
A New Algorithm for Dictionary Learning Based
on Convex Approximation

Javad Parsa, Mostafa Sadeghi, Masoud Babaie-Zadeh
Electrical Engineering Department

Sharif University of Technology, Tehran, Iran
javadparsa86@gmail.com, m.saadeghii@gmail.com, mbzadeh@yahoo.com

Christian Jutten
GIPSA-Lab, Grenoble, and Institut.

Universitaire de France, France.
christian.jutten@gipsa-lab.grenoble-inp.fr

Abstract—The purpose of dictionary learning problem is to
learn a dictionary D from a training data matrix Y such
that Y ≈ DX and the coefficient matrix X is sparse. Many
algorithms have been introduced to this aim, which minimize
the representation error subject to a sparseness constraint on
X. However, the dictionary learning problem is non-convex with
respect to the pair (D,X). In a previous work [Sadeghi et al.,
2013], a convex approximation to the non-convex term DX has
been introduced which makes the whole DL problem convex. This
approach can be almost applied to any existing DL algorithm and
obtain better algorithms. In the current paper, it is shown that
a simple modification on that approach significantly improves its
performance, in terms of both accuracy and speed. Simulation
results on synthetic dictionary recovery are provided to confirm
this claim.

Index Terms—Compressed sensing, sparse coding, convex ap-
proximation, convergence rate, dictionary learning

I. INTRODUCTION

Dictionary learning (DL) for sparse approximation has been
utilized in many areas such as compressed sensing and image
processing [1]–[3]. In the dictionary learning problem, given
a training dataset Y = [y1,y2, . . . ,yL] ∈ Rm×L, the goal is
to learn a dictionary D = [d1,d2, . . . ,dn] ∈ Rm×n such that
Y ≈ DX where X = [x1,x2, . . . ,xL] ∈ Rn×L is sparse.
Each column of D is called an atom [1]. A general dictionary
learning algorithm solves the following problem [2], [4]–[6]:

min
D∈D,X∈X

‖Y −DX‖2F , (1)

where ‖.‖F is the Frobenius norm, D ,
{
D : ∀i, ‖di‖22 ≤ 1

}
and X , {X : ∀i, ‖xi‖0 ≤ τ}. During the last decade, many
algorithms have been introduced for solving (1) [2], [7], most
of which are based on iterating between the two following
stages:

1) Sparse representation:

X(k+1) = argmin
X∈X

‖Y −D(k)X‖2F , (2)

2) Dictionary update:

D(k+1) = argmin
D∈D

‖Y −DX(k+1)‖2F . (3)

Stage 1 is an ordinary sparse coding problem [8]–[11], which
can be done, for example, by Orthogonal Matching Pursuit
(OMP) [12]. In stage 2, by using Xk+1 obtained in stage 1,
a new estimation of dictionary is obtained.

Method of Optimal Directions (MOD) [13], is one of the
simplest DL algorithms. It updates the dictionary according to
the following least squares solution followed by normalizing
all columns of the dictionary:

Dk+1 = YXk+1(X(k+1)X(k+1)T )−1. (4)

K-Singular Value Decomposition (K-SVD) [4] is another well-
known algorithm, which unlike MOD updates the atoms one
at a time. K-SVD is actually a generalization of the K-means
algorithm for clustering [4]. As mentioned in [14], although
K-SVD is sequential like K-means, it fails to simplify to K-
means by destroying the structure in the sparse coefficients.
However, in contrast to K-means, K-SVD forces the atoms of
the dictionary to be normalized, and the matrix X does not
necessarily contain 0 or 1. In Sequential Generalization of K-
means (SGK) algorithm [14] these issues have been resolved.

Multiple Dictionary Update (MDU) [15] is another DL algo-
rithm which is similar to MOD in its structure. This algorithm
uses (4) for dictionary update step along with updating non-
zero entries of X as ∀i : xi(ωi)← (DT

i Di)
−1DT

i yi, where
ωi , {j|1 ≤ j ≤ n,xi(j) 6= 0}.

