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ABSTRACT

Dictionary learning (DL) for sparse representation has been
widely investigated during the last decade. A DL algorithm
uses a training data set to learn a set of basis functions over
which all training signals can be sparsely represented. In
practice, training signals may contain a few outlier data,
whose structures differ from those of the clean training set.
The presence of these unpleasant data may heavily affect
the learning performance of a DL algorithm. In this paper
we propose a robust-to-outlier formulation of the DL prob-
lem. We then present an algorithm for solving the resulting
problem. Experimental results on both synthetic data and
image denoising demonstrate the promising robustness of our
proposed problem.

Index Terms— Sparse representation, dictionary learn-
ing, robustness, outlier data.

1. INTRODUCTION

Sparse representation modelling has received a lot of attention
during the last decade [1]. In a sparse representation problem,
given a collection of basis vectors, the goal is to decompose
natural signals and images as linear combinations of only a
few basis vectors. The efficiency of this approach has been
extensively investigated in many applications, e.g., image de-
noising [2], classification tasks [3], and so on.

An important problem in a sparse representation-based
application is choosing the appropriate set of vectors over
which each data can be sparsely represented. After [4], each
vector is called an atom, and their collection is called a dictio-
nary. One way to construct atoms of the dictionary is to use
pre-defined dictionaries such as Fourier, Gabor, Discrete Co-
sine Transform (DCT), and wavelets. Another method, which
is the focus of this paper, is to learn a sparsifying dictionary
from a set of training signals. This is known as the dictionary
learning problem [5], which has been shown to create dictio-
naries that are more efficient compared to pre-defined ones
[1, 2, 5].
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Consider a training data matrix Y ∈ Rn×L = [y1, . . . ,yL].
A general dictionary learning problem is to factorize Y as
Y ' DX with D ∈ Rn×K and X a sparse-column matrix,
where K > n and L � K. This is generally performed by
solving the following problem

min
D∈D,X∈X

L∑
i=1

‖yi −Dxi‖22 = ‖Y −DX‖2F , (1)

where ‖.‖F is the Frobenius norm, and D and X are admissi-
ble sets of the dictionary and the coefficient matrix, respec-
tively. D is usually chosen as the set of dictionaries with
unit column-norms. X is the set of matrices, X, with sparse
columns. A general approach to solve (1) is to use alternating
minimization. This is shown in Algorithm 1.

Algorithm 1 A general approach for dictionary learning

• Task: Dictionary learning for training data Y

• Initialization: Set t = 0, D(0), X(0)

• Repeat:

1. X(t+1) = argminX∈X ‖Y −D(t)X‖2F
2. D(t+1) = argminD∈D ‖Y −DX(t+1)‖2F
3. t← t+ 1

• Until: stopping criterion is met.

Line (1) in Algorithm 1 is indeed a sparse coding problem
for which many algorithms have been proposed [6]. The main
difference between various dictionary learning algorithms is
their approach for updating the dictionary (line (2)). Two
well-known algorithms are Method of Optimal Directions
(MOD) [7] and K-Singular Value Decomposition (K-SVD)
[8]. MOD finds the unconstrained minimum of the dictio-
nary update problem, which results in a closed-form solution,
and then projects it onto D by normalizing its columns. In
this way, MOD updates all atoms at once. K-SVD on the
other hand, uses a sequential approach to update the atoms
one-by-one.

978-1-4799-3694-6/14/$31.00 c©2014 IEEE



The basic assumption of most DL algorithms is that each
training signal can be modelled as a sparse linear combination
of the atoms of a dictionary plus a Gaussian residual vector,
which may correspond to additive Gaussian noise. In real
situations, however, this model does not provide a good de-
scription of the data. For example, when entries of the train-
ing signals are sparsely corrupted, the Gaussian noise is not
a good assumption and instead, a Laplace model for the ad-
ditive noise leads to better performance in many practical ap-
plications (see [9, 10]). Such a model has been previously
proposed in some works; for example, Lu et al. [9] used the
`1 norm1 function instead of the `2 norm in (1). Their pro-
posed algorithm, however, is not robust to additive Gaussian
noise. To take into account both additive Gaussian noise and
sparse corruptions, Chen and Wu [10] proposed a robust DL
problem by decomposing the residual vector into two com-
ponents: a non-sparse component for Gaussian noises and a
sparse component for large outliers.

