


permutation indeterminacy) [7]. However, in convolutive mixtures, the indepen-
dence of two random processes y1 and y2, cannot be deduced from the solely
independence of y1(n) and y2(n), but required the independence of y1(n) and
y2(n�m), for all n and all m.

Several methods have been proposed for satisfying the above condition. Most
of them are based on higher (than 2) order statistics : cancellation of cross-
spectra [7], of higher order cross-moments [6] , of higher order cross-cumulants
[6, 2], or more generally on a contrast function [4].

In this paper, we introduce a method based on minimizing the output mu-
tual information. This method is inspired by the method proposed by Taleb and
Jutten [5] for the instantaneous mixtures, but contains a few new points. Sec-
tion 2 contains preliminary results on stochastic process independence and the
de�nition and a few properties of joint score function. Estimating equations are
derived in Section 3. The algorithm and experiments are presented in Section 4
and 5, respectively.

2 Preliminary Issues

2.1 Independence in the Convolutive Context

In convolutive mixtures, y1(n) and y2(n) can be independent, while y1 and y2
are not 1. For example, if the sources si are iid, and:

B(z)A(z) =

�
1 z�1

0 1

�
(5)

then the outputs are: �
y1(n)=s1(n) + s2(n� 1)
y2(n)=s2(n)

(6)

It is obvious that in this case, y1(n) and y2(n) are independent for all n, but y1
and y2 are not, and thus the source separation is not achieved.

To check the independence of two random variables x and y, one can use the
mutual information:

I(x; y) =

Z
x;y

pxy(x; y) ln
pxy(x; y)

px(x)py(y)
dxdy (7)

This quantity is always non-negative, and is zero if and only if the random
variables x and y are independent.

However, I(y1(n); y2(n)) = 0 is be a separation criterion. Conversely, one can
use I(y1(n); y2(n�m)) = 0 for all m. But, this criterion, for all m is practically
untractable. Thus, we restrict ourselves to a �nite set, say m 2 f�M; : : : ;+Mg.
For example, Charkani [2] and Nguyen and Jutten [6] considered the indepen-
dence of y1(n) and y2(n � m) for m f0; : : : ;+Mg, where M is the maximum
degree of the FIR �lters of the separating structure.
1 Recall that, by de�nition, two stochastic processes X1 and X2 are independent if
and only if the random variables X1(n) and X2(n �m) are independent for all n
and all m.
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2.2 JSFs versus MSFs

In this subsection, we introduce the concepts of Joint Score Function (JSF) and
Marginal Score Function (MSF).

De�nition 1 (Score Function) The score function of the scalar random vari-
able x, is the log derivative of its distribution, i.e.:

 (x) =
d

dx
ln px(x) =

p0

x(x)

px(x)
(8)

For the N dimensional random vector x = (x1; : : : ; xN )
T , we de�ne two score

functions:

De�nition 2 (MSF) The Marginal Score Function (MSF) of x, is the vector
of score functions of its components, i.e.:

 
x
(x) = ( x1(x1); : : : ;  xN (xN ))

T
(9)

Note that the ith element of  
x
(x) is:

 i(x) =
d

dxi
ln pxi(xi) (10)

where pxi(xi) is the PDF of xi.

De�nition 3 (JSF) The Joint Score Function (JSF) of x, is the vector func-
tion '

x
(x), such that its ith component is:

'i(x) =
@

@xi
ln px(x) =

@

@xi
px(x)

px(x)
(11)

where px(x) is the mutual PDF of x.

Generally, MSF and JSF are not equal, but we have the following theorem:

Theorem 1 The components of the random vector x are independent if and
only if its JSF and MSF are equal, i.e.:

'
x
(x) =  

x
(x) (12)

For a proof, refer to appendix.

De�nition 4 (SFD) The Score Function Di�erence (SFD) of x is the di�er-
ence between its JSF and MSF, i.e.:

�
x
(x) = '

x
(x)� 

x
(x) (13)

As a consequence of Theorem 1, SFD is an independence criterion.
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3 Estimating Equations

3.1 Estimating MSF and JSF

For estimating the MSF, one must simply estimate the score functions of its com-
ponents. In [5], the following theorem is used for estimating the score function
of a scalar random variable:

Theorem 2 Consider a scalar random variable x, and a function f with a con-

tinuous �rst derivative, satisfying:

lim
x!�1

f(x)px(x) = 0 (14)

then :

E ff(x) (x)g = �E ff 0(x)g (15)

Note that the condition (14) is not very restrictive, since most of densities px(x)
vanishes as x tends towards in�nity.

