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ABSTRACT

In this paper an approach for blind source separation in bi-
linear (or linear quadratic) mixtures is presented. The pro-
posed algorithm employs the same recurrent structure as
[Hosseini and Deville, 2003] for separating these mixtures.
However, instead of maximal likelihood, our algorithm is
based on minimizing the mutual information of the outputs
for recovering the independent components. Simulation re-
sults show the efficiency of the proposed algorithm.

1. INTRODUCTION

Blind separation of several sources from their linear mix-
ture is a well-known problem, for which many solutions
have already been suggested [1, 2]. Separation of nonlin-
ear mixtures, too, has already been addressed by a few au-
thors [3, 4, 5, 6, 7, 8, 9, 10]. In many applications, it is
unreasonable to assume that the mixtures are linear because
the underlying natural processes are inherently nonlinear.
The most important issue to be considered in this case is
the separability of the mixtures. Due to very large inde-
terminacies for nonlinear mixtures, statistical independence
of the output is not sufficient to achieve source separation
[4, 8]. Hence indeterminacy reduction might be consid-
ered as an objective. Generally speaking, constraints such
as additional prior information on sources or mixture model
make the problem well-posed [3, 4, 11]. As an example,
Post Non-Linear (PNL) mixtures have already been shown
to be separable [8, 12].

Bilinear (linear quadratic) mixture is one of the nonlin-
ear models with applications such as show-through cancel-
lation in scanned documents [13]. Hosseini et al. in [5] have
proposed an approach for source separation which might be
extended to higher order polynomial models. This approach
suggests a recurrent separating structure that does not re-

∗This work has been partially supported by Iran National Science Foun-
dation (INSF) under contract number 86/994, by Iran Telecommunications
Research Center (ITRC), and also by ISMO and French embassy in Iran in
the framework of a Gundi-Shapour collaboration program.

q1

l1

l2

q2

m

m
m

x1

x2 y2

y1q q
q

qq

-

-

6

6

?

?
�

�

-

-

?

6

�
�
�
�
�
��

L
L
L
L
L
L

�

×

+

+

Fig. 1. Recurrent structure proposed by Hosseini and Dev-
ille [5, 14] for inverting bilinear mixtures.

quire the inverse of the mixing model to be known. Con-
sider bilinear mixtures of two independent random sources,
namely s1 and s2, as [5]:{

x1 = s1 − l1s2 − q1s1s2
x2 = s2 − l2s1 − q2s1s2

(1)

where xi, i = 1, 2 are the observations and li and qi, i =
1, 2 represent the linear and the quadratic contribution of the
sources in the mixtures, respectively. The main objective is
to estimate s1 and s2 up to a permutation and a scaling fac-
tor [5]. A direct separating structure to recover s1 and s2
for known coefficients l1, l2, q1 and q2 has been derived in
[14]. Moreover, it is shown that this structure is the inverse
of the mixing model if its Jacobian has the same sign for
all signal values. Since generalization of this structure for
applying to arbitrary polynomial models does not seem pos-
sible, a recurrent separating structure, illustrated in Fig. 1,
has been proposed in [5]. The computation of structure out-
put, in the case that parameters are exactly known, requires
the iteration:{

y(m)
1 (·) = x1(·) + l1 y

(m-1)
2 (·) + q1 y

(m-1)
1 (·) y(m-1)

2 (·)

y(m)
2 (·) = x2(·) + l2 y

(m-1)
1 (·) + q2 y

(m-1)
1 (·) y(m-1)

2 (·)
(2)

Stability is an important issue in iterative structures. Lo-
cal stability of this model at the separating point (y1, y2) =
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(s1, s2) has been then studied in [5], based on results on
dynamic systems, where it is well known that the model is
locally stable if and only if the absolute values of the two
eigenvalues of the Jacobian matrix are smaller than one.

To estimate the parameters of the mixing structure, (l1,
l2, q1, q2), in [14] a Maximum Likelihood (ML) approach
has been developed. In this paper we propose an approach
for estimating these parameters, using Mutual Information
(MI) of outputs as the independence criterion.

