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Abstract. In this paper a new geometrical approach for separating
speech signals is presented. This approach can be directly applied to
separate more than two speech signals. It is based on clustering the ob-
servation points, and then fitting a line (hyper-plane) onto each cluster.
The algorithm quality is shown to be improved by using DCT coefficients
of speech signals, as opposed to using speech samples.

1 Introduction

Blind Source Separation (BSS) or Independent Component Analysis (ICA) con-
sists in retrieving unknown statistically independent signals from their observed
mixtures, assuming there is no information about the original source signals, or
about the mixing system (hence the term Blind).

For linear instantaneous mixtures x(t) = As(t), where the sources s(t) �
(s1(t), . . . , sN (t))T are (unknown) statistically independent signals, the observa-
tion signals are denoted x(t) � (x1(t), . . . , xN (t))T , and A is the N × N (un-
known) mixing matrix. In this paper, the number of observations and sources
are assumed to be equal. The problem is then to estimate the source vector s(t)
only by knowing the observation vector x(t).

One approach to solve the problem is to determine a separating matrix B
such that the outputs y(t) � Bx(t) become statistically independent. This inde-
pendence insures the estimation of the sources, up to a scale and a permutation
indeterminacy [1].

Another approach is the geometric source separation algorithm, which has
been first introduced in [2]. In this approach (for 2-dimensional case), it is
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F i g. 1. Distribution of a) source samples, and b) observation samples.

F i g. 2. Distribution of a) two speech samples, and (b) their mixtures.

first noted that because of the independence of source signals, ps1s2(s1, s2) =
ps1(s1)ps2(s2), where p stands for the Probability Density Function (PDF). Con-
sequently, for bounded sources, the points (s1, s2) will be distributed in a rect-
angular region (Fig. 1-a). Now, because of the scale indeterminacy, the mixing
matrix is assumed to be of the form (normalized with respect to diagonal ele-
ments):

A =
(

1 a
b 1

)
(1)

Under the transformation x = As, the rectangular region of the s-plane will be
transformed into a parallelogram (Fig. 1-b), and the slopes of the borders of this
parallelogram are 1/a and b. In other words, for estimating the mixing matrix,
it is sufficient to determine the slopes of the borders of the distribution of the
observation samples.

Although this approach is not easily generalized to higher dimensions, it is
successful in separating two sources, provided that their distributions allow a
good estimation of the borders of the parallelogram (e.g. uniform and sinusoidal
sources). However, this technique cannot be used in separating speech signals
because the PDF of a speech is mostly concentrated about zero. This comes from
the fact that in a speech signal, there are many low energy (silence or unvoiced)
sections. Consequently, as it can be seen in Fig. 2, it is practically impossible to
find the borders of the parallelogram when the sources are speech signals. This
is explained by a probabilistic manner in [3]: the probability of having a point
in the borders of the parallelogram is very low.

Although for speech signals the borders of the parallelogram are not visible in
Fig. 2, there are two visible “axes”, corresponding to lines s1 = 0 and s2 = 0 in
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the s-plane (throughout the paper, it is assumed that the sources and hence the
observations have zero-means). The slopes of these axes, too, determine a and b
in (1). In other words, for speech signals, instead of finding the borders, we try to
find these axes. This idea is used in [3] for separating speech signals by utilizing
an “angular” histogram for estimating these axes. In this method, the resolution
of the histogram cannot be too fine (requires more data points), and cannot
be too coarse (bad estimation of the mixing matrix). Moreover, this approach
cannot be easily generalized to mixtures of more than two speech signals.

In this paper, we propose another approach for estimating these “axes” based
on line (or hyper-plane) fitting. The main idea is to fit two lines on the scatter
plot of observations, which will be the required axes. This approach does not
suffer from the problem of the resolution of a histogram. Moreover, we will see
that this approach can be directly used in higher dimensions.

