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ABSTRACT

A new algorithm for learning jointly reconstructive and dis-
criminative dictionaries for sparse representation (SR) is pre-
sented. While in a usual dictionary learning algorithm like
K-SVD only the reconstructive aspect of the sparse represen-
tations is considered to learn a dictionary, in our proposed al-
gorithm, which we call K-LDA, the discriminative aspect of
the sparse representations is also addressed. In fact, K-LDA is
an extension of K-SVD in the case that the class informations
(labels) of the training data are also available. K-LDA takes
into account these information in order to make the sparse
representations more discriminate. It makes a trade-off be-
tween the amount of reconstruction error, sparsity, and dis-
crimination of sparse representations. Simulation results on
synthetic and hand-written data demonstrate the promising
performance of our proposed algorithm.

Index Terms— Dictionary Learning, Singular Value De-
composition, Linear Discriminant Analysis, Discriminative
Learning

1. INTRODUCTION

Sparse representation modelling has recently drawn much in-
terest in signal processing community. This is mainly due to
the fact that an important variety of signals such as natural im-
ages admit sparse representations in terms of some basis func-
tions. This sparsity property has been successfully exploited
in many signal processing applications, e.g, image process-
ing [2, 3], video processing [4], and classification tasks [5].
Sparse and overcomplete models were first introduced in [1]
for modelling the spatial receptive fields in the human visual
system.

Consider a signal in the vector form y ∈ Rm which is go-
ing to be sparsely represented as a linear combination of the
columns of D = [d1,d2, . . . ,dk]: y =

∑k
i=1 xidi = Dx.
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In this context D is called dictionary, and each of its columns
is called atom. The dictionary is usually over-complete,
meaning that m < k. By sparse we mean that x, the represen-
tation of y in D, has as few as possible non-zero coefficients.
The problem of finding the sparsest representation of a signal
in a given dictionary has been extensively studied during the
last decade, and numerous algorithms have been proposed
[10].

As the role of the dictionary is indisputable to obtain
sparse enough representations, its determination and de-
sign has been widely investigated during the last few years
[11, 12]. Although there are some pre-defined dictionaries
which are known to be well-matched to specific classes of
signals, e.g., Discrete Cosine Transform (DCT), significant
research efforts have shown that learning the dictionary using
sample signals from the special signal class at hand provide
much better performance in various applications including
image enhancement, compression, and classification. In dic-
tionary learning (DL) the goal is to adapt the atoms of the
dictionary to a number of training signals Y = {yi}Ni=1 in
such a way that each training signal can be sparsely repre-
sented based on the learned atoms.

Dictionary learning problem is generally defined as fol-
lows

(D,X) = argmin
D∈D,X∈X

∥Y −DX∥2F , (1)

where ∥.∥F is the Frobenius norm, D is the admissible dic-
tionary set which is usually defined as the set of all matrices
with unit column-norm and X is the set of matrices X with
sparse columns.

To solve (1) an iterative procedure is usually employed in
which the objective function is alternatively minimized over
one variable (D or X) while the other is fixed. Minimiza-
tion over X with a fixed D is called the sparse coding stage,
while minimization over D with X being fixed and equal to
the previously found coefficient matrix is called the dictio-
nary update stage. Most dictionary learning algorithms differ
mainly in the way they perform the dictionary update stage.

K-Singular Value Decomposition (K-SVD) is a well-
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Fig. 1. The first directions found by SVD and LDA for some
2D labelled data. Projection of the data on the found direc-
tions are also shown (violet histogram shows an overlap be-
tween the two classes).

known dictionary learning algorithm [6]. At the dictionary
update stage, K-SVD updates the atoms of the dictionary
sequentially, in which to update each atom, the others are
kept fixed. Moreover, along with each atom, the non-zero
entries of its associated row vector in X are also updated.
This leads to a matrix rank-1 approximation problem, which
can be solved by SVD.