It is worthy of emphasizing that our approach, as well as
the previous approaches [5], [14] is only based on calcula-
tion of the parameters which result in as independent as pos-
sible outputs in the recurrent structure of Fig. 1. However,
as mentioned at the beginning of this section, separability
of a mixing-separating structure means that the output in-
dependence guarantees source separation for that structure,
and up to our best knowledge, this separability for bilinear
mixing model followed by the separating structure of Fig. 1,
has not yet been shown in the literature and is still an open
question.

This paper is organized as follows. Section 2 provides
some preliminaries about independence and score functions.
The gradient of output mutual information with respect to
the parameters of the separating structure is computed then
in Section 3. Section 4 presents the final source separation
algorithm. Finally, experimental results are given in Sec-
tion 5.

2. PRELIMINARIES

A random vector y = (y1, . . . , yN )T has statistically inde-
pendent components if and only if

py(y) =
N∏

i=1

pyi
(yi) (3)

where py(y) is the joint probability density function (PDF)
of vector y and pyi(yi) is the marginal PDF of the random
variables yi. Mutual information of yi’s might be used as
an independence criterion and is defined by the Kullback-
Leibler divergence between py(y) and

∏N
i=1 pyi

(yi):

I(y) = D(py(y) ‖
N∏

i=1

pyi
(yi))

=
∫

y
py(y) ln

py(y)∏N
i=1 pyi

(yi)
dy

(4)

This function is always non negative, and is zero if and
only if yi’s are independent. Therefore to generate inde-
pendent components in the output of the separating struc-
ture, the mutual information of the outputs can be mini-
mized. The parameters of this structure are l1, l2, q1 and

q2 and should be calculated such that output’s MI is mini-
mized. For applying the steepest descent gradient algorithm
to this minimization problem, the gradient of the outputs’
mutual information with respect to these parameters has to
be calculated. For doing this, we use a general approach
for minimizing mutual information which has been stud-
ied in [6, 9, 15]. This approach is based on Score Func-
tion Difference (SFD) as a non-parametric “gradient” for
mutual information. Here, we review the main definition
and results, which requires first, the definition of joint and
marginal score function of a random vector. First, recall the
definitions of score functions and score function difference.

Definition 1 (Score Function) The score function of a scalar
random variable y is the opposite of the log derivative of its
density:

ψy(y) = − d

dy
ln py(y) = −

p′y(y)
py(y)

, (5)

where py(y) denotes the probability density function (PDF)
of y.

Let y = (y1, . . . , yN )T be a random vector. Then two dif-
ferent score functions may be defined [6, 9, 15]: Marginal
Score Function (MSF) and Joint Score Function (JSF).

Definition 2 (MSF) The marginal score function of a vec-
tor y is the vector whose components are the score functions
of the components of y:

ψy(y) = (ψ1(y1) , . . . , ψN (yN ))T , (6)

where

ψi(yi) = − d

dyi
ln pyi

(yi) = −
p′yi

(yi)
pyi(yi)

. (7)

Definition 3 (JSF) The joint score function of a vector y is
the gradient of − ln py(y):

ϕy(y) = (ϕ1(y) , . . . , ϕN (y))T , (8)

where

ϕi(y) = − ∂

∂yi
ln py(y) = −

∂
∂yi

py(y)
py(y)

. (9)

The difference between these two score functions is defined
in [6, 9, 15] as the Score Function Difference (SFD) of y:

Definition 4 (SFD) The Score Function Difference (SFD)
of a vector y is the difference between its JSF and MSF:

βy(y) = ψy(y)−ϕy(y). (10)



SFD of a random vector y contains information about the
independence of its components, as implied by the follow-
ing theorem [15]:

Theorem 1 The components of a random vector y are in-
dependent, if and only if its SFD is zero, i.e.

ψy(y) = ϕy(y) (11)

The “gradient” of the mutual information, needed for our
algorithm, is a result of the following theorem [15]:

Theorem 2 Let ∆ be a ’small’ random vector with the same
dimension of the random vector y. Then:

I(y + ∆)− I(y) = E{∆Tβy(y)}+ o(∆) (12)

where o(∆) denotes higher order terms.

