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Abstract. In thispaperwepresent anewalgorithmbasedonSmoothed �0

(SL0), called Block SL0 (BSL0), for Under-determined Systems of Linear
Equations (USLE) in which the nonzero elements of the unknown vector
occur in clusters. Contrary to the previous algorithms such as Block Or-
thogonal Matching Pursuit (BOMP) and mixed �2/�1 norm, our approach
provides a fast algorithm, while providing the same (or better) accuracy.
Moreover, we will see experimentally that BSL0 has better performance
than SL0, BOMP and mixed �2/�1 norm when the number of nonzero ele-
ments of the source vector approaches the upper bound of uniqueness
theorem.
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1 Introduction

Sparse solutions of USLE have recently attracted a lot of attentions because of
their potential applications in many different areas. They are used, for exam-
ple, in compressed sensing [1,2], under-determined Sparse Component Analysis
(SCA) and source separation [3,4] and atomic decomposition on overcomplete
dictionaries [5,6]. Generally, an USLE has infinitely many solutions but it is
shown in [7] that under some conditions the sparsest solution of the system is
unique.

More concretely, let s be an m× 1 unknown vector that is observed through
an n×m, n < m, measurement matrix A according to x = As. Since this system
is an USLE, there are infinitely many possible solutions of s that satisfy it for
a given x and A. Therefore, we must add some extra conditions to insure the
uniqueness of s. Let Spark(A) be the smallest number r such that there exists a
set of r columns in A which are linearly dependent [7]. Moreover, define the �0

norm of s as its number of nonzero elements. s is called k-sparse if its �0 norm
is k. It is shown in [7] that if k is less than r/2, then sparsest solution of the
system is unique.

� This work has been partially funded by Iran Telecom Research Center (ITRC), and
also by center for International Research and Collaboration (ISMO) and French
embassy in Tehran in the framework of a GundiShapour collaboration program.

V. Vigneron et al. (Eds.): LVA/ICA 2010, LNCS 6365, pp. 426–433, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Fast Block-Sparse Decomposition Based on SL0 427

The above uniqueness theorem of USLE has led to development of many
different recovery algorithms [1,5,8,9]. Most of the algorithms find the sparsest
solution by optimizing a cost function that measures the distance of s from being
sparse. Therefore, the more precise our cost function involves the sparsity con-
cept, the closer the recovered vector will be to the exact solution. Two successful
studied algorithms are Basis Pursuit (BP) [5,9] and SL0 [8,10] which are based
on minimization of �1 and smoothed-�0 norm, respectively.

In this paper, we consider recovery of an unknown solution whose nonzero
elements occur in clusters. Such a signal is called block-sparse [11,12]. For this
purpose, we modify the SL0 idea to use this block structure in the recovery
algorithm. We will see in Sect. 4 that taking this structure into account can
yield better reconstruction results.

Block-sparsity occurs when dealing with multi-band signals [13] and equaliza-
tion of sparse communication channels [14]. Furthermore, it was shown in [13]
that block-sparsity model can be used to treat the problem of sampling signals
that lie in a union of subspaces. A block-sparse signal can be stated as follow:

s = [s11, · · · , s1d
︸ ︷︷ ︸

s1

, s21, · · · , s2d
︸ ︷︷ ︸

s2

, · · · , sN1, · · · , sNd
︸ ︷︷ ︸

sN

]T , (1)

where si, i = 1, · · · , N is called the ith block of s and d is the block size. A
signal of dimension m which consists of N blocks of size d = m/N is k sparse
if at most k blocks of the signal out of N are nonzero. It is clear that if d = 1,
block-sparsity reduces to conventional sparsity.

Using �1 relaxation [5,9] for reconstructing s does not exploit the fact that
the signal is block-sparse, i.e., that the nonzero entries occur in consecutive
positions. Therefore, different techniques were suggested in recent years. Stojnic
et. al. in [15] modify the �1 norm cost function and call it mixed �2/�1 norm, to
exploit the block-sparsity. They suggest the following optimization problem for
the recovery of s :

argmin
s
‖s1‖2 + ‖s2‖2 + · · ·+ ‖sN‖2 s.t. x = As . (2)

In [11] it is shown that under some conditions on measurement matrix, (2) is
guaranteed to recover any block-sparse signal, irrespectively of the locations of
the nonzero blocks. Furthermore, recovery will be robust in the presence of noise
and modeling error. [11] uses semi-definite programming to find the sparsest
solution of (2). However, it is still very slow and becomes worse as the dimension
increases.

Another approach presented in [16], called Block Orthogonal Matching Pur-
suit (BOMP), modifies standard Orthogonal Matching Pursuit (OMP) algo-
rithm [17] to use the block structure. BOMP is fast, but is a greedy algorithm
and does not provide good estimation of the sources.