As can be seen from (1), dictionary learning is a non-convex
problem due to the multiplicative term DX. In a previous
work [5], Sadeghi et al. proposed to approximate this term
with a convex one. To do this, it was suggested to write D =
D0 +D−D0 and X = X0 +X−X0. Then, we would have

DX = (D0 +D−D0)(X0 +X−X0)

≈ D0X+DX0 −D0X0,
(5)

in which, it is assumed that ‖(D−D0)(X−X0)‖F is small1.
Then, instead of solving the original non-convex DL problem
(1), the following convex problem has been proposed in [5]:

min
D∈D,X∈X

‖Y +D0X0 −D0X−DX0‖2F . (6)

To solve (6), an alternative minimization method has been
utilized as follows:

1) Sparse representation:

X(k+1) = argmin
X∈X

‖Y −D(k)X‖2F . (7)

1It is easy to see that the approximation in (5) is actually the first order
approximation of Taylor series of DX around (D0,X0). Refer to Appendix.



2) Dictionary update:

D(k+1) = argmin
D∈D

‖Y −D(k)(X(k+1) −X(k))

−DX(k)‖2F . (8)

For the above stages, the following substitutions have been
made in (6):
• In stage 1, D = D0 = D(k),
• In stage 2, X = X(k+1), X0 = X(k), and D0 = D(k).
Note that, this approach can be applied on almost any DL

algorithm by using (8) instead of (3) as its dictionary update
step. In [5], this idea has been successfully tested on MOD,
MDU, and SGK, and the reported simulation results have
confirmed its effectiveness.

In this paper, it is seen that the method composed of (7)
and (8) is not the only way of using the main idea (6), and
there is actually a significantly better choice, in terms of both
performance and speed.

The rest of the paper is organized as follows. Section II
presents the main idea and the resulting algorithm. Then, Sec-
tion III evaluates the new algorithm numerically and compare
it with previous ones.

II. THE MAIN IDEA

When solving (6) using alternating minimization, there are
several scenarios to set the parameters that are fixed during
minimizations over D and X. In [5] only one case has been
introduced and used. However, it will be seen that the way
these fixed parameters are set has an important impact on
the performance of the algorithms. There are in general four
different cases to set these parameters as summarized below:

1) X-update: D = D0 = D(k). X0 has no effect.
D-update: X = X0 = X(k+1). D0 has no effect.

2) X-update: D = D(k), D0 = D(k−1). X0 = X(k).
D-update: X = X(k+1),X0 = X(k). D0 = D(k).

3) X-update: D = D0 = D(k). X0 has no effect.
D-update: X = X(k+1), X0 = X(k). D0 = D(k).

4) X-update: D = D(k), D0 = D(k−1). X0 = X(k).
D-update: X = X0 = X(k+1). D0 has no effect.

The first case reduces to the traditional DL problem described
by (2) and (3). The third case is the one used in [5], which
is described by (7) and (8). The second and fourth cases are
being considered in this paper.

Note that the above approaches can be applied on almost
any DL algorithm and obtain new ones. To call the resulted
algorithms, we add prefixes ‘UD1’ to ‘UD4’ to the name
of the original algorithm, corresponding to the cases 1 to
4, respectively (‘UD’ stands for ‘UpDated’). For example,
applying these cases on MOD, there will be four algorithms:
UD1-MOD (same as the original MOD), UD3-MOD (called
‘NewMOD’ in [5]), and UD2-MOD and UD4-MOD which
are new. As it will be seen in the simulations of Section III,
‘UD4’ algorithms significantly outperform the others, hence,
it will be referred also as ‘the proposed algorithm’, and is
summarized in Algorithm 1. In this pseudo-code, s denotes

Algorithm 1 Proposed DL algorithm

Inputs: Y, D0, s (sparsity parameter)
Initialization: Set initial dictionary D1 = D0 and X = 0
for k = 1, 2, . . . do

Set R = Y − (Dk −Dk−1)Xk

Sparse representation: Xk+1 = OMP(R,Dk−1, s)
Dictionary update:

D(k+1) = argmin
D∈D

‖Y −DX(k+1)‖2F .
end for

the number of nonzero entries in each column of X, and we
call it ‘sparsity parameter’. Note that in this algorithm, the
dictionary update step is the same as (3).

III. SIMULATIONS

In this section, we apply all cases that explained in Sec-
tion II on MOD, SGK and MDU, to evaluate their perfor-
mances experimentally. Our simulations were performed in
MATLAB R2017b environment on a system with 4.00 GHz
i7-6700k CPU and 16 GB RAM, under Microsoft Windows
10 operating system.

As a common practice [1], [4], we generated a random
dictionary of size 40 × 100 by drawing its entries from a
Gaussian distribution with zero mean and unit variance, and
then its columns were normalized. The training data were then
generated by sparse combinations of the atoms, where the
position and values of sparse coefficients were chosen ran-
domly. In our simulations, we used three sparsity parameters
s = 5, 10, 15, with 3000 training data. We then applied all
the algorithms on the training data to recover the underlying
dictionary. The simulations were repeated 300 times and the
averaged results were reported.