In this paper, we consider a different situation in which
a few training signals (named as outliers) present among the
training signals that completely violate the basic model of DL
algorithms (sparse linear combinations of the atoms plus ad-
ditive Gaussian noise). Up to our best knowledge, no previ-
ous work has studied such a situation. Here, we do this by
considering a robust data model which takes into account the
outlier data. We then derive a DL algorithm suited to this
model. Finally we evaluate the effectiveness of the model and
the robust-to-outliers DL algorithm by performing some sim-
ulations on synthetic and real data.

The rest of the paper is organized as follows. In Section 2
we introduce our main idea. Our final proposed algorithm is
discussed in Section 3. Then, Section 4 presents the simula-
tion results.

2. THE MAIN IDEA

To take into account outlier data, we consider the following
data model

yi = Dxi + ni + oi, (2)

where ni is a zero-mean Gaussian vector, and oi is an outlier
vector: oi 6= 0 if the ith training signal is outlier and oi = 0
otherwise. It should be mentioned that a similar data model
has been proposed and used by Mateos and Giannakis [11]
towards robustifying the principal component analysis (PCA)
method. Here, however, we target the DL problem, which is
generally different from PCA and needs different algorithms
to solve.

To derive a robust DL formulation, we use this reasonable
assumption that the number of outlier data is much smaller
than the total number of training signals. Using this, we end

1The `p norm of a vector x for p ≥ 1 is defined as ‖x‖p , (
∑

i |xi|p)
1
p .

up with the following outlier-aware DL problem

min
D∈D,X∈X ,O

‖Y −DX−O‖2F + λ‖O‖2,0 (3)

where O = [o1 . . .oL] is the matrix of outliers, ‖O‖2,0 is
the mixed `2,0 (pseudo) norm of O which is defined as the
`0 (pseudo) norm of the vector o = [‖o1‖2 . . . ‖oL‖2]T , in
which the `0 norm of a vector simply counts the number of its
non-zero entries. Finally, λ is a hyper-parameter whose value
will be discussed in Subsection 3.2.

The `0 norm, however, is discontinuous and hence non-
differentiable. This makes the problem (3) difficult to solve.
A very popular alternative is the `1 norm which is the best
convex approximation to the `0 norm [12].

Using this alternative, we reach to the mixed `2,1 norm,
which is defined as the `1 norm of o. Our DL problem then
becomes as follows

min
D∈D,X∈X ,O

‖Y −DX−O‖2F + λ‖O‖2,1 (4)

Chen and Wu [10] has reached to a similar problem in which
‖O‖2,1 is replaced with ‖O‖1,1, which is defined as the sum
of absolute values of the entries of O. However, as said in
Section 1, they aimed to robustify the DL problem relative to
additive Gaussian noise and sparse corruptions.

In sparse decomposition literature, a problem of the usage
of `1 norm is that it is not differentiable. However, in the
above formulation we do not have such a problem because
the entries of o are non-negative and, hence, its `1 norm is
simply equal to the sum of its entries.

Note also that the previous two problems can be derived
from a Maximum A Posteriori (MAP) estimation approach.
To do so, assuming that the dictionary is deterministic and
known, consider for each xi a Laplace prior and for each oi
a distribution proportional to exp(−α‖oi‖02) (in the case of
problem (3)) or exp(−β‖oi‖12) (in the case of problem (4)).
Then, assuming independence of xi, ni, and oi, to derive the
MAP estimates of x and o, the following problem has to be
solved

max
x,o

p(x,o|y) = max
x,o
{p(y|x,o) · p(x) · p(o)} . (5)

where p(y|x,o) ∼ N (Dx + o, σ2I). Simple calculations
results in (3) or (4), where the sparsity constraints on X has
been included in X .

