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Abstract—Blind Source Separation (BSS) is the problem of
separating signals which are mixed through an unknown function
from a number of observations, without any information about
the mixing model. Although it has been mathematically proven
that the separation can be done when the mixture is linear, there
is not any proof for the separability of nonlinearly mixed signals.

Our contribution in this paper is performing nonlinear BSS for
sparse sources. It is shown in this case, sources are separable even
if the problem is under-determined (the number of observations
is less than the number of source signals). However in the most
general case (when the nonlinear mixing model can be of any
kind and there is no side-information about that), an unknown
nonlinear transformation of each source is reconstructed. It
is shown why the problem reconstructing the exact sources
is severely ill-posed and impossible to do without any other
information.

Index Terms—Blind Source Separation, Independent Compo-
nent Analysis, Sparse Signals, Manifold Learning

I. INTRODUCTION

In signal processing applications, it is usual to have a
number of signals measured by some sensors, while each of
them might be a mixture of a number of source signals. BSS
is the problem of separating the original sources from the
observed mixture, without any information about either the
source signals or the mixing model. The basic model of the
mixing model is depicted in Fig. 1, and can be expressed as

x(t) = f(s(t)) (1)

where f : RN → RM is the unknown mixing function,
N and M are the number of source and observation sig-
nals respectively and s(t) = [s1(t), s2(t), . . . , sN (t)]T and
x(t) = [x1(t), x2(t), . . . , xM (t)]T (T denotes the transpose of
the vector) are the source and observation vectors respectively.
The BSS problem can also be written as

find g s.t. y(t) = g(x(t)) = g(f(s(t))) = ŝ(t) (2)

where g : RM → RN is the separating function which is to be
estimated and y(t) = [y1(t), y2(t), . . . , yN (t)]T is the vector
of reconstructed sources (the output of the BSS algorithm).

It should be noted that the goal of BSS is to “separate”
the sources and not to “reconstruct” them. Depending on the
mixing model, there are some ambiguities in reconstructing the
sources that can only be resolved using some prior information
about the source signals, which is out of the scope of BSS

Fig. 1. BSS problem basic model

(for example in case of linear mixtures, separated sources
would be equal to the original ones up to a scaling factor
and reordering).

BSS problem has been studied since the early works in
80s [1], and noticeable results have been achieved for some
cases. The general idea of performing BSS is to design a
separating function (g) such that each entry of the output
signals y(t) only depends on a single original source. For
example, it has been shown [2] that if source signals are
mutually independent, the mixing function (f ) is linear and
the number of the sources is equal to the number of the
observations (x(t)), one can perform the separation by making
the outputs mutually independent as well as the sources (which
is called ICA1). In this case, the “independence” is the property
of the sources, which is tried to be recovered for the separation.
There are some other works exploiting other properties to
perform the separation (a comprehensive survey can be found
in [2]), such as non-negativity [3], non-Gaussianity [4], non-
stationarity [5] and non-whiteness [6] (they are named as the
“non-properties” [7]).

Although there are many works and proposed algorithms
on BSS for linear mixtures, nonlinear BSS has not been well
developed ([8] provides a short survey on nonlinear BSS). It
is shown through counter examples that ICA does not separate
the sources which are non-linearly mixed [9], [10]. Therefore,
except a few general approaches which try to investigate the
separability of any kind of nonlinear mixture models [11],
[12], studies on nonlinear BSS are focused on specific mixture
model and source signals, out of which we can name Post
Nonlinear (PNL) [13] and Bi-Linear (or Linear Quadratic)
mixtures [14], Convolutive Post Nonlinear mixtures [10] and
conformal mappings [15].

In this paper, we consider the problem where the mixing
model is nonlinear and the sources are sparse (the case of

1Independent Component Analysis



sparse sources has already been studied for linear mixtures in
many works like [16]). So the mixing model that is studied
in this work is not limited to a specific kind and can be any
invertible function. We show that in this case, the sources can
be separated up to a nonlinear function.

The rest of the paper is organized as follows. In the next
section, the main idea is introduced and the approach and
the algorithm for performing the separation are proposed.
Then some simulation results are shown in the section III. A
comprehensive discussion on the performance of the proposed
approach and how to develop it for the future works is finally
made in section IV.

II. THE PROPOSED ALGORITHM

Sparse signals in the time domain are the signals which most
of the time take the value zero. In other words, the probability
of their value being equal to zero is high. Therefore, if all of
the sources are sparse, it will be even more rare that they take
non-zero values at the same time. This is the main feature that
is exploited in this approach to perform the separation. The
proposed algorithm comprises two main steps of 1) Clustering
the Observations and 2) Unfolding the Manifold, which are
described as follows.

