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ABSTRACT
One of the major problems in underdetermined Sparse Com-
ponent Analysis (SCA) is the appropriate estimation of the
mixing matrix, A, in the linear model x(t) = As(t), espe-
cially where more than one source is active at each instant
of time (It is called ‘multiple dominant problem’). Most of
the previous algorithms were restricted to single dominant
problem in which it is assumed that at each instant, there is
at most one single dominant component. Moreover, because
of high computational load, all present methods for multiple
dominant problem are practical only for small scale cases
(By ‘small scale’ we mean that the average number of active
sources at each instant, k, is less than 5). In this paper, we
propose a new method for estimating the mixing matrix, A
for the large scale multiple dominant problem in SCA. Our
main idea is to convert the underdetermined SCA problem
into a series of determined problems, which can be solved by
well-known methods like ICA. To do this, we combine both
sparsity and independence assumptions to estimate the mix-
ing matrix. Our method can solve high dimension problems
in which k can be relatively large (about 8).

1. INTRODUCTION

In recent years, there has been a great interest on finding
different algorithms for the problem of Blind Source Sep-
aration (BSS) due to its various applications [1, 2, 3]. In
this problem, separating a set of mixed signals from their
mixtures is investigated. In traditional form of this problem,
there are prior information neither about the mixing system
nor about the source signals, except their statistical indepen-
dence. Moreover, the number of sources and the number of
sensors are assumed to be the same i.e., determined problem.
There exist some well-known algorithms for the determined
BSS problem such as EASI [4], Eigenvalue Decomposition
[1], Entropy Optimization [5] and Fast-ICA [1]. In the deter-
mined problems (i.e., where the number of sources and sen-
sors are equal), the mixing matrix is a square matrix and may
be invertible. So by finding the mixing matrix, A, the source
signals can be recovered easily by multiplying the mixture
by the inverse of A.

On the other hand, if we take the advantage of some weak
prior information available about the source signals i.e., BSS
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becomes Semi-Blind Source Separation, the quality of sep-
aration can be significantly improved [6]. A prior informa-
tion like ‘sparsity’ of the source signals leads to the powerful
concept of Sparse Component Analysis (SCA) and is par-
ticularly efficient especially for underdetermined mixtures
[7, 8]. A sparse signal is a signal whose most samples are
nearly zero, and just a few percents take significant values.
Consequently, at each instant (‘time’ slot), only a few num-
ber of sources have significant values (say they are ‘active’),
and most of them are almost zero (say they are ‘inactive’).
This prior information is important because of two reasons.
Firstly, in contrast to traditional source separation methods,
it permits source separation for the case in which the num-
ber of sources exceeds the number of sensors i.e., underde-
termined problems [8, 9, 10, 11, 12]. Secondly, it is a very
practical assumption for many sources: even if the sources
are non-sparse in time domain, they may be sparse in an-
other (linear) transformed domain. For instance, the speech
sources may not be sparse enough in time, but they are usu-
ally sparser in time-frequency (using Short-Time Frequency
Transform=STFT) or time-scale (using wavelet packet) do-
mains [7].

The previous methods for extracting sparse components
of the mixtures, mainly relies on the sparsity of sources,
and not on their independence[8]. The main novelty of our
method is that it combines both sparsity and independence
assumptions and uses consecutive determined ICA trans-
forms to estimate the mixing matrix in the underdetermined
SCA problem.

The problem of SCA can be stated as follows. Consider
the linear model

X = AS (1)

where A = [a1,a2, . . . ,am] ∈ R
n×m is the mixing matrix,

S = [s1,s2, . . . ,sT ]∈R
m×T and X = [x1,x2, . . . ,xT ]∈R

n×T

are the matrices of m sources and n observed signals, respec-
tively and m > n. Each column of X and S corresponds to
an instant of time and T is the number of time samples. The
sparsity assumption implies that, at each instant of time, there
are a few significant values in the corresponding columns of
S (i.e., a few active sources). Each column of the mixing
matrix, i.e., each ai,1 ≤ i ≤ m, is called a ‘mixing vector’.
These notations and terminologies are also used in [13, 14].