2 Speech Separation by Line Fitting

2.1 Two Dimensional Case

As it is explained in the previous section, the main idea of our method is to
estimate the slopes of two axes of the scatter plot of observations (Fig. 2-b).
These axes corresponds to the lines s1 = 0 and s2 = 0 in the scatter plot of
sources. The existence of these lines is a result of many low-energy sections of a
speech signal. For example, the points with small s1 and different values for s2

will be concentrated about the axis s1 = 0.
However, we do not use (1) as a model for mixing matrix, because it has

two restrictions. Firstly, in this model, it is implicitly assumed that the diago-
nal elements of the actual mixing matrix are not zero, otherwise infinite values
for a and b may be encountered (this situation corresponds to vertical axes in
the x-plane). Secondly, this approach is not easy to be generalized to higher
dimensions.

Instead of model (1), let us consider a general “separating matrix” B =
[bij ]2×2. Under the transformation y = Bx, one of the axes must be transformed
to y1 = 0, and the other to y2 = 0. In other words, for every (x1, x2) on the first
axis: (

0
y2

)
=

(
b11 b12

b21 b22

) (
x1

x2

)
⇒ b11x1 + b12x2 = 0 (2)

That is, the equation of the first axis is b11x1 + b12x2 = 0. In a similar manner,
the second axis will be b21x1 + b22x2 = 0. Consequently, for estimating the
separating matrix, the equations of the two axes must be found in the form of
α1x1 + α2x2 = 0, and then each row of the separating matrix is composed of
the coefficients of one of the axes. For finding the axes we suggest is to “fit” two
straight lines on the scatter plot of the observations.

It is seen that by this approach, we are not restricted to non-vertical axes
(non-zero diagonal elements of the mixing matrix). More interestingly, this ap-
proach can be directly used in higher dimensions, as stated below.
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2.2 Higher Dimensions

The approach stated above can be directly generalized to higher dimensions.
For example, for 3 speech signals and 3 sources, the low-energy (silence and
unvoiced) values of s1 with different values of s2 and s3 will form the plane
s1 = 0 in the 3-dimensional scatter plot of sources. Hence, in this 3-dimensional
scatter plot, there are 3 visible planes: s1 = 0, s2 = 0 and s3 = 0. These planes
will be transformed to three main planes in the scatter plot of observations. With
calculations similar as (2), it is seen that each row of the separating matrix is
composed of the coefficients of one of these main planes in the form of α1x1 +
α2x2 + α3x3 = 0.

Consequently, for N -dimensional case, N (hyper-)planes in the form of α1x1+
· · ·+αNxN = 0 must be first “fitted” onto the scatter plot of observations. Then,
each row of the separating matrix is the coefficients (α1, . . . , αN ) of one of these
(hyper-)planes.

3 Line Fitting

To use the idea of the previous section, we need a method for fitting two lines
(or N hyper-planes) onto the scatter plot of observations.

3.1 Fitting a Straight Line onto a Set of Points

First of all, consider the problem of fitting a line onto K data points (xi, yi)T ,
i = 1 . . .K. In the traditional least squares method, this is done by finding the
line y = mx + h which minimizes

∑K
i=1(y − yi)2 =

∑K
i=1(mxi + h− yi)2. This is

equivalent to minimizing the “vertical” distances between the line and the data
points, as shown in Fig. 3-a. This technique is mainly used in linear regression
analysis where there are errors in yi’s, but not in xi’s.

However, in our application of fitting a line onto a set of points, a better
measure is minimizing the sum of “orthogonal distances” between the points and
the line, as shown in Fig. 3-b. Moreover, as discussed in the previous sections,
we are seeking a line in the form ax+by = 0. Consequently, the best fitted line is
determined by minimizing

∑K
i=1 d2

i , where di is the orthogonal distance between
the i-th point and the line:

di =
|axi + byi|√

a2 + b2
(3)

However, ax+by = 0 is not uniquely determined by a pair (a, b), because (ka, kb)
represents the same line. To obtain a unique solution, the coefficients are nor-
malized such that a2 + b2 = 1. To summarize, the best fitted line ax + by = 0 is
obtained by minimizing

∑K
i=1(axi + byi)2 under the constraint a2 + b2 = 1.

N-Dimensional Case. In a similar manner, an N -dimensional hyper-plane
α1x1 + α2x2 + · · · + αNxN = 0 is fitted onto a set of K data points xi =
(x(i)

1 , x
(i)
2 , . . . , x

(i)
N )T , i = 1, . . . , K by minimizing the cost function:



802 Massoud Babaie-Zadeh et al.

P1

P2

P3

P4

P5

P6

P7

P8

x

y

y2

(a)

P1

P2

P3

P4

P5

P6

P7

P8

x

y

d2

(b)

Fig. 3. a) Least squares line fitting, b) Orthogonal line fitting.