A. Step 1 - Clustering the Observations

Let us assume a 2× 2 mixing system (2 source signals and
2 observations) as an example and

x1(t) = es1(t) − es2(t) (3)

x2(t) = e−s1(t) + e−s2(t) (4)

as the nonlinear mixing function (x1(t) and x2(t) are sub-
tracted by their mean in the plot so as to be centered).
For investigating what would happen in the case of sparse
sources from a geometric point of view, the scatter plots of
the observations for the two cases whether the sources are
sparse or not, are plotted in Fig. 2. As it is already mentioned,
when the sources are sparse, the samples of the source vector
are mainly concentrated around the axes because it is quite
rare that both of the sources take a non-zero value at the same
time. So in this case, the scatter plot of the observations (Fig.
2) contains two manifolds (each of which is the result of the
transformation of one of the axes in the source space).

As a consequence, if we consider the points where two
sources are active (i.e. nonzero) at the same time as outliers,
we can apparently distinguish the two manifolds in the scatter
plot of the observation vector. This phenomenon can be also
expressed mathematically as follows. let us rewrite (1) as[

x1(t)
x2(t)

]
= f(

[
s1(t)
s2(t)

]
) =

[
f1(s1(t), s2(t))
f2(s1(t), s2(t))

]
(5)

where f1(·) and f2(·) are the components of the mixing
matrix. For the times when only s1 is active we have

x1(t) = f1(s1(t), 0) = h11(s1(t))

x2(t) = f2(s1(t), 0) = h12(s1(t)) (6)

Fig. 2. Comparing scatter plots of the source and observation vectors whether
the sources are sparse or not

and when only s2 is active we have

x1(t) = f1(0, s2(t)) = h21(s2(t))

x2(t) = f2(0, s2(t)) = h22(s2(t)) (7)

where h11(·) and h21(·) are R → R marginal functions of
f1(·, ·), and h12(·) and h22(·) are R→ R marginal functions
of f2(·, ·). Since when s1(t) is active, both x1(t) and x2(t) are
functions of only one source (s1(t)), they would lie on a 1-
dimensional manifold in two dimensional space, and similarly
for the samples when only s2(t) is active. In other words,
when only s1(t) is active and at least one of h11 and h12 is
invertible (we assume h11 is invertible), we would have

x2(t) = h12(s1(t)) = h12(h
−1
11 (x1(t))) = q1(x1(t)) (8)

and similarly when only s2(t) is active and assuming h21 is
invertible), we would have

x2(t) = h22(s2(t)) = h22(h
−1
21 (x1(t))) = q2(x1(t)). (9)

Thus x2(t) = q1(x1(t)) and x2(t) = q2(x1(t)) would be
the two manifolds that can be clustered in the observation
space via some clustering (manifold learning) algorithms. The
samples which lie on the manifold of q1, are assigned to s1(t)
and the ones that lie on the manifold of q2, are assigned to
s2(t).

It should be noted that although the above explanation was
based on a simple 2× 2 mixing system, the argument is still
valid for higher dimensions as well. Because for any number
of sources and observations, for sparse sources, only one of the
sources is active in most of the times. Therefore, each axis in
the N-dimensional source space transforms to a 1-dimensional
manifold in the M-dimensional observation space.

B. Step 2 - Unfolding the Manifold

As mentioned before, each manifold in the observation
space is a nonlinear transformation of one of the axes in the



source space. The problem of estimating the inverse of this
transformation is severely ill-posed. This can also be shown
though mathematical expressions. From (6) and (7) we have

s1(t) =


h−111 (x1(t)) = h−112 (x2(t)) x(t) ∈ q1
0 x(t) ∈ q2
Unknown o.w. (outlier)

(10)

s2(t) =


0 x(t) ∈ q1
h−121 (x1(t)) = h−122 (x2(t)) x(t) ∈ q2
Unknown o.w. (outlier)

(11)

while we have information about none of hij(·) functions. The
“unknown” values mentioned in (10) and (11) are because,
generally, we do not have enough information to separate
the outliers (when more than one source are simultaneously
active) and they actually cause the error in separation. More
discussion on this can be found in the following.

