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ABSTRACT
In this paper, a Sparse Component Analysis algorithm is
presented for the case in which the number of sources is
less than or equal to the number of sensors, but the chan-
nel (mixing matrix) is time-varying. The method is based
on a smoothed to norm for the sparsity criteria, and takes
advantage of the idea that sparsity of the sources is de-
creased when they are mixed. The method is able to sep-
arate synthetic and speech data, which require very weak
sparsity restrictions. It can separate up to 50 mixed sig-
nals while being adaptive to channel variation and robust
against noise.

Index Terms- Blind Source Separation; Sparse Com-
ponent Analysis; Adaptive Source Separation; Smoothed
t£ Norm.

1. INTRODUCTION

The problem of Blind Source Separation (BSS) has been
extensively studied in the last two decades, because of
its many potential applications in science and technology
[1, 2, 3]. This problem consists of separating a set of
mixed signals from their mixtures taking advantage of a
very weak a priori information about the source signals
[4]. In early literature, the priors 'non-stationarity' of the
source signals [5] and their 'temporal correlation' [6] have
already been considered.

Independent Component Analysis (ICA) has been suc-
cessfully used to solve blind source separation problems in
several application areas which consider statistical inde-
pendence of sources as a priori. However, in some cases,
e.g. sound and music signals, independency is usually not
a valid assumption. For example, the fundamental fre-
quencies of the sources in a music signal are often in a
harmonic relationship, and the sources have dependencies
because of rhythmic concordance in time domain [7].

Another prior information is the sparsity of source sig-
nals [8, 9, 10]. A signal is sparse when it is zero or nearly
zero (inactive) in most of it's samples. Such a signal has a
probability density function with a sharp peak at zero and
fat tails [1 1, 12]. This prior also permits source separation
for the case in which the number of sources exceeds the
number of sensors [8, 10, 13, 14]. Moreover, it is a prac-
tical assumption for many sources. Non-sparse sources in
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time domain may be sparse in another linear transformed
domain; and since the mixing system is identical in both
domains, these approaches may be used in the transformed
domain. For instance, speech sources may not be sparse
enough in time domain, whereas they possess sparsity in
time-frequency (using Short-Time Frequency Transform)
or time-scale (utilizing wavelet packet) domains [9]. These
methods which mainly rely on the sparsity of sources are
usually called Sparse Component Analysis (SCA) [8].

On the other hand, a natural environment is confounded
by signal reverberations in sensors or channel variations
might occur in many cases. In some applications, it is re-
quired to obtain an estimation of the channel immediately
after applying the mixtures, i.e. an on-line or instantaneous
estimation. In some others, the channel varies with time
and a separating system with the ability to track channel
variations is required.

In the present paper, we address the issue of BSS for
instantaneous but time-dependent channels. The number
of sensors is greater than or equal to the number of sources.
Considering sparsity as a priori, a reasonable prediction of
the mixture matrix based on previous observations is ob-
tained through an adaptive procedure which is able to track
variations in channels (mixing matrices). The basic idea is
the fact that the sparsity is decreased in mixtures of sparse
sources. The proposed algorithm shows significant abili-
ties in robustness against noise and satisfactory separation
for medium dimension of mixing matrices.

The problem can be stated as follows. Consider the
linear model:

X = AS+N (1)
where A = [a, ... a,] CE W" is the mixing matrix,
S = [Sl ... ST] C RnxT and X = [Xl ...XT] C RmxT
are the matrices of n sources and m observed signals and
N is the matrix of Additive White Gaussian Noise. Each
column of S, X and N corresponds to an instant of 'time'
and T is the number of time samples. Sparsity of source
signals implies that in each column of S, there are few sig-
nificant values (active sources). The intention of SCA is
then to estimate A and S, only from X and the sparsity
assumption.