Although the word ‘time’ is used in the above paragraphs
(‘time’ samples, instant of ‘time’ and ‘time’ slot), and will
be used in the continuation of this paper, the above model
may be in another domain, in which the sparsity assumption



holds. To see this, let T be a linear ‘sparsifying’ transform
(like STFT or wavelet packet transforms for speech signals),
and the mixing system is stated as X = AS in the time do-
main. Then, we have T {X}= AT {S} in the transformed
domain, and because of the sparsity of T {S}, it is in the
form of an SCA problem [13].

Denote the average number of active sources at each in-
stant by k. In fact, if the probability of activity of a source is
denoted by p, then k = mp. In single dominant SCA prob-
lems in which there is at most one dominant source at each
instant of time, k is less than or approximately equal to one.
In these problems, the data points are geometrically concen-
trated around the directions of the mixing vectors. This can
be easily seen from the fact that at each instant of time,

x(t) = As(t) =
m

∑
i=1

si (t)ai t = 1,2, . . . ,T (2)

and for most instants of time, there exist just one dominant
si and the others are almost zero. In the multiple dominant
SCA problems in which there can be more than one dom-
inant source at each instant of time, k is greater than one.
In these problems, the observed data concentrate around k-
dimensional subspaces spanned by a set of k mixing vectors.
Throughout this paper, the subspaces spanned by r mixing
vectors, for an arbitrary r, are called ‘r-concentration’ sub-
spaces. This terminology is also used in [13, 14]

The SCA problem is usually solved in two steps. The first
step is the estimation of the mixing matrix (A), and the sec-
ond step is the recovery of the source signals (S) by knowing
the mixing matrix. Note that in the underdetermined case,
in which the number of sources exceeds the number of sen-
sors, the mixing matrix is not square and thus not invertible
any more. So these two problems are not identical. In other
words, knowing the mixing matrix does not directly result in
the recovery of the sources [15]. In this paper, we introduce
an algorithm to solve only the problem of the estimation of
the mixing matrix.

Most of the current algorithms are restricted to the sin-
gle dominant problem and as far as we know, all existing
algorithms for multiple dominant cases are capable only for
small scale problems [7, 8, 12]. In fact, because of high com-
putational load, these algorithms are not efficient for cases in
which k is large (in all of them k is smaller than 5 [14, 16]).

In this paper, we express a method which is capable for
problems with larger k. However, note that to ensure the
uniqueness of the sparse solution of an underdetermined sys-
tem of linear equations, k should be assumed smaller than
n/2 [10, 17]. The main idea of this paper is to show that the
underdetermined SCA problem can be converted into a series
of determined problems, which can be solved by well-known
methods like ICA.

Throughout the paper, we suppose that the sources are
sparse and independent and the probability of activity is the
same for all of them. These are very practical assumptions
for many sources. Moreover, we assume that each subset of
m columns of A is linearly independent.

The paper is organized as follows. The following sec-
tion explains the main idea of the paper. We investigate the
method of finding the concentration subspaces and estimat-
ing the mixing vectors in Sections 3 and 4, respectively. The
final algorithm is expressed in Section 5. Experimental Re-
sults will be presented in Section 6, before conclusions and

future works in Section 7.

2. THE MAIN IDEA

The main idea of our method for estimating the mixing ma-
trix A, in the underdetermined SCA problem is as follows:

At each step we find one of the r-dimensional concen-
tration subspaces B and all data points which belong to it (r
depends on dimensions of the problem, i.e., the number of
sources, sensors and also on k). By confining to this sub-
space, we are faced to a determined problem in which all
data points are in an r-dimensional space and the mixing ma-
trix consists of those mixing vectors which belong to this
subspace. Then all mixing vectors in B will be found by
applying ICA method to this determined problem.