Recall that for a multivariate function f(x), we have:

f(y + ∆)− f(y) = ∆T∇f(y) + o(∆) (13)

Comparing (12) and (13), [15] proposes that SFD can be
seen as a non-parametric “gradient” for mutual informa-
tion. Then, [6, 9] states that (12) provides a general ap-
proach for solving mutual information minimization prob-
lems. The idea of this general approach is that using (12),
one can calculate the deviation resulted in the mutual infor-
mation of the outputs of a parametric system resulted from
a small deviation in its parameters. Finally, this results in
the calculation of the gradient of the outputs mutual infor-
mation with respect to the parameters of the system. [9] has
then used this approach for blind source separation of lin-
ear instantaneous, convolutive, Post Non-Linear (PNL) and
Convolutive PNL (CPNL) mixtures.

In the next section, we will show how this approach can
be used for separating bilinear mixtures.

3. GRADIENT COMPUTATION

Assume that at the (m)th iteration of the recurrent structure
of Fig. 1, we apply a small variation in the parameters of
the separating structure. More precisely, let l̃i = li + εi and
q̃i = qi + ηi for i = 1, 2, where εi and ηi are small values.
Thus (2) is rewritten as follows:(

ỹ
(m)
1

ỹ
(m)
2

)
=

(
x1 + l̃1 y

(m−1)
2 + q̃1 y

(m−1)
1 y

(m−1)
2

x2 + l̃2 y
(m−1)
1 + q̃2 y

(m−1)
1 y

(m−1)
2

)

=

(
y
(m)
1

y
(m)
2

)
+

(
ε1y

(m−1)
2

0

)
+

(
0

ε2y
(m−1)
1

)
(14)

+

(
η1y

(m−1)
2 y

(m−1)
2

0

)
+

(
0

η2y
(m−1)
1 y

(m−1)
2

)

where y(m)
1 and y(m)

2 are the outputs of the structure at the
(m)th iteration. The first term in the right side of equation
(14) is the actual output, while the other terms show how
the variation of each parameter affects the outputs. Hence
by applying Theorem 2, the gradient of mutual information
with respect to each parameter is obtained. Let’s assume the
following notation for simplicity:

I = I(y(m)), Ĩ = I(ỹ(m))

Employing Theorem 2 we have:

Ĩ − I = E

{
βT

y (y(m))
(
ε1 y

(m−1)
2

0

)}
+ E

{
βT

y (y(m))
(

0
ε2 y

(m−1)
1

)}
+ E

{
βT

y (y(m))
(
η1 y

(m−1)
1 y

(m−1)
2

0

)}
+ E

{
βT

y (y(m))
(

0
η2 y

(m−1)
1 y

(m−1)
2

)}
(15)

Let see how (15) can result in the calculation of the
derivative with respect to l1. The first term of (15) corre-
sponds to the effect of l1, therefore it may be used in calcu-
lating the derivative with respect to l1. The ratio of Ĩ − I to
ε1 denotes the partial derivative of I with respect to l1, and
hence:

∂

∂l1
I = E

{
βT

y (y(m))
(
y
(m−1)
2

0

)}
= E

{
β1(y(m)) y(m−1)

2

} (16)

where βi(y(m)), i = 1, 2, denotes the ith component of
βy(y(m)). The gradient with respect to other variables is
calculated in a similar manner, which gives:

∂

∂l2
I = E

{
β2(y(m)) y(m−1)

1

}
(17)

∂

∂q1
I = E

{
β1(y(m)) y(m−1)

1 y
(m−1)
2

}
(18)

∂

∂q2
I = E

{
β2(y(m)) y(m−1)

1 y
(m−1)
2

}
(19)

4. SOURCE SEPARATION ALGORITHM

To minimize the mutual information of the outputs, we ap-
ply a steepest descent algorithm using the gradient calcu-
lated in the previous section. In this procedure, the param-
eters are initially set to zero. In each iteration, outputs are
computed using (2) and each parameter is adjusted by forc-
ing it to move in the negative direction of the gradient of



mutual information of output with respect to that parameter.
Parameter values are updated by the following rules:

l1 ← l1 − µ1
∂I

∂l1

l2 ← l2 − µ2
∂I

∂l2

q1 ← q1 − ν1
∂I

∂q1

q2 ← q2 − ν2
∂I

∂q2

(20)

where the step-sizes µ1, µ2, ν1 and ν2 are small positive
constants that control the speed of convergence. In the next
iteration, these updated parameters are used in the recurrent
structure for computing the new outputs for all times. The
expectations of equations (16)-(19) are estimated by ensem-
ble averaging. The final algorithm has been shown in Fig. 2.
Once the algorithm converges, the independent components
at the output of the structure are achieved, because the SFD
of the outputs converges to zero.