2. THEORY AND MATERIAL

In this section, we discuss a new SCA method for detect-
ing the mixing matrix A and the sources S in the com-
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plete case (number of mixtures are greater than or equal
to sources) using the model AS = X. The over-complete
problem, is not considered. The basic idea is the fact that
sparsity is decreased in mixtures of sparse sources. In fact,
sparsity is decreased by mixing sparse sources, only when
uncorrelated sparse signals are mixed. For example, the
addition of a sparse source s and -s would be sparser than
the both sources (zero), due to correlation between s and
-s. In the continuation, we assume the sources to be un-
correlated. The idea is then to multiply the mixture matrix
X by a separating matrix B and try to maximize the spar-
sity. To accomplish this goal, a smooth measure of sparsity
is defined as in [15]. A sparse signal is inactive in a large
percent of its samples, and hence it's t£ norm is small,
where the t£ norm is defined as:

are assumed to be equal to one because their energy is in-
significant (and impossible to calculate). As a result of
uncorrelated sources we have E(SST) = I. Whitening X
would achieve X = WX where W is the whitening matrix.
In the continuation, the separating matrix B represents the
inverse of the mixing matrix A. By defining B = BW-1,
B is orthonormal [2, 16]. By using the sparsity measure
introduced in the previous section we attempt to find

argmax H5 (B) = E{F5 (BX)}
BBT =I

for some small value of a, where the expectation is calcu-
lated by averaging in time. The relative gradient [17] of
the function H, can be calculated as:

n

= S v(si)
i 1

where:

v(s) ={
I s /O

s =O

In order to find the sparsest solution, it is required to mini-
mize the t£ norm. However, optimization of the t£ norm is
not straightforward. Considering the discontinuities of the
function v, gradient-based methods are impossible to be
applied directly. Thus, a smooth estimation of v is em-
ployed in (2). This may also provide more robustness
against noise. Various functions can be utilized for this
aim. Here, we use a zero-mean Gaussian family of func-
tions because of their differentiability. By defining:

fr(s) = exp(-s2/2u2), (4)

we have:

lim fr (s) = 1
0-+~0 0

s = 0
s / 0

(2) VBHo- A BT = E{(Y. * f(y))yT} (8)

where Y = BX and .* denotes element-wise multiplica-
tion.

For escaping local maxima, the idea is to apply a grad-
ual decline in the value of u: for each value of a a steepest
ascent algorithm is implied to maximize H5, and the initial
value of this steepest ascent algorithm is the maximizer of
H, obtained for the previous (larger) value of a. So, the
steepest ascent algorithm is initialized not far from the ac-
tual maximum . The natural (or relative) gradient [17] is
applied to update B.

The algorithm shown in Fig. 1 is very similar to fast
ICA methods. The main difference is in the optimization
criteria, which is maximizing the sparsity criteria defined
by (6), compared to optimizing an independence criteria in
ICA methods. Note that the whitening step is an essential
part of the presented algorithm. Emitting the whitening
step (and orthonormality assumption of B), results in re-
peated sources. Discussion on the other steps can be found
in [2].

Consequently, lim, 0 f, (s) = - v(s), and therefore if
we define:

n

F5 (s) - (Si) (6)
i=l1

we have:

n

lim Fo(s) (I(1v(si)) = n- llsllo. (7)
i=l1

We then take n - Fo5 (s) as an approximation to s o. The
value of a indicates a trade-off between the accuracy and
the smoothness of the approximation: the smaller values
of a result in better approximations, while the larger val-
ues lead to smoother estimations.

3. THE ALGORITHM

Similar to ICA procedures, whitening is performed in the
first stage of the algorithm. The energies of the sources

4. ADAPTIVE CASE

The mentioned algorithm has been modified to achieve
an adaptive SCA method which is able to track channel
variations occurred with time and consequently estimate
the channel mixing matrix immediately after applying the
mixtures. In other words an on-line or instantaneous esti-
mation is intended.

All the steps of Fig. 1 may be done on-line, except
the whitening part which needs a modification. An on-
line whitening algorithm which has been presented in [2]
is applied in the first stage. The adaptive version of the
algorithm is shown in Fig.2 1.

5. EXPERIMENTAL RESULTS

In order to justify the performance of the presented method
in the adaptive case, a number of experiments were con-

1 Initializations of 0, ,u and B from the previous algorithm should be
repeated here.
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Figure 1. The final algorithm.

ducted. The first experiment analyzes the method on syn-

thetic data and the second experiment, simulates the method
with speech signals. To evaluate the performance of the
algorithm, let C = BA be the global mixing-separating
matrix. SNR (Signal to Noise Ratio in dB) is defined as

10 log 2Ii=Aj cij
Synthetic Data: Sparse sources are artificially created

using the Mixture of Gaussians (MoG) model

Si NPV(O, Oon) + (1 -p) g(0,O Off),

z
Cf)

Figure 2. The adaptive algorithm.

(9)

where p denotes the probability of activity of the sources.