The performance measures are root mean square error de-
fined as εk = ‖Y−DkXk‖F√

mL
, and percentage of atom recovery.

Assuming that Dt is the true dictionary and D is the recovered
dictionary, we say that the i-th atom of dictionary D is
successfully recovered if:

min
j

(1− |di
Tdt,j |) < 0.01. (9)

Average run time of each algorithm in seconds is another
criterion for comparison. Table I compares these values for
various algorithms. Values for the proposed algorithm (‘UD4’)
are in braces.

With these results in mind, we conclude that our proposed
approach results in much better convergence rate in dictionary
recovery and decreases the running time to converge. Table
II reports the number of iterations that each algorithm needs
to achieve a percentage of recovery equal to 85. Those of
our algorithms are mentioned in parentheses. According to
all the figures and tables, our proposed method has higher
convergence rates and lower RMSEs than the other algorithms
in all the sparsity parameters. According to Table I and II, if s
increases, the difference in the convergence rate and running
time between our approach and the other algorithms also



increases. For example, when s = 15, UD4-MDU is 232.47s
and 598.06s faster than MDU and UD3-MDU, respectively.
In accordance with Figs. 1 and 2, UD3-MOD, UD3-MDU,
UD3-SGK, and UD2-MDU all have low convergence rates at
higher s compared to MOD, MDU, SGK, and our algorithms.
Furthermore, UD2-MOD and UD2-SGK diverge in high s.
Moreover, from Table II it is concluded that our algorithms
need lower iteration numbers than the other algorithms to
converge. This difference is more noticeable when the s
increases.

500 1000 1500 2000

0

20

40

60

80

100

Fig. 1: Percentage of recovery with s = 15 and SNR=30.

500 1000 1500 2000

0

20

40

60

80

100

Fig. 2: Percentage of recovery with s = 15 and SNR=30.

500 1000 1500 2000

0.05

0.1

0.15

Fig. 3: Root Mean Square Error (RMSE) with s = 15 and
SNR=30.

500 1000 1500 2000

0.05

0.1

0.15

0.2

Fig. 4: Root Mean Square Error (RMSE) with s = 15 and
SNR=30. UD2-SGK method is diverged.

50 100 150 200 250

0

20

40

60

80

100

Fig. 5: Percentage of recovery with s = 10 and SNR=30.

50 100 150 200 250

0

20

40

60

80

100

Fig. 6: Percentage of recovery with s = 10 and SNR=30.

50 100 150 200 250

0

0.05

0.1

0.15

0.2

Fig. 7: Root Mean Square Error (RMSE) with s = 10 and
SNR=30.



50 100 150 200 250

0

0.05

0.1

0.15

0.2

Fig. 8: Root Mean Square Error (RMSE) with s = 10 and
SNR=30. UD2-SGK method is diverged.

20 40 60 80 100

0

20

40

60

80

100

Fig. 9: Percentage of recovery with s = 5 and SNR=30.

20 40 60 80 100

0

20

40

60

80

100

Fig. 10: Percentage of recovery with s = 5 and SNR=30.

20 40 60 80 100

0

0.05

0.1

0.15

0.2

Fig. 11: Root Mean Square Error (RMSE) with s = 5 and
SNR=30.

20 40 60 80 100

0

0.05

0.1

0.15

0.2

Fig. 12: Root Mean Square Error (RMSE) with s = 5 and
SNR=30.

TABLE I: Average running times (in seconds) for achieving
percentage of recovery=85. Those of our proposed algorithm
are reported in parentheses. A dash sign indicates divergence.

Algorithm s = 5 s = 10 s = 15

MOD 0.47 (0.36) 5.7 (2.14) 109.72 (25.78)
MDU 2 (1.6) 21.36 (9.12) 315.06 (82.59)
SGK 1 (0.68) 10.05 (3.68) 160.93 (39.90)

UD3-MOD 0.65 (0.36) 7.41 (2.14) 172.72 (25.78)
UD3-MDU 3.41 (1.6) 21.36 (9.12) 680.65 (82.59)
UD3-SGK 0.86 (0.68) 3.68 (3.68) – (39.90)

TABLE II: Average number of iterations for achieving per-
centage of recovery=85. The values shown in parentheses are
those of our algorithms. A dash sign indicates divergence.