In the ML estimator proposed in [14], the actual sources
are needed to estimate the parameters of the separating struc-
ture. However, in blind case both parameters and sources
are unknown. As proposed in [14], the outputs of the sepa-
rating structure, yi, in an iterative algorithm can be used as
the reconstructed sources to update the parameters. Hence,
for each updated values of parameters (l1, l2, q1, q2), the
structure of Fig. 1 is iterated until convergence to obtain
new outputs, and the parameters are modified based on these
convergent outputs. This procedure repeats until conver-
gence of all parameters. But in our algorithm, in each re-
currence of the separating structure, both parameters and
outputs of the structure are updated.

5. EXPERIMENTAL RESULTS

In order to compare the performance of the proposed algo-
rithm with the ML estimator of [14], the experiment per-
formed in [14] is re-done. The model parameters are: l1 =
−0.2, l2 = 0.2, q1 = −0.8 and q2 = 0.8 and the source
values are in the range [−0.5, 0.5]. In this experiment, the
step-sizes are set to: µ1 = µ2 = 0.2 and ν1 = ν2 = 0.5.
The Simulation is performed using 1000 samples from two
independent sources, uniformly distributed over [−0.5, 0.5].
The experiment has been repeated 100 times to cover differ-
ent realization of the sources. Output Signal to Noise Ratio
(SNR) is used as the performance measure of the algorithm,
which is defined as follows:

SNR = 0.5
2∑

i=1

10 log10

E[s2i ]
E[(yi − si)2]

(21)

The simulation results, depicted in Fig. 3 and Fig. 4, illus-
trate the efficiency of the proposed algorithm in source sep-

Algorithm parameters: µ1, µ2, ν1, ν2

Recurrent structure parameters: l1, l2, q1, q2

Input: two mixtures x1 and x2

• Initialization
Let: l1 = l2 = q1 = q2 = 0
Let: y = 0

• Loop

1. Computation of structure outputs for all times
y1(·)← x1(·) + l1 y2(·) + q1 y1(·) y2(·)
y2(·)← x2(·) + l2 y1(·) + q2 y1(·) y2(·)

2. Estimation of SFD
β(n) = βy(y(n))

3. Gradient calculation
∂

∂l1
I = 1

N

∑N
n=0 β1(n) y2(n)

∂
∂l2
I = 1

N

∑N
n=0 β2(n) y1(n)

∂
∂q1

I = 1
N

∑N
n=0 β1(n) y1(n) y2(n)

∂
∂q2

I = 1
N

∑N
n=0 β2(n) y1(n) y2(n)

4. Update of parameters:
l1 ← l1 − µ1

∂I
∂l1

l2 ← l2 − µ2
∂I
∂l2

q1 ← q1 − ν1 ∂I
∂q1

q2 ← q2 − ν2 ∂I
∂q2

• Repeat until convergence

Fig. 2. The final pseudo-code of the proposed algorithm

aration and parameter estimation. For estimation of SFD, a
method proposed by Pham in [6, 16] is employed for per-
forming simulations.

We use the CPU time as a measure of complexity. Al-
though it is not an exact measure, it gives a rough estima-
tion of the complexity, for comparing proposed algorithm
and ML estimator. Our simulations are performed in MAT-
LAB7 environment using an AMD Athlon 4000+, 2.1GHz
processor with 896MB of memory, and under Microsoft
Windows XP operating system. The time required for run-
ning 100 iterations of updating parameters for the proposed
algorithm is approximately 1.75 seconds and for ML esti-
mator is 7.2 seconds.

The performance of the proposed algorithm for separa-
tion of other combinations of sources is further investigated
by repeating the above simulation for two other distributions
of sources: i) One source is uniform as before, the other is
Laplacian, ii) both sources are Laplacian. For Laplacian
sources, the pdf is fs(s) = 5 exp (−10|s|). Table 1 summa-
rizes the simulation results for all three cases and provides
a comparison between the performance of the proposed al-
gorithm and that of the ML estimator. According to the



Fig. 3. Averaged SNR (over 100 runs of the algorithm) ver-
sus iteration.