Con and Coff are the standard deviations of the sources in
active and inactive mode, respectively. The parameters re-

quired to satisfy the sparsity conditions are Coff << (on

and p <K 1. In the simulation Con is set to 1 and Coff is set
to zero (a spiky model). Each column of the mixing ma-

trix is randomly generated using the normal distribution
which is then normalized to unity. The model (1) gener-

ates the mixtures, where N represents an Additive White
Gaussian Noise, where aTjm is the covariance matrix of
N. In this experiment, the mixing matrix changes linearly
with time according to A = A1 + A2t/T where A1 and
A2 are chosen randomly and T is set to 100000. The pa-

rameter p was set to 0.001 for synthetic signals. Fig. 3
shows that the algorithm will converge after some time2.
It can completely separate up to 50 sources while being
robust against noise and working for weak restrictions on

sparsity (even for p = 0.5, see Fig. 3).
Speech Data: In the second experiment, 8 typical speech

signals (with 16KHz sampling rate and without any pre-

2To have a perception of SNR values, it should be noted that for a

normalized mixing-separating matrix with 0.9902 on its main axis and
0.02 on all other elements, SNR is approximately 17dB. Whereas a main
axis of 0.9367 and other elements of 0.05, result in approximately 8.5dB

Figure 3. Synthetic source separating results: SNR shown
for n = 30, p .1, Jn = .01 (solid line); scale com-

parison: n = 50, p = .1, Un = .01 (dashed line); Noise
robustness: n = 30, p .1, Jn = .05 (crosses); and spar-

sity decreased with n 30, p = .5, Jn = .01 (asterisks).

processing) are mixed through an arbitrary mixing matrix,
with diagonal elements 1, and all other elements 0.5. The
experiment was performed 50 times for 50 random shifts
of speech signals (to create different signals). The average

instantaneous SNR (Fig. 4) grows rapidly and remains sta-
ble. Therefore, except for the first samples of signals, the
sources are recovered perfectly (see Fig. 4). By increasing
the amount of p the algorithm converges more rapidly, but
it converges to a smaller value of SNR3.

6. DISCUSSION AND CONCLUSIONS

In this paper, an adaptive sparse source separation method
is proposed. It has been shown that the method can track

3The reason for smaller ,u in speech experiment (0.0002 for speech,
compared to 0.001 for synthetic) lies in temporal correlation of speech
signals in short-length time windows.
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1. Apply whitening to the mixture matrix.

(a) Let E and V be the eigenvalue and eigenvector ma-
trices of the covariance matrix of the mixtures.

(b) Set the whitening matrix W = E(-1/2) VT.

(c) Set X= WX

2. Start with B = 1m (for the case where m = n).
3. Choose a suitable decreasing sequence of [0-1 ...o*i], a

value for L, number of repetitions (usually about 100), and
a value for the factor ,u (about 0.001).

4. For i = 1 ... 1 set o- = oi and maximize H, by starting
from the current B by repeating the following loop L times:

(a) Set Y =BX (estimation of the sources).

(b) Set D E{(Y. * f (y))yT} where .* denotes
element-wise multiplication.

(c) Set B = (Tm -tD)B.

(d) Orthonormalize B; Set B = 2 -2BBT . (refer
to [2], sec. 6.5).

5. Set B = BW

1. Initialize the whitening matrix W = Tm

2. Repeat the following steps for t = 1 ... T and in each time
sample, for [0-1 ... oil]:

(a) Set X(t) = WX(t).

(b) Set W = W + It(Im kT(t)X(t)). (refer to [2],
sec. 6.4)

(c) Set Y(t) = BX(t) (estimation of the sources).

(d) Set D = [Y(t). * f<}(Y(t))]Y(t)T where .* denotes
element-wise multiplication.

(e) SetB = (Tm -tD)B.

(f) Orthonormalize B; SetB=3 3 -_BB B.
2 2

3. SetB = W
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Figure 4. Speech Separation results: Top figure shows
the average instantaneous SNR in 50 experiments for
, 0.0002 (solid line), p = 0.0003 (dashed line) and
, 0.0005 (dotted line) . Below, the original and online-
recovery of one of the eight signals are depicted.

channel variations and performs separation in medium scale
problems, while being robust against noise and requiring a
very weak restriction on sparsity. Also, the algorithm can
work with un-preprocessed mixtures of speech signals.
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