Now, consider the score function estimate equal to a linear combination of
some kernel functions ki(x), i.e.:

 ̂(x) =

LX
i

wiki(x) = kT (x)w (16)

where k(x) = (k1(x); : : : ; kL(x))
T

and w = (w1; : : : ; wL)
T
. We estimate w for

minimizing the mean square error E
n
[ (x) �  ̂(x)]2

o
. Applying the orthogo-

nality principle, and using Theorem 2, w is obtained by:

E
�
k(x)kT (x)

	
w = E fk(x) (x)g (17)

= �E fk0(x)g (18)

This method can be easily generalized to multivariate pdf. First, we prove
the generalization of Theorem 2:

Theorem 3 Consider a random vector x = (x1; : : : ; xN )T , and a multivariate

scalar function f with continuous derivatives with respect to xi, satisfying:

lim
xi!�1

Z
x1;:::;xi�1;xi+1;:::;xN

f(x)px(x) = 0 (19)

then:

E ff(x)'i(x)g = �E

�
@

@xi
f(x)

�
(20)
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For a proof, refer to appendix.
Now, suppose we model 'i(x), the ith element of JSF as a linear com-

bination of the kernel functions k1(x), : : :, kL(x), i.e.'̂i(x) = kT (x)w where

k(x) = (k1(x); : : : ; kL(x))
T
Following similar computations than those used for

developing (18), it can be shown:

E
�
k(x)kT (x)

	
w = �E

�
@

@xi
k(x)

�
(21)

3.2 Gradient of the Mutual Information

Suppose the separating system consists of FIR �lters whose the maximum degree
is M . Hence, the separating system writes as:

B(z) = B0 +B1z
�1 + � � �+BMz�M (22)

For developing a gradient-based algorithm, we must estimate the derivative of
the mutual information with respect to each matrix Bk.

Theorem 4 If the separating system B(z) satis�es (22), then:

@

@Bk

I (y1(n); y2(n�m)) = E
n
�(m)(n)xT (n� k)

o
(23)

where I denotes the mutual information, and �(m)(n) is de�ned by:

�(n) = �y1(n);y2(n�m)(y1(n); y2(n�m)) (24)

�(m)(n) =

�
�1(n)

�2(n+m)

�
(25)

where �x denote the SDF of the random vector x.

For a proof refer to appendix.
In other words, for computing �(m)(n), one must �rst shift forward the second

component of y, then compute its SFD to obtain �(n), and then shift back its

second component to obtain �(m)(n).
Note that the algorithm stops when �(n) = 0, which is equivalent to the

independence of the outputs.

4 The Algorithm

The steepest descent algorithm has been used for achieving the output indepen-
dence, i.e. in each iteration, all of the Bks are updated according to:

Bk = Bk � �
@

@Bk

I(y1(n); y2(n�m)) (26)
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where � is a small positive constant, the derivative is computed following (23),
and SFD is computed using (16), (18), (21). For estimating the MSFs, we have
chosen the 4 kernels (L = 4):

k1(x) = 1 ; k2(x) = x ; k3(x) = x2 ; k4(x) = x3 (27)

For estimating the JSFs, we used the 7 kernels (L = 7):

k1(x1; x2) = 1 ; k2(x1; x2) = x1 ; k3(x1; x2) = x2
1
; k4(x1; x2) = x3

1

; k5(x1; x2) = x2 ; k6(x1; x2) = x2
2
; k7(x1; x2) = x3

2

(28)

For tractability of the algorithm, the value of m is randomly chosen from
the set f�M; : : : ;Mg at each iteration, implying a stochastic implementation of
the independence criterion . Note that this algorithm is not equivariant [1], and
consequently its performance is not independent of the mixing �lter.