In other words, it let u1(·) and u2(·) be two arbitrary R→ R
invertible functions. So, if instead of s1(t) and s2(t), u1(s1(t))
and u2(s2(t)) are mixed through the function f(·), (6) and (7)
would become

x1(t) = h11(u1(s1(t))) = ĥ11(s1(t))

x2(t) = h12(u1(s1(t))) = ĥ12(s1(t)) (12)

(when only s1 is active) and

x1(t) = h21(u2(s2(t))) = ĥ21(s2(t))

x2(t) = h22(u2(s2(t))) = ĥ22(s2(t)) (13)

(when only s2 is active) where ĥij = hij ◦ui for i, j ∈ {1, 2}
are some other nonlinear functions of the original sources.
Consequently, considering (8) and (9) we can say

x2(t) = ĥ12(s1(t)) = ĥ12 ◦ ĥ−111 (x1(t))

= h12 ◦ u1 ◦ u−11 ◦ h
−1
11 (x1(t))

= h12 ◦ h−111 (x1(t)) = q1(x1(t)) (14)

(when only s1 is active) and

x2(t) = ĥ22(s2(t)) = ĥ22 ◦ ĥ−121 (x1(t))

= h22 ◦ u2 ◦ u−12 ◦ h
−1
21 (x1(t))

= h22 ◦ h−121 (x1(t)) = q2(x1(t)) (15)

(when only s2 is active), which means that the q1 and q2
manifolds in the observation space remain the same. That is,
the scatter plot of the observation vector does not contain any
information about the probable nonlinear transformation of the
sources. Therefore, the ambiguity of a nonlinear function in
reconstructing the sources cannot be resolved.

It is worth noting again that although the above description
is made based on a simple 2 × 2 example, all arguments are
still valid for the general case. In this case, each of the N
sparse sources (i.e. each of the N axes in the source space)
transforms to a 1-dimensional manifold in the M-dimensional
observation space (which are called as q1, q2, . . . and qN ).

It should also be emphasized that the proposed algorithm
works even for under-determined cases (where the number of
observations is less than the number of source signals). This
outstanding capability comes from the fact that the separation
of sparse sources is based on separating N 1-dimensional
manifolds, and even in a 2-dimensional space we can have any
number of different 1-dimensional manifolds. Therefore, the
minimum required number of the observation signals, despite
of the number of sources, is always 2.

As a result, each of the observations can be taken as the
separated sources. So the separated sources in the general form
can be reconstructed as

ŷi(t) =


xj(t) x(t) ∈ qi
0 x(t) ∈ qk (k 6= i)

Unknown o.w. (outlier)
(16)

where ŷ(t) = [ŷ1(t), ŷ2(t), . . . , ŷN (t)]T is the vector of the
separated sources (here we use (̂·) because it is not the final
result; after proposing a method for solving the problem of
outliers, the final output is formulated in the following), i is
the index of the separated source which is between 1 and N ,
k is any index between 1 and N , and 1 ≤ j ≤ M is the
index of one of the observations (which is chosen arbitrarily).
As mentioned earlier, values of the separated signals for
outliers (when more than one source is active), is “unknown”,
but considering some additional information about either the
sources or the mixing model, leads to an estimation for them.

As explained before, the proposed approach is based on the
clustering of the manifolds in the observation space (each of
which corresponds to one of the sources). Thus, the observa-
tion vector lies on a manifold when only one of the sources is
active. When two or more sources are active, the observation
sample is assumed to be outlier (in the manifold learning
process) and is not assigned to any of the sources. This is why
the sources can not be estimated in these cases and their values
are said to be “unknown” in (10), (11) and (16). Different
manners can be suggested to estimate the value of each source
for outliers depending on probable prior information about
either the sources or the mixing function. The manners can be
classified in the two following categories.

The first category of methods for estimating the sources
in case of outlier observations, is based on using the sources
themselves. In this case, we face the problem of estimating
some missing values of a signal while we know it for most of
the time. Designing the best restoration technique, one has to
employ some known features of the signal (e.g. its bandwidth)
if there is any. So the separated sources in this approach would
be as

yi(t) =


xj(t) x(t) ∈ qi
0 x(t) ∈ qk (k 6= i)

φ(ŷi(t)) o.w. (outlier)
(17)

where φ(·) is the chosen restoration function and ŷi(t) comes
from (16).

The other class of methods for doing the estimation is
based on the mixing function and the separated manifolds.



Fig. 3. A manifold whose projections on the axes are not invertible

Using this approach, the value of each source can be estimated
through nonlinearly projecting the outliers on the correspond-
ing manifold in the observation space. However, the nonlinear
projection is not unique, and would be more accurate if there is
some side-information about the mixing model. Nevertheless,
the separated sources in this approach can be written as

yi(t) =


xj(t) x(t) ∈ qi
0 x(t) ∈ qk (k 6= i)

x′j(t) o.w. (outlier)
(18)

where x′j(t) is the chosen nonlinear projection of x(t) onto
the jth coordinate (axis of ej).