Contrary to previous approaches, the method we present in this paper tries
to directly work with the block version of �0 norm and is based on the idea of
smoothed �0 (SL0) [8]. We will see experimentally that the proposed algorithm
outperforms both mixed �2/�1 norm and BOMP methods.
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The paper is organized as follows. The next section introduces the basic prin-
ciples of our approach. The final algorithm is then stated in Sect. 3. Finally,
Sect. 4 provides some experimental results of our algorithm and its comparison
with conventional SL0, mixed �2/�1 norm and BOMP algorithms.

2 Basic Principles of Our Approach

As our proposed method is based on SL0, we first have a brief review on this
algorithm. Let s be an unknown m× 1 vector and related to n× 1 measurement
vector x, n < m, through the measurement matrix A by:

x = As . (3)

A recovery algorithm tries to find the sparsest solution of (3). The reconstruction
can be then stated as the following optimization problem:

argmin
s

‖s‖0 s.t. x = As . (4)

To solve (4) one may search for a solution with minimal �0 norm. This exhaustive
search will have complexity of O(

(
m
k

)

n3) [15] and hence it is an intractable
problem as the dimension increases. Recently, [8] has used a smoothed version of
�0 norm, called SL0, which is experimentally shown that is a very fast algorithm
and has a very good performance.

The main idea of SL0 is to approximate �0 discontinuous function by a suitable
continuous one. For example, consider the following one-variable function:

fσ(s) � e−s2/2σ2
. (5)

It is clear that:

lim
σ→0

fσ(s) =
{

1 s = 0
0 s �= 0 . (6)

Then, by defining Fσ(s) �
∑m

i=1 fσ(si) we can see that:

‖s‖0 ≈ m− Fσ(s) , (7)

for small values of σ. Consequently, [8] finds the solution of (4) by maximizing
Fσ(s) (subject to x = As) for a very small value of σ. The value of σ determines
how smooth the function Fσ is: the larger value of σ, the smoother Fσ (but worse
approximation of �0 norm) and vice versa. For small values of σ, Fσ is highly
non-smooth and contains a lot of local maxima, and hence its maximization is
not easy. On the other hand, for larger values of σ, Fσ is smoother and contains
less local maxima. Consequently, to avoid trapping in local maxima, the authors
of [8] propose to use a ‘decreasing’ sequence for σ: for maximizing Fσ for each
value of σ (using e.g. gradient algorithms), the initial value of the maximization
algorithm is the maximizer of Fσ for the previous (larger) value of σ. More
details about this concept and also theoretical analysis of the algorithm is stated
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in [8,10]. Moreover, [8] suggests that the best initial value of s for the algorithm
is the minimum �2 norm solution of x = As, i.e. the solution given by the
pseudo-inverse of A.

We now modify the above idea for reconstruction of block-sparse signals from
their measurements. Let s be as (1) and I(x) be as follow:

I(x) �
{

1 x �= 0
0 x = 0 .

By denoting

‖s‖2,0 �
N

∑

i=1

I(‖si‖2) , (8)

a vector s is block k-sparse if ‖s‖2,0 ≤ k. Therefore, the optimization problem
will be:

argmin
s

‖s‖2,0 s.t. x = As . (9)

By defining bi � ‖si‖2 we can rewrite (8) as follows:

‖s‖2,0 =
N

∑

i=1

I(bi) � ‖b‖0 , (10)

where b � [b1, b2, · · · , bN ]T . Using (7) it is clear that ‖b‖0 ≈ N − Fσ(b) where
Fσ(b) =

∑N
i=1 fσ(bi) and fσ(bi) � e−b2i /2σ2

. Therefore, we can write:

‖s‖2,0 ≈ N −
N

∑

i=1

e−
∑d

j=1 s2
ij

2σ2 � N −Hσ(s) , (11)

and the final optimization problem will be:

argmax
s

Hσ(s) s.t. x = As . (12)

To solve the optimization problem (12) we use steepest ascent method. So, we
need to compute gradient vector of Hσ(s). Because of the block nature of s, it
is better to express the gradient vector in a block notation. So, we denote ∇Hσ

as follow:

∇Hσ = [h11, · · · , h1d
︸ ︷︷ ︸

1st block

, h21, · · · , h2d
︸ ︷︷ ︸

2nd block

, · · · , hN1, · · · , hNd
︸ ︷︷ ︸

Nth block

]T . (13)

Therefore we can write:

huv =
∂Hσ(s)
∂suv

= −suv

σ2
e−

∑d
j=1 s2

uj

2σ2 . (14)
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3 The Final Algorithms

The final algorithm is given in Fig. 1. Like SL0, we choose minimum �2 norm
solution of x = As, obtained by pseudo-inverse of A, as the initial value of the
algorithm. Also, as stated in [8], to avoid trapping in local maxima we use a
‘decreasing’ sequence for σ. Also, steepest ascent consists of iterations of the
form s ← s + μj∇Hσ. As said in [8], the step-size parameters μj should be
decreasing, i.e., for smaller values of σ, smaller values of μj should be applied.
This is because for smaller values of σ the function Hσ is more ‘fluctuating’, and
hence smaller step-size should be used for its maximization. It is shown in [8]
that μj should be proportional to σ2. Therefore, we choose μj = μσ2.