It is worth mentioning that before applying ICA to the
subspace B, we choose a suitable basis for B such that the
data points belonging to B have an r-entry representation in
this basis. Thus the mixing matrix becomes an r× r one
in this coordination. (Usually the latter is implemented us-
ing Principle Component Analysis (PCA) as a preprocessing
block for ICA [4]. However, we have not used PCA for this
part of our algorithm).

The algorithm is run until all mixing vectors in the origin
problem are obtained. Our policy to find at least one new
concentration subspace at each step, is of great importance.
This is investigated in the following sections.

So, in our method, both sparsity and independence as-
sumptions are taken into account. The sparsity assumption
results in concentration of the data points around the sub-
spaces while the independence assumption leads to a good
performance for ICA, applied to the corresponding subspace,
in finding the mixing vectors.

In summary, the approach for estimating the mixing ma-
trix consists of the following steps:

– Step 1: Find a new concentration subspace B. Follow-
ing the idea proposed in [13, 14], a concentration subspace
can be found by maximizing a cost function (see next sec-
tion) using steepest ascent algorithm.

To guarantee to find a new concentration subspace at each
iteration, we first omit data points which belong to at least
one of the already found concentration subspaces and then
apply the steepest ascent algorithm initialized by a randomly
different starting point. The data points belonging to a typical
concentration subspace are those whose the contribution to
the cost function is larger than a specific value, α .

– Step 2: Determine all data points in the initial problem
which belong to B (Note that all data points are taken into
account in this step even those that were omitted in Step 1 to
find the new subspace B). Then, run ICA algorithm to find
the mixing vectors belonging to B.

– Step 3: Considering that some of these mixing vectors
may have been already found, at this step we use a clustering-
merging algorithm to merge these mixing vectors with the
ones obtained before. During this clustering-merging algo-
rithm, a weight is defined for each estimated mixing vector
which is proportional to the number of times that this vector
(or a correlated vector to it) has been found.

– Step 4: If the number of iteration is l, stop the algo-
rithm and sort the estimated mixing vectors in descending
order according to their weights and choose the first m vec-
tors as estimated mixing vectors, else go back to Step 1 and
continue.



In this paper, the number of sources is assumed to be
known in advance.

3. FINDING CONCENTRATION SUBSPACES

Each r-dimensional subspace can be represented by an n× r
matrix, whose columns form an orthonormal basis of the sub-
space. In this paper, we do not distinguish between a sub-
space and its matrix representation. Let B ∈ R

n×r be the
matrix of an arbitrary r-dimensional subspace. The follow-
ing cost function has been proposed in [13] to detect whether
B is an r-concentration subspace or not:

fσ (B) =
T

∑
i=1

exp
(−d(B,xi)2

2σ2

)
(3)

where d (B,xi) is the distance of xi from the subspace repre-
sented by B and σ is a very small positive number. For small
values of d (B,xi) compared to σ , the term

exp
(−d(B,xi)2

2σ2

)
(4)

is about 1 and for large values of d (B,xi), it is nearly zero.
Thus for sufficiently small values of σ , the above cost func-
tion is approximately equal to the number of data points
close to B. Moreover, if the set of points are concentrated
around several different r-dimensional subspaces, fσ has a
local maximum near the basis of each of them. We apply the
same idea of [13] for finding an r-concentration subspace.
That is maximizing the function fσ for a sufficiently small
σ , using a steepest ascent method. However maximizing fσ
for small σ ’s faces to many local maxima. The idea of [13],
is to use a decreasing sequence of σ to obtain an accurate
estimation. In other words, the location of the maximum of
fσ for larger σ ’s are interpreted as the initial guess about the
location of the maximum for smaller σ .

4. ESTIMATING MIXING VECTORS AND MIXING
MATRIX

Consider an r-dimensional concentration subspace B which
is found by the method, mentioned in the previous section.
The data points whose the contribution to the cost function
fσ (B) i.e., (4), is greater than a specific threshold α are as-
sumed to belong to B.