In the case of labelled data, i.e., when the training signals
belong to different classes, a usual DL problem as can be seen
from equation (1), does not incorporate the label information
of the data. In fact, a DL algorithm aims to improve just the
reconstructive aspect of the representations; not their discrim-
ination capability. A well-known learning-based tool to en-
hance the discrimination power of the representations is the
Linear Discriminative Analysis (LDA). LDA finds directions
which by projecting the training data onto them, the discrim-
ination between classes becomes as high as possible. Figure
1 shows the difference of SVD and LDA in the case of some
2D data. Unlike SVD, projection of the data on the rank-1
subspace spanned by the first LDA direction (basis) can dis-
criminate the labelled data. Histograms of the projected data
(the representations) are also shown in this figure.

Note that although the goal of K-SVD is not to improve
the discrimination of the data, it somewhat enhances the
amount of discrimination by converting the data into a high-
dimensional space. Figure 2 illustrates this for some 2D data.

In the case of labelled training data for classification, the
objective function of (1) should be appropriately modified to
take into account these information. To this aim, a discrimi-
nation term Q(Y,D,h) should be added to (1) which results
in the following problem,

(D,X) = argmin
D∈D,X∈X

∥Y −DX∥2F +Q(Y,D,h) (2)

where, h ∈ RN contains the labels of the training signals.

Fig. 2. (a) Some 2D data belonging to two classes. (b) Sparse
representations of data in (a) on 3 atoms obtained by K-SVD.
The big markers indicate the centroids of the classes.

Some methods define Q(Y,D,h) as the loss function of a
classifier [7, 8]. For instance, Discriminative K-SVD (DK-
SVD) [7] is an extension of K-SVD which takes into account
the label information of the training signals. DK-SVD simul-
taneously learns a dictionary and a linear classifier which can
be used to predict the label of a new test data. This algorithm
indeed exploits the fact that the sparse representations of the
data have more discrimination power. So, it learns the linear
classifier based on these high-dimensional representations of
the data.

In this paper we propose a new DL algorithm, called K-
LDA, to learn jointly reconstructive and discriminative atoms.
Our algorithm is based on adding a discrimination term to
the objective function of (1). The proposed algorithm regu-
larizes the level of reconstruction and discrimination of the
learned atoms. Note that this differs from DK-SVD in the
sense that K-LDA aims to improve the discrimination power
of the sparse representations not learning a linear classifier, as
DK-SVD does. It will be shown in the experimental results
that our proposed algorithm provides higher discrimination
than K-SVD and DK-SVD.

The rest of the paper is organized as follows. Section 2 de-
tails our proposed method. In this section we first review the
Fisher criterion, which is a discriminative measure, and then
inspiring by it, we present our proposed DL problem. Section
3 presents the experimental results. Concluding remarks are
given in Section 4.

2. PROPOSED METHOD

2.1. Fisher criterion

Fisher criterion is one of the well-known discriminative mea-
sures which is also used in LDA. Suppose that the input data
belong to C classes with Ni samples being in the class ci, i =
1 . . . C. Fisher criterion is defined as tr{S−1

W (Y)SB(Y)},
in which SW and SB are the within-class and between-class
scatter matrices, respectively, defined as



SW (Y) =

C∑
i=1

∑
yk∈ci

(yk −mi)(yk −mi)
T

SB(Y) =

C∑
i=1

Nc(mi −m)(mi −m)T

where mi and m are the mean vectors of the ith class and
Y, respectively.

LDA learns a projection matrix W such that WTY has
the largest Fisher criterion (or equivalently, the largest dis-
crimination). To this aim, LDA solves the following problem,

W = argmax
W

tr
{(

WTSW (Y)W
)−1 (

WTSB(Y)W
)}

subject to ∀ k, j (k ̸= j) : ∥wk∥2 = 1, wT
k wj = 0 (3)

where wi is the ith column of W.

2.2. The new DL problem

SVD is a tool to obtain an adaptive set of basis functions for
training data. The maximum number of basis functions that
can be extracted by SVD is equal to dimension of the data.
As previously mentioned, K-SVD iteratively uses SVD for
obtaining an over-complete dictionary. In the case of labelled
data, LDA learns at most C − 1 basis functions where C is
the total number of classes. That is why this method can not
be used for learning over-complete dictionaries.