– Initialization
1. Let ŝ0 be equal to the minimum �2 norm solution of As = x obtained by

pseudo-inverse of A.
2. Choose a suitable decreasing sequence for σ : [σ1, · · · , σJ ].

– For j = 1, · · · , J :
1. Let σ = σj

2. Maximize (approximately) the function Fσ on the feasible set {s|As = s}
using L iterations of steepest ascent algorithm (followed by projection
onto the feasible set):

• Initialization: s = ŝj−1

• For l = 1 · · ·L (loop L times):
∗ Let ∇Hσ as (13).
∗ Let s← s + (μσ2)∇Hσ (where μ is a small positive constant).
∗ Project s back onto the feasible set:

s← s−AT (AAT )−1(As− x) .

3. Set ŝj = s
– Final answer is ŝ = ŝJ

Fig. 1. The final BSL0 algorithm

4 Experimental Results

In this section, we discuss the performance of our proposed algorithm and com-
pare it with conventional SL0, BOMP and mixed �2/�1 norm methods. In all of
the experiments, block-sparse sources are artificially produced. A block k-sparse
signal is created as follow: First, the locations of k nonzero blocks are randomly
chosen. Each element in chosen blocks is ‘active’ and the rest elements of s
are ‘inactive’. Active elements have normal distribution of N (0, 1) and inactive
elements have been set zero.

Each column of the mixing matrix is randomly generated using a normal
distribution with zero mean and variance of 1 and then is normalized to unity.
Then the mixtures are generated using x = As+n where n is an additive white
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Fig. 2. Performance of BSL0, conventional SL0, BOMP and mixed �2/�1 norm as
function of block size (d) for k × d = 100

Gaussian noise with covariance matrix σnIn (where In stands for the n × n
identity matrix).

To evaluate the estimation quality, Signal-to-Noise Ratio (SNR) is used. SNR
(in dB) is defined as 20 log(‖s‖/‖s− ŝ‖), where s and ŝ denote the actual source
and its estimation, respectively.

Experiment 1. In this experiment, we study the computational cost of the pre-
sented method, and compare it with conventional SL0, mixed �2/�1 norm and
BOMP methods. The values used for this experiment arem = 1000, n = 400, σ2

n =
0.01 and k × d = 100. We change k and d during the simulation such that their
product stays constant (and equal to 100). Therefore, the possible values for (k, d)
will be (100,1), (50,2), (25,4), (20,5), (10,10), (5,20), (4,25), (2,50) and (1,100). For
example (k, d) =(25,4) means that s is a 1000×1 vector with 100 nonzero elements
occurring in 25 blocks which contain 4 nonzero elements each.

We use the CPU time as a measure of complexity. Although it is not an
exact measure, it gives a rough estimation of the complexity. Our simulations
are performed in MATLAB 7.6 environment using an Intel Core 2 Duo 2GHz
processor with 3GB of memory, and under Microsoft Windows XP operating
system.

The experiment was then repeated 100 times (with the same parameters, but
for different randomly generated sources and mixing matrices) and the values
of SNR (in dB) and time (in seconds) obtained over these simulations were
averaged. Figure 2 shows the result. The averaged CPU time (for d = 100)
for SL0, BSL0 , �2/�1 and BOMP are 0.104, 0.111, 14.623 and 0.070 second,
respectively. It is clear that BSL0 has better performance and as we increase
the block size, its performance becomes better. This is because of BSL0 cost
function in which we directly work with the block version of �0 norm. Also, as
BSL0 is based on the fast SL0 algorithm [8], it is faster than �2/�1.
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Fig. 3. Performance of BSL0, conventional SL0, BOMP and mixed �2/�1 norm as
function of block size (d) for k × d = 200

Experiment 2. As said in uniqueness theorem [7], the sparsest solution is unique
when ‖s‖0 = (k × d) < n/2 = 200. So, we set k × d = 200 and chose (k, d)
pair from (200,1), (100,2), (50,4), (40,5), (25,8), (20,10), (10,20), (8,25), (5,40),
(2,100) and (1,200) to examine its effect on the performance of the algorithms.
The other parameters of this experiment are the same as Experiment 1. We can
see from Fig. 3 that the conventional SL0 cannot recover the sparsest solution
when s has 200 nonzero elements, but for d > 4, BSL0 has a performance of 25
dB or even better. The averaged CPU time (for d = 200) for SL0, BSL0, �2/�1

and BOMP are 0.091, 0.096, 11.879 and 0.035 second, respectively.

5 Conclusion

In this paper we studied the efficient recovery of block sparse signals using an
under-determined system of equations generated from random Gaussian matri-
ces. The motivation for considering block sparse signals is that in many appli-
cations the nonzero elements of sparse vectors tend to cluster in blocks. We
showed experimentally that BSL0 is highly faster than �2/�1, while producing
even better estimation accuracy. We also saw experimentally that BSL0 has bet-
ter performance than SL0 when the number of nonzero elements of the source
vector approaches the upper bound of uniqueness theorem.
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