C(α1, . . . , αN ) =
K∑

i=1

(
α1x

(i)
1 + · · · + αNx

(i)
N

)2

(4)

under the constraint g(α1, . . . , αN ) ≡ α2
1 + · · · + α2

N − 1 = 0.

Solution. Using Lagrange multipliers, the optimum values for α1, . . . , αN sat-
isfy ∇C = λ∇g. After a few algebraic calculations, this equation is written in
the matrix form:

Rxα =
λ

K
α (5)

where α � (α1, . . . , αN )T and Rx � 1
K

∑K
i=1 xixT

i is the correlation matrix of
data points. Equation (5) shows that λ/K and α are eigen value and eigen vector
of the correlation matrix Rx, respectively. Moreover:

C =
K∑

i=1

(
αT xi

)2
=

K∑
i=1

αTxixT
i α = KαTRxα = λαT α = λ

and hence for minimizing the cost function, λ must be minimum. Consequently,
the solution of the hyper-plane fitting problem is given by the eigen vector of
the correlation matrix which corresponds to its minimum eigen value.

Discussion. It is interesting to think about the conjunction of the above ap-
proach to Principal Component Analysis (PCA). Note that α is the vector per-
pendicular to the plane α1x1 + · · · + αNxN = 0, and the above theorem states
that this vector must be chosen in the direction with the minimum spread of data
points, which is compatible with our heuristic interpretations of plane (line) fit-
ting. This method has old foundations in mathematics [4], and somewhat called
Principal Component Regression (PCR) [5].

3.2 Fitting 2 Straight Lines (N Hyper-planes)

However, as stated in Section 2, for 2 mixtures of 2 sources our problem is to
fit 2 lines onto the observation points, not just 1 line. In other words, as it is
seen in Fig. 2, we need to divide the data points into 2 clusters, and then to fit
a line onto the points of each cluster. The extension to N mixtures of N sources
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– Initially distribute the points into clusters S1, . . . ,SN (e.g. random initial-
ization).

– Loop:
1. Fit a line (hyper-plane) onto each set of points Si (we call it li).
2. Recalculate the clusters: Let Si be the set of all points which are closer

to line (hyper-plane) li than other lines (hyper-planes), that is:

Si = {x | d(x, li) < d(x, lj),∀j �= i}
– Repeat until convergence.

Fig. 4. Algorithm of fitting two lines (N hyper-planes) onto a set of points.

is straightforward: we need to divide the data into N clusters, and then to fit
a hyper-plane onto the points of each cluster. Mathematically, this is equivalent
to minimizing the following cost function (for the N -dimensional case):

C =
∑

xi∈S1

d2(xi, l1) +
∑

xi∈S2

d2(xi, l2) + · · · +
∑

xi∈SN

d2(xi, lN ) (6)

where Sj is the j-th cluster of points and d2(xi, lj) denotes the perpendicular
distance of the i-th point from the j-th plane.

Having divided the points into clusters S1, . . . ,SN , the previous section gives
us the best line fitted onto the points of each cluster. For clustering the data
points, we use the algorithm stated in Fig. 4, which is inspired from the k-means
(or Lloyd) algorithm for data clustering [6]. Its difference with k-means is that
in k-means, each cluster is mapped onto a point (point → point), but in our
algorithm each cluster is mapped onto a line or hyper-plane (point → line).

The following theorem is similar to a corresponding theorem for the k-means
algorithm [6].

Theorem 1. The algorithm of Fig. 4 converges in a finite number of iterations.

Proof. At each iteration, the cost function (6) cannot be increased. This is be-
cause in the first step (fitting hyper-planes onto the clusters) the cost function is
either decreased or does not change. In the second step, too, the redistribution
of the points in the clusters is done such that it decreases the cost function or
does not change it. Moreover, there is a finite number of possible clustering of
finite number of points. Consequently, the algorithm must converge in a finite
number of iterations. ��
Initialization. The fact that the cost-function is non-increasing in the algo-
rithm, shows that the algorithm may get trapped in a local minimum. This is
one of major problems of the k-means algorithm, too. It depends on the ini-
tialization of the algorithm, and become more severe when the dimensionality
increases. In k-means, one approach is to run the algorithm with several ran-
domly chosen initializations, and then to take the result which produces the
minimum cost-function.
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Fig. 5. Distribution of a) the observations, and b) their DCT coefficients (right).