5 Experimental Results

For measuring the separation performance, we de�ne the output SNR. Assuming
no permutation, and denoting C(z) = B(z)A(z), the output SNR on the �rst
channel is:

SNR1 =
E
n
[y1(n)]

2
o

E
n
f[C12(z)] s2(n)g

2

o (29)

Hence a high SNR1 means that the e�ect of the second source in the �rst output
is negligible. However, the �rst output is not necessarily equal to the �rst source,
it can be a �ltered version of the �rst source (see Sect. 2.1).

In the �rst experiment, we have chosen two sinusoids (500 samples), with
di�erent frequencies, and mixed them with the A(z):

�
1 + 0:2z�1 + 0:1z�2 0:5 + 0:3z�1 + 0:1z�2

0:5 + 0:3z�1 + 0:1z�2 1 + 0:2z�1 + 0:1z�2

�
(30)

We thus used a 2-degree FIR separating �lter, � = 0:3, and M = 4.
Figure 1 shows the separation results, after 13000 iterations (we have only

drawn 200 samples). The output SNRs are 48:64dB and 48:61dB. Figure 5, shows
the time variation of output SNRs.

In the second experiment, we mixed two uniform white noises, with zero
means and unit variances. We choose the same mixing system and parameters
as in the �rst experiment. Figure 5 shows the output SNRs in dB.

6 Conclusion

In this paper,we proposed a new method for separating the convolutive mixtures,
based on a stochastic implementation of the minimization of delayed output mu-
tual informations. Moreover, each mutual information term is minimized using
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Marginal and Joint score functions. The experiments show its eÆciency. The
main restriction of this new method is related to JSF estimation which requires
large samples, and whose implementation will be diÆcult for more than 3 or 4
sources.

A Appendix

Proof of Theorem 1: The proof is given in the two dimensional case. Its general-
ization to higher dimensions is obvious.

If the elements of y are independent, then (12) can be easily obtained. Con-
versely, suppose that (12) holds, then we prove that the elements of y are inde-
pendent. Following (12), we have @

@y1
ln py(y1; y2) =

@
@y1

ln py1(y1). Integrating
both sides of this equation with respect to y1, leads to:

ln py(y1; y2) = ln py1(y1) + g(y2)) py(y1; y2) = py1(y1)h(y2) (31)

By integrating both sides of this equation with respect to y1 from �1 to
+1, we have h(y2) = py2(y2) thus the result holds. ut
Proof of Theorem 3: Without loss of generality, let i = 1. We have:

E ff(x)'1(x)g =

Z
f(x)'1(x)px(x)dx

=

Z
x2;:::;xN

Z
x1

f(x)
@

@x1
px(x)dx1dx2 � � � dxN (32)

Using integration by parts for the inner integral and (19) leads to the desired
relation. ut

Proof of Theorem 4: Here, because of the limited space, we only prove the
theorem for m = 0. The generalization to the case m 6= 0 is straightforward, but
contains somewhat complicated calculations.

Let B(z) satisfy (22), and b
(k)
ij denote the ijth element of Bk, then:

@H(y(n))

@b
(k)
ij

= �E

(
@

@b
(k)
ij

ln py(y)

)
(33)

Among the y1 through yN , only yi depends on b
(k)
ij , hence:

@H(y(n))

@b
(k)
ij

=�E

(
@ ln py(n)(y(n))

@yi(n)
�
@yi(n)

@b
(k)
ij

)

=�E f'y;i(n)xj(n� k)g (34)

Consequently:
@H(y(n))

@Bk

= �E
�
'
y
(n)xT (n� k)

	
(35)
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We now compute the marginal entropy derivatives:

@

@b
(k)
ij

P
iH(yi(n)) =

@

@b
(k)
ij

H(yi(n))

=�E

(
@

@b
(k)
ij

ln pyi(n)(yi(n))

)

=�E

(
@ ln pyi(n)(yi(n))

@yi(n)
�
@yi(n)

@b
(k)
ij

)

=�E
�
 yi(n)(n)xj(n� k)

	
(36)

Hence:
@

@Bk

X
i

H(yi) = �E
�
 
y
(n)xT (n� k)

	
(37)

Combining (7), (35) and (37) proves the theorem. ut
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