Algorithm s = 5 s = 10 s = 15

MOD 19 (14) 120 (43) 1680 (380)
MDU 10 (8) 68 (29) 880 (230)
SGK 22 (15) 130 (47) 1800 (440)

UD3-MOD 26 (14) 153 (43) 2600 (380)
UD3-MDU 17 (8) 68 (29) 1880 (230)
UD3-SGK 19 (15) 47 (47) – (440)
UD2-MOD 18 (14) 56 (43) – (380)
UD2-MDU 13 (8) 45 (29) 1060 (230)
UD2-SGK – (15) – (47) – (440)

IV. CONCLUSION

In this paper, we showed that the main idea of [5] could
actually been used in different ways, and the way it had been
used in [5] was not the best one. We then proposed to use
another choice that results in a highly better performance,
in terms of both accuracy and speed, as confirmed by our
simulations. Note that his approach can be applied on almost
any existing DL algorithm to obtain modified versions. A the-
oretical justification for the good performance of the proposed
method as well as a convergence proof are subjects for future
works.

APPENDIX

Here, it is shown that the approximation in (5) is actually the
first order approximation of the Taylor series of DX. Defining



H , DX, the (j, i)-th entry of H is given by hji = dT
[j]xi,

where dT
[j] denotes the jth row of D and xi denotes the ith

column of X. Let us define

z ,

[
d[j]

xi

]
,Q ,

[
0 I
I 0

]
, (10)

in which I and 0 are the identity and zero matrices of appropri-
ate sizes, respectively. The first order Taylor series expansion
of fij(z) , 1

2z
TQz = dT

[j]xi around a point z0 = [dT
[j0],x

T
i0]

T

is calculated as fij(z) ≈ fij(z0) + ∇fij(z0)T (z − z0), or
equivalently:

1

2
zTQz ≈ 1

2
zT0 Qz0 + (z− z0)

TQz0

= dT
[j]xi0 + dT

[j0]xi − dT
[j0]xi0. (11)

Writing the above Taylor series expansion for all the elements
of H results in the approximation in (5).

REFERENCES

[1] M. Elad, Sparse and Redundant Representations, Springer, 2010.
[2] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse

representation modeling,” Proceedings of the IEEE, vol. 98, no. 6, pp.
1045–1057, 2010.

[3] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp.
791–804, 2012.

[4] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[5] M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Dictionary learning for
sparse representation: A novel approach,” IEEE Signal Proc. Letters,
vol. 20, no. 12, pp. 1195–1198, 2013.

[6] M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Learning over-complete
dictionaries based on atom-by-atom updating,” IEEE Trans. on Signal
Proc., vol. 62, no. 4, pp. 883–891, 2014.

[7] I. Tosic and P. Frossard, “Dictionary learning: What is the right
representation for my signal?,” IEEE Signal Processing Magazine, vol.
28, no. 2, pp. 27–38, 2011.

[8] J. A. Tropp and S. J. Wright, “Computational methods for sparse
solution of linear inverse problems,” Proceedings of the IEEE, vol.
98, no. 6, pp. 948–958, 2010.

[9] H. Mohimani, M. Babaie-Zadeh, and Ch. Jutten, “A fast approach for
overcomplete sparse decomposition based on smoothed `0 norm,” IEEE
Trans. on Signal Processing, vol. 57, pp. 289–301, 2009.

[10] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Applied and Computational Harmonic Analysis,
vol. 27, no. 3, pp. 265–274, 2009.

[11] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively
re-weighted least squares minimization for sparse recovery,” Commu-
nications on Pure and Applied Mathematics, vol. 63, no. 1, pp. 1–38,
Jan. 2010.

[12] J. A. Tropp and A. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Trans. Info. Theory, vol. 53, no.
12, pp. 4655–4666, 2007.

[13] K. Engan, S. O. Aase, and J. Hakon Husoy, “Method of optimal
directions for frame design,” in Proceedings of IEEE ICASSP, 1999,
vol. 5.

[14] S. K. Sahoo and A. Makur, “Dictionary training for sparse representation
as generalization of K-Means clustering,” IEEE Signal Proc. Letters, vol.
20, no. 6, pp. 587–590, 2013.

[15] L. N. Smith and M. Elad, “Improving dictionary learning: Multiple
dictionary updates and coefficient reuse,” IEEE Signal Proc. Letters,
vol. 20, no. 1, pp. 79–82, 2013.