B is an r-dimensional subspace and ideally it contains
r mixing vectors. So by confining the problem to this sub-
space, we are faced to a determined BSS, since r ≤ n. We
apply ICA method to find the r mixing vectors in this deter-
mined problem. Denote the set of these mixing vectors by
Ω. Then we omit all the data points belonging to B and find
another r-dimensional concentration subspace B′. Consider-
ing that we have omitted points of B, the subspace B′ will
be different from the subspace B and this approach is likely
to find a new mixing vector at each iteration.

Next, determine all data points belonging to B′. Using
ICA in the subspace B′, the mixing vectors belonging to it
are recovered. The obtained mixing vectors are added to the
set Ω.

Since in the determined BSS, corresponded to the sub-
space B′, all data points in the entire problem are taken into
account, B and B′ may contain some common mixing vec-
tors. We perform the following clustering algorithm in order

to partition the obtained vectors into subsets which are cor-
related internally, but different from each other. Then we
merge the vectors in each subset.

The clustering-merging algorithm is as follows:
Suppose that Ω = {v1,v2, . . . ,vt} is a set containing t

vectors.
– Step 1: Normalize the vectors in Ω and define a weight

to each of them. Initially, weight of each vector is 1.
– Step 2: Find a pair of vectors which are most corre-

lated, i.e., the angle between them is the least among all other
pairwise angles. If their angle is less than a specific threshold
θ , put this couple in a subset. Otherwise stop the algorithm.

– Step 3: Merge the vectors of this subset, i.e., replace
them by their weighted-mean vector. Set the weight of newly
obtained vector to sum of the weights of the two vectors. In
fact, the weight of a vector v indicates the number of vectors
in Ω which are merged together to make v.

– Step 4: Go to Step 2.
By applying clustering-merging algorithm we provide a

set of non-correlated vectors corresponding to different mix-
ing vectors. Then we continue the above procedure by find-
ing another concentration subspace. The algorithm is run for
l iterations where l is sufficiently large such that we get a
good approximation of the m mixing vectors. Then, we fin-
ish by sorting the obtained vectors in descending order ac-
cording to their weights and by choosing the first m vectors
as estimated mixing vectors. Intuitively, vectors with large
weight are those which have been found more times than the
other vectors. It means that they belong to more concentra-
tion subspaces comparing to the other vectors. So they are
more likely to be a good estimate of mixing vectors.

5. FINAL ALGORITHM

The final algorithm based on the main idea, presented in sec-
tion 2, is given in Fig. 1. As seen in the algorithm, in order to
find an r-concentration subspace, the final value of the pre-
vious estimation is used for initialization of the next steepest
ascent. By choosing a slowly decreasing sequence of σ , we
try to escape from getting trapped into local maxima. This
phenomenon i.e., concentration of datapoints around the con-
centration subspaces, is a consequence of sparsity assump-
tion.

Then by applying ICA to the found concentration
subspace, the mixing vectors belonging to this subspace are
recovered. Here, the independence assumption of the data
points plays the key role.

6. EXPERIMENTAL RESULTS

In this section, we present a simulation to justify the algo-
rithm. It has been already shown that, a necessary condition
for separating source signals using the ICA method (without
temporal prior) is that the sources must have a non-gaussian
distribution [4]. Because of this, in this simulation, sparse
sources are independently and identically distributed, gen-
erated according to the Bernoulli-Uniform model. In other
words, sources are active with probability p and are inactive
with probability 1− p. In the active case, their value has a
uniform distribution in the interval (−Aon, Aon) and in inac-
tive case it is a uniform signal with amplitude in the interval
(−Aoff, Aoff). Consequently:

si ∼ pU(−Aon, Aon)+(1− p)U(−Aoff, Aoff) (5)



• Initialization:

1. Assume an appropriate value for the free parameters of
the problem (r, l,α and θ ).

2. Choose a suitable decreasing sequence for σ , [σ1 . . .σK ].

3. Let B(0) be a random subspace (an n× r matrix with or-
thonormal columns).

4. Ω := /0.