We use tr{DTS−1
W (Y)SB(Y)D} as an alternative of

LDA term. The following expression finds the same solution
for D as LDA method does for W, which is determined by
eigenvectors of S−1

W (Y)SB(Y),

argmax
D

tr{DTS−1
W (Y)SB(Y)D}

subject to ∀i : ∥di∥2 = 1. (4)

From linear algebra lemmas, we know that

tr{DTS−1
W (Y)SB(Y)D} =

k∑
i=1

dT
i S

−1
W (Y)SB(Y)di (5)

We will see that this property help us to derive our proposed
algorithm.

Finally, our proposed DL formulation is as follows,

min
D,X

∥Y −DX∥2F − λ1tr
{
DTS−1

W (Y)SB(Y)D
}

subject to ∀i : ∥xi∥0 ≤ T and ∀j ∥dj∥2 = 1 (6)

Note that problem (6) is jointly non-convex in D and X. To
solve it, like a usual DL problem, we use alternating mini-
mization over the two involved variables.

When D is fixed the discrimination term is constant with
respect to X. So, the problem becomes equivalent to per-
forming an ordinary sparse representation. We use Orthogo-
nal Matching Pursuit (OMP) [9] to this aim.

When X is fixed, we optimize the objective function atom
by atom. In other words, for updating di the others, i.e., dj

for j ̸= i are fixed. We define x(Ω) as a vector containing
those entries of x that are indexed by Ω, and E(:,Ω) as a
matrix containing those columns of E that are indexed by Ω.
Assume that we want to update the ith atom, di, along with
the non-zero entries of xi

T , the ith row of X. We define Ωi ={
j : xi

T (j) ̸= 0
}

as the support of xi
T .

To update di and xi
T the following problem has to be

solved

min
di,xi

T

∥Y −
∑
j ̸=i

djx
j
T︸ ︷︷ ︸

Ei

−dix
i
T ∥2F−λ1d

T
i S

−1
W (Y)SB(Y)di

+ λ2∥di∥22 (7)

where Ei is the error matrix associated with di. The last term
in the objective function was added to take into account the
constraint ∥di∥2 = 1.

The interpretation of problem (7) is that we want to learn
di’s in such a way that the reconstruction and the discrimina-
tion aspects of all training signals be sufficiently addressed.
Like K-SVD, we should update the atom di using only the
data that have used it in their representations. In other words,
the atom di should provide discrimination for its own training
signals (which belongs generally to different classes).

Note that Ωi is indeed the set of inputs indices that use
di in their representations. Also define Y[i] = Y(:,Ωi),
E[i] = E(:,Ωi), and x[i] a row vector of length |Ωi|. Then,
the problem of updating di along with the non-zero entries of
xi
T becomes as follows,

min
di,x[i]

∥E[i] − dix[i]∥2F−λ1d
T
i S

−1
W (Y[i])SB(Y[i])di

+ λ2∥di∥22 (8)

Setting the derivative with respect to x[i] equal to zero results
in x[i] = dT

i E[i].
Setting the derivative with respect to di equal to zero re-

sults in the following expression

−E[i]x
T
[i] + dix[i]x

T
[i] − λ1S

−1
W (Y[i])SB(Y[i])di

+ λ2di = 0 (9)

By re-arranging the above equation we reach to the following
equation

Adi = βdi (10)

where, {
β = x[i]x

T
[i] + λ2

A = E[i]E
T
[i] + λ1S

−1
W (Y[i])SB(Y[i])

(11)



This is an eigen-decomposition problem. The solution for di

is the first left-singular vector of the matrix A. In other words,
if the SVD of A be A = UΛVT , then di is the first column
of U.

Algorithm 1 shows a description of the proposed algo-
rithm. If we set λ1 = 0 the LDA term will be removed and
then K-LDA will be simplified to the K-SVD algorithm, be-
cause eigenvectors of E are equal to eigenvectors of EET.