4 Final Algorithm, and Its Improvement by Using DCT

The final separation algorithm is now evident. First, run the algorithm of Fig. 4.
After convergence, there are N lines (hyper-planes) li : αi1x1 + · · ·+αiNxN = 0,
i = 1 . . .N . Then, the i-th row of the separating matrix is (αi1, . . . , αiN ).

However, the separation quality of the algorithm can be improved, with a
simple trick. Recall that the success of the algorithm is because of the existence
of two visible “axes” in Fig. 2. These axes were formed because of the small-
valued (low-energy) parts of one speech and other parts of the second one. Now,
recall that the Discrete Cosine Transform (DCT) coefficients of a speech frame
(10-20 msec) contain a lot of nearly zero values. Moreover, DCT is a linear
transformation, and hence, the DCT coefficients of the observations are a mixture
of the DCT coefficients of the original speeches with the same mixing matrix.
Therefore, it seems that it is a good idea to apply the algorithm on the DCT
coefficients of observations instead of themselves. Figure 5 shows an example of
the scatter plot of observations, and that of their DCT coefficients. It is seen
visually that the “axes” are more visible in the scatter plot of DCT coefficients.
Consequently, one expects to get better results by applying the algorithm on the
DCT coefficients of the observations, as is confirmed by our experiments, too.

5 Experimental Results

Many simulations have been conducted to separate 2, 3 or 4 sources. In all these
simulations, typically less than 30 iterations are needed to achieve separation.
The experimental study shows that local minima depends on the initialization
phase of the algorithm and on the number of sources (local minima have been
never encountered in separating two sources).

Here, the simulation results of 4 typical speech signals (sampled with 8KHz
sampling rate) are presented. In all the experiments, the diagonal elements of
the mixing matrix are 1, while all other elements are 0.5. For each simulation,
10 random initializations are used, and then the matrix which creates minimum
cost-function is taken as the answer.

To measure the performance of the algorithm, let C � BA be the global
mixing-separating matrix. Then, we define the Signal to Noise Ratio by (as-
suming no permutation) SNRi(in dB) � 10 log10

c2
ii∑

j �=i c2
ij

. This criterion shows
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Fig. 6. Separation result in separating N speech signals, a) N = 2, b) N = 3, c) N = 4.

how much the global matrix C is close to the identity matrix. As a performance
criterion of the algorithm, we take the average of the SNR’s of all outputs:
SNR = 1

N

∑
i SNRi. To virtually create different source signals, each speech

signals is shifted randomly in time (more precisely, each speech signal is shifted
128k samples, where k is a randomly chosen integer). This results in a completely
different source scatter plot, and virtually creates a new set of source signals.
Then, for each experiment, the algorithm is run 50 times (with 50 different
random shifts), and the averaged SNR is calculated.

Figure 6 shows this averaged SNR’s with respect to number of samples, for
separating 2, 3 and 4 speech signals. The figure clearly shows the ability of
the algorithm for speech separation, and the advantage obtained by using DCT
coefficients. Moreover, it is seen that when the number of sources increases, more
data samples are required to reach a given separation quality. This was expected,
because the algorithm is based on the “sparsity” of the speech signals. In other
words, for forming the planes, it is required that one speech signal is low-energy
(silence/unvoiced), and the others are not. If p is the probability of being in a
low energy state, the probability of sparsity is p(1 − p)(N−1), which decreases
exponentially with N . Consequently, it is expected that the required number of
data samples grows exponentially with N .

6 Conclusion

In this paper, a geometrical approach for separating several speech signals has
been presented. It has been shown that for speech signals (or other sources
whose PDF’s are concentrated about zero), the ICA can be accomplished by a
clustering of observation samples and then applying a PCA on each cluster and
taking the smallest principal component. Although this approach was based on
geometric interpretations, its final algorithm is completely algebraic.

Initialization is the main problem of this algorithm. Finding better initial-
ization approaches is currently under study.
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