(a) (b)

(c) (d)

Fig. 4. Estimated parameters (averaged over 100 runs) ver-
sus iteration, (a) l1, (b) l2, (c) q1, (d) q2.

obtained results, the suggested approach demonstrates a su-
perior functionality.

Table 1. Mean and standard deviation of output SNR (in
dB)

different ML MI
combination estimator minimizer
of sources Mean Std Mean Std

s1 and s2 uniform 28.0 4.2 34 4.2
s1 uniform, s2 Laplacian 27.8 3.8 30.8 4.5
s1 Laplacian, s2 Laplacian 26.8 3.1 28.2 2.9

6. CONCLUSION

In this paper the problem of blind source separation in bi-
linear (linear quadratic) mixtures was addressed. The pro-
posed algorithm takes advantage from a previously designed
structure, brought together with a new idea for parameters
estimation based on mutual information minimization. The
simulation results emphasize on the functionality of the pro-
posed method.

7. REFERENCES

[1] A. Hyvarinen, J. Karhunen, and E. Oja, Independent
Component Analysis, John Wiley & Sons, 2001.

[2] Andrzej Cichocki and Shun-ichi Amari, Adaptive
Blind Signal and Image Processing: Learning Algo-
rithms and Applications, John Wiley and sons, 2002.

[3] J. Eriksson and V. Koivunen, “Blind identifiability of a
class of nonlinear instantaneous ICA models,” in EU-
SIPCO, Toulouse (France), September 2002, pp. 7–10.

[4] C. Jutten, M. Babaie-Zadeh, and S. Hosseini, “Three
easy ways for separating nonlinear mixtures?,” Sig-
nal Processing, vol. 84, no. 2, pp. 217–229, February
2004.

[5] S. Hosseini and Y. Deville, “Blind separation of linear-
quadratic mixtures of real sources using a recurrent
structure,” in IWANN, Mao, Menorca, Spain, June
2003, vol. 2, pp. 241–248.

[6] M. Babaie-Zadeh, On blind source separation in con-
volutive and nonlinear mixtures, Ph.D. thesis, INP
Grenoble, 2002.

[7] A. Taleb and C. Jutten, “Non-linear source separa-
tion: the post non-linear mixtures,” in Proceedings
of ESANN’97, Bruges, Belgium, April 1997, pp. 279–
284.

[8] A. Taleb and C. Jutten, “Source separation in post non-
linear mixtures,” IEEE Transactions on Signal Pro-
cessing, vol. 47, no. 10, pp. 2807–2820, 1999.

[9] M. Babaie-Zadeh and C. Jutten, “A general approach
for mutual information minimization and its applica-
tion to blind source separation,” Signal Processing,
vol. 85, no. 5, pp. 975–995, May 2005.

[10] L. T. Duarte and C. Jutten, “A mutual information
minimization approach for a class of nonlinear recur-
rent separating systems,” in IEEE International Work-
shop on Machine Learning for Signal Processing, Aug
2007, pp. 122–127.



[11] A. Taleb, “A generic framework for blind source sepa-
ration in structured nonlinear models,” IEEE Trans.
Signal processing, vol. 50, no. 8, pp. 1819–1830,
2002.

[12] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “A geo-
metric approach for separating Post Non-Linear mix-
tures,” in EUSIPCO, Toulouse, France, September
2002, vol. II, pp. 11–14.

[13] F. Merrikh-Bayat, M. Babaie-Zadeh1, and C. Jutten,
“A nonlinear blind source separation solution for re-
moving the show-through effect in the scanned doc-
uments,” in Proc. European Signal Processing Conf.
EUSIPCO’08, Lausanne, Suisse, September 2008.

[14] S. Hosseini and Y. Deville, “Blind maximum likeli-
hood separation of a linear-quadratic mixture,” in 5th
Int. Conf. on Independent Component Analysis and
Blind Source Separation (ICA’04), Granada, Spain,
September 2004, pp. 694–701.

[15] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “Differ-
ential of mutual information function,” IEEE Signal
Processing Letters, vol. 11, no. 1, pp. 48–51, January
2004.

[16] D. T. Pham, “Estimation de la fonction score con-
ditionnelle et l’entropie conditionnelle,” Tech. Rep.,
2002, (in French).