Algorithm 1 K-LDA dictionary learning
1: Task: Learning an overcomplete, reconstructive and dis-

criminative dictionary
2: inputs Y = {yi}Ni=1, h, λ
3: Initialization: set t = 0, D(t) = D0

4: The main loop: Repeat until convergence:
5: Sparse Approximation: X(t) =OMP(Y, D(t))
6: Dictionary Update: Set D = D(t) and X = X(t) ,

E = Y −DX
7: for i = 1, . . . ,K do
8: Ei = E+ dix

i
T

9: E[i] = Ei(:,Ωi) where Ωi = {j : xi
T (j) ̸= 0}

10: x[i] = xi
T (Ωi)

11: Y[i] = Y(:,Ωi)

12: A = E[i]E
T
[i] + λ1S

−1
W (Y[i])SB(Y[i])

13: A = UΛVT

14: di = U(:, 1)
15: x[i] = dT

i E[i]

16: end for
17: Set t = t + 1, D(t) = D, and go back to the sparse

representation stage

3. EXPERIMENTAL RESULTS

In this section we evaluate the efficiency of the proposed al-
gorithm in the case of synthetic labelled data and images of
handwritten digits. The results where compared with K-SVD
and DK-SVD algorithms.

Synthetic labelled data

In this experiment, two sets of data were randomly generated
as Yi = DiXi, where Di ∈ R64×10 are normalized-columns
matrices with i.i.d. zero-mean, unit-variance Gaussian en-
tries, and Xi ∈ R10×2000, i = 1, 2 are random sparse-column
matrices having at most 5 non-zeros in each column. The
training data were then set as Y = [Y1Y2] in which the data
in Y1 constitutes the first class and those in Y2 constitutes
the second class. We then applied Y to K-SVD, DK-SVD
and our proposed algorithm to learn an over-complete dictio-
nary of size 64× 128 and sparsity of 5.

Fig. 3. Values of ∥Y−DX∥2F −λtr(S−1
w Sb) versus iteration

for 4000 synthetic data with λ = 0.2 in K-LDA.

Figure 3 shows the values of ||Y−DX||2F − λtr(S−1
w Sb)

along iterations (averaged over 100 trials) for these three al-
gorithms. As can be seen, the proposed algorithm achieved a
lower value.

Hand-written digits
Dictionary learning for hand-written digits of size 28 × 28
was simulated in this experiment. We first performed fea-
ture extraction on these raw data by applying the DCT trans-
form on each data and selecting the 15 × 15 top coefficients.
We then converted them into equivalent vectors of length 225,
and reduced their dimensionality to 100 by applying Principal
Component Analysis (PCA). For each digit about 4000 data
were available, from which 500 data were used for learning
the dictionary. We finally applied the obtained training data
to the algorithms to learn an over-complete dictionary of size
100× 160 with sparsity of 5.

Figure 4 shows the amounts of discrimination of the rep-
resentations provided by the algorithms during the iterations
in which the parameters of DK-SVD and K-LDA have been
set such that their reconstruction errors be equal to that of K-
SVD. This figure again says that K-LDA has made more im-
provement in the discrimination of the representations com-
pared to DK-SVD and especially the K-SVD. As the dom-
inant computational burden in all algorithms is due to per-
forming eigen-decomposition, their running times are approx-
imately the same and depend on the needed iterations to con-
verge.

Figure 5 shows the effect of λ on discrimination in K-
LDA. As can be seen, the discrimination is improved with
increasing the value of λ.

Table 1 shows successful classification rates for a set of
test data (3500 data for each digit). Support Vector Machine
(SVM) was used as a linear classifier in the sparse domain. As
can be seen, DK-SVD and K-LDA have performed similarly,



Fig. 4. Discrimination (tr(S−1
W SB)) versus iteration per-

formed by the 3 algorithms.

Fig. 5. Effect of λ on discrimination.

with K-LDA being slightly better.

4. CONCLUSION

We introduced a new algorithm for learning jointly discrim-
inative and reconstructive dictionaries. The proposed al-
gorithm, which we called K-LDA, exploits the information
about the labels of training data directly in updating the dic-
tionary atoms. K-LDA is able to make a trade-off among the
amount of sparsity, reconstruction error and discrimination
of the sparse representation of the data. A main difference
between K-LDA and other discriminative dictionary learning
algorithms like DK-SVD is that K-LDA aims to make the
data in the transformed sparse domain as discriminative as
possible, while the other algorithms just learn a classifier
on the sparse representations of the data. As was shown
in the simulation results, K-LDA outperforms K-SVD and
DK-SVD in providing both good reconstruction error and

Table 1. Successful classification rates versus number of
training data for K-SVD, DK-SVD and K-LDA.

discrimination.
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