• For � = 1, . . . , l

1. For k = 1, . . . ,K:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a) Let σ = σk .
b) Maximize fσ (B) with steepest ascent algorithm in
several steps:

– Initialization: B
(k)
0 := B(k−1)

– Loop:

i) Set B(k)
j+1 = B

(k)
j + µ∇ fσ .

ii) Choose an orthonormal basis for range space of B
(k)
j+1.

iii) If
∣∣∣ fσ

(
B

(k)
j+1

)
− fσ

(
B

(k)
j

)∣∣∣≥ ε , go to Loop.

c) Denote the present subspace by B(k).

2. Consider all points in the entire set of data points
which belong to B(K) i.e., the points xi that

exp
(−d(B(K),xi)2

2σ2

)
< α .

3. Apply ICA method to the points belonging to B(K) to find
the mixing vectors which are in subspace B(K). Add the
obtained mixing vectors to the set Ω.

4. Apply the clustering-merging algorithm, with parameter
θ , to the set Ω.

5. Omit all data points belonging to the concentration sub-
spaces found up to now.

• Sort the obtained vectors in descending order according to
their weights and choose the first m vectors as estimated mix-
ing vectors.

Figure 1: The final algorithm.

where U(a,b) indicates the uniform distribution in interval
(a,b). To ensure the sparsity assumption, the conditions
Aon � Aoff and smallness of p are applied. In the simulation,
the value Aon = 1 and Aoff = 0.01 have been used. Also each
entry of the mixing matrix is generated uniformly random in
the [−1,1] interval.

We use the CPU time as a measure of complexity. Al-
though the CPU time is not an exact measure, it can give
us a rough estimation of the complexity. The simulation is
performed in MATLAB 7.5 under Linux OS, using an Intel
Pentium IV 2.4GHz processor.

Following simulation is performed to show the capabil-
ity of our algorithm for large scale problems. In this simu-
lation, m = 40, n = 20, k = 8 (or equivalently p = 0.2) and
T = 100000 (Noting that m, n and k are relatively large, the
requirement of large T is predictable). The parameters are
chosen as r = 9, θ � 22◦, α = 0.1, σ -sequence= {0.3,0.2},
µ = 1, ε = 10−3 and l = 40. For implementing ICA in the
proposed algorithm, detailed in the previous section, the Fas-
tICA algorithm has been used.

The entire process took about 30 minutes. At our best
knowledge, there is no algorithm able to estimate the mixing
vectors in a realizable time, especially with problem of this
dimension (m = 40 and n = 20) and with a reduced sparsity

Figure 2: Error of the estimated vectors (in degree) in a simulation of the
algorithm proposed in section 5 for the case m = 40, n = 20, k = 8.

(k = 8).
The accuracy of the algorithm is measured by calculating

the angle between each estimated vector and its correspond-
ing actual mixing vector. As depicted in Fig. 2, the largest
angle is less than 9 degree indicating an accurate estimation
of mixing vectors.

7. CONCLUSION AND FUTURE WORKS

In this paper, we introduced a new method for solving multi-
ple dominant SCA problems. This algorithm combines both
sparsity and independence assumptions to estimate the mix-
ing matrix. As it is verified by simulations, the proposed al-
gorithm is capable in handling large scale problems in which
the average number of active sources in each instant of time,
k, is large (up to the border of sparsity). As observed in the
experimental results, all mixing vectors may be detected with
high accuracy (Fig. 3). Also, the problem of having small
number of data samples xi’s can be compensated by increas-
ing l, i.e., finding more concentration subspaces. An impor-
tant property of this algorithm is that the knowledge of k is
not essential.

Another potential advantage of our method is that we can
implement the algorithm in such a way that the knowledge of
m is not required and we estimate it through the algorithm.
As it can be seen in Fig. 4, there is a jump in the weights
of the elements of Ω from m to m + 1. This phenomenon
suggests that for estimating m we can repeat the algorithm
proposed in Section 5 until a jump in the weights of elements
of Ω appears.

As a future work, we are working on the estimation of l,
r and σ -sequence theoretically from dimensions of the prob-
lem (such as n, m, k and T ).
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