However, if there is prior information about the sources
and/or the mixing model, it can be utilized to improve the
performance of the separating algorithm and trying to recon-
struct the sources (resolving the ambiguity of the nonlinear
function on each source). For example if we know that the
transformation preserves the local angles, if its time-derivative
is continuous, if it has a parametric model, and so forth, this
may lead to a much better estimation of the sources signals
(which is left for the future works).

Finally, it is worth noting that although choosing one of the
observations for reconstructing the separated sources is the
easiest way, one may find some other wiser ways to make the
separated signals. For example if the projection of a manifold
(qi) on one of the axes (xj) is not an invertible transformation,
that axis (xj) is not a good choice for reconstructing the
separated signals (e.g. in Fig. 3, projecting the more com-
plicated manifold on none of the axes would be invertible and
would loose information). Indeed in this case, the unresolved
nonlinear transformation of the source in the reconstructed
signal is not invertible and looses some information of the
source.

Therefore, it is better to take an unfolded version of each
manifold as the separated source which is made by a di-
mension reduction algorithm (e.g. ISOMAP [17]). Moreover,
one may suggest other methods for unfolding the manifold
considering the nature of the sources and the mixing model.
For example assuming that the nonlinear mixing function
preserves distances or angles, leads to specific unfolding
(nonlinear dimension reduction) techniques.

Fig. 4. The result of the algorithm for the model x1(t) = cos(α(t))s1(t)−
sin(α(t))s2(t) and x2(t) = sin(α(t))s1(t)+cos(α(t))s2(t) where α(t) =
π
2
(1−

√
s21(t) + s22(t))

2

Fig. 5. The result of the algorithm for the model of 3 and 4

III. SIMULATION RESULTS

In order to simulate the proposed algorithm, we have used
several nonlinear mixing models and we have applied them
on two sparse sources (with the sparsity of 75%) that are
uniformly distributed in [−0.5, 0.5] when they are active.

In the simulation, firstly outliers are omitted (they are
detected by computing their average distance from their few
neighbors). Then a simple curve fitting algorithm is applied
to perform clustering. It is obvious that in more complicated
examples (like Fig. 3), one should employ more powerful
clustering techniques and might use kernels.

In each of the figures from Fig. 4 to 6, the scatter plot of
the observations and the clustering result are shown in the
above plots (where each cluster is indicated with a different
color and the outliers are marked as “+”). The two plots below
of each figure represent the relation between each of outputs
and the corresponding source signal (which is, as expected,



Fig. 6. The result of the algorithm for the model x1(t) = sin(2s1(t)−s2(t))
and x2(t) = sin(s2(t)− s1(t))

a nonlinear function that can not be resolved without further
information).

IV. DISCUSSION AND FUTURE WORKS

In this work, we proposed a nonlinear BSS algorithm for
sparse sources. The algorithm works even if the problem is
under-determined hence the number of observations is less
than the number of sources (it only needs more than one
observation). We also showed that the sources can be separated
but they cannot be exactly reconstructed in the most general
case without further information.

The proposed algorithm is also useful when the number of
source signals is unknown. It is due to two facts: 1) despite
of the number of sources, it they are spatially sparse, the
separation can be performed as soon as we have more than one
observation and 2) if the manifold learning technique which
is used for clustering the observation is powerful enough (and
does not need the number of clusters in advance), any number
of manifolds can be separated in the observation space and
hence the generalization of the proposed method would be
straightforward.

In addition, the sparsity feature used in the proposed algo-
rithm is satisfied even if each source signal takes a constant
value for most of the time (not necessarily zero) and has sparse
variations. in this case, all mentioned arguments remain valid
but in (6) and (7), fj(s1(t), 0) and fj(0, s2(t)) need to be
replace with fj(s1(t), c2) and fj(c1, s2(t)) for j ∈ {1, 2},
where c1 and c2 are respectively the constant values that s1(t)
and s2(t) are assumed to take most of the time.

For the future work, it would be interesting to develop the
proposed framework for the sources that are not sparse in time
domain, but in some other domain like frequency domain. In
these cases, one has to firstly model the transformation to the
sparse domain for both sources and observations in order to
be able to cluster the observation from the manifolds in the
sparse domain and then separate the observations using the
classification which is done.

Moreover, it would be useful to apply the proposed approach
to practical applications and to utilize the prior information
(related to the real case) for better unfolding the separated
manifolds and more precisely estimating the values corre-
sponding to the outliers. It might also need a discussion on
different choices of φ(·) in (17) or the nonlinear projection
method in (18).
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