump-
tions: λ = 10.
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Fig. 6: Evaluation of RMSE with assumptions: λ = 10. The
graphs of Convex-GSD and Convex-RAMC are almost super-
imposed.
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Fig. 7: Evaluation of average coherence with assumptions:
λ = 10.

500 1000 1500 2000

0.5

0.6

0.7

0.8

0.9

Fig. 8: Evaluation of mutual coherence with assumptions:
λ = 10.

Table 1: Number of iterations and average running time (in
seconds) for achieving percentage of recovery= 80. Average
running times are reported in parentheses. In this table and all
figures, s = 7 and SNR = 30dB are supposed.

Algorithm λ = 5 λ = 10

Convex-GSD 91 123
(8.3s) (12.1s)

Convex-RAMC 83 102
(7.5s) (10.1s)

GSD 697 1913
(18.6s) (59.3s)

RAMC 643 626
(17.2s) (19.4s)

MOD 452 449
(9.4s) (10.5s)
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