3. THE FINAL ALGORITHM

To solve the resulting optimization problem (4), we use alter-
nating minimization. In other words, we iteratively minimize
the objective function over just one variable while the other
two are kept fixed. We first initialize D and O, and then begin
the iterative optimization by performing minimization over
X. Conventional methods for initializing D, include using a



predefined dictionary like DCT, or constructing the atoms of
the dictionary by randomly choosing from the training signals
themselves [8]. The latter is not a good option in our problem,
since some of the outliers may be chosen as the atoms, which
in the sequel iterations may affect the overall performance. In
order to initialize O, we simply use the zero matrix. In other
words, at the first iteration all training signals are treated as
not being outliers.

Having initialized D and O, we iterate between the fol-
lowing three steps:

1. Sparse coding:

∀i : xi ← argmin
xi: sparse

‖yi −Dxi − oi‖22

2. Outlier update:

∀i : oi ← argmin
oi

‖yi −Dxi − oi‖22 + λ‖oi‖2

3. Dictionary update:

D← argmin
D∈D

L∑
i=1

‖yi −Dxi − oi‖22

Remark. A by-product of our proposed DL problem is a
robust sparse coding algorithm. In other words, with a fixed
dictionary, iterating between stage 1 and 2 of the above pro-
cedure corresponds to solving the following outlier-aware
sparse coding problem

min
x,o
‖y −Dx− o‖22 + λ‖o‖2 (6)

So, from this point of view, our outlier-aware DL algorithm
consists in iterating between two stages: outlier-aware sparse
coding and dictionary update. This two-stage approach has
another justification that in some applications e.g. image de-
noising where in one phase a dictionary is first learned and in
the other phase signals are approximated over the learned dic-
tionary, the second phase is actually performed via the above
outlier-aware sparse coding. For more details, see Section 4.

In what follows, we discuss these steps in more details.

3.1. Sparse coding

In the sparse coding stage, we actually find the sparsest rep-
resentations of the modified data vectors ∀i : zi = yi − oi
in the current dictionary. This is a general sparse representa-
tion problem and, indeed, any sparse coding algorithm can be
used to perform this stage. For example, one may use Orthog-
onal Matching Pursuit (OMP) algorithm, as we chose in our
simulations.

3.2. Outlier update

To update each outlier vector, the following problem has to be
solved

min
o
‖r− o‖22 + λ‖o‖2 (7)

where r = y−Dx is the residual vector. Setting the derivative
of the objective function equal to zero at the optimal point o∗

results in
o∗(1 +

λ

2 ‖o∗‖2
) = r. (8)

So, o∗ is a positive scale of r; that is, o∗ = αr where α > 0.
Substituting this into the above equation results in

o∗ =

{
(1− λ

2‖r‖2 )r, if ‖r‖2 > λ
2

0, otherwise
(9)

The above expression says that if the residual (the sparse rep-
resentation error) norm of a training data is above a threshold
λ, that point is recognized as an outlier; otherwise, it is rec-
ognized as a relevant data vector. From this, we also deduce
the role of the trade-off parameter λ; the smaller values for it,
the more points being declared as outliers.

3.3. Dictionary update

In the dictionary update stage, the following problem has to
be solved

min
D∈D

‖A−DX‖2F , (10)

where A = Y−O. Any dictionary update algorithm (see e.g.
[5]) can be used to solve the above problem, but we choose
to solve it by MOD due to its simplicity. Doing so, we obtain
[7]:

D← AX†, (11)

where X† denotes the Moore-Penrose pseudo-inverse of X
defined as X† = XT (XXT )−1.

4. EXPERIMENTAL RESULTS

In this section, we compare the performance of our outlier-
aware dictionary learning (OADL) algorithm with an ordi-
nary dictionary learning algorithm (here we use MOD) when
the training set contains a small number of outliers. At first,
we present the comparison of the two algorithms on synthetic
data and then we move to a more realistic experiment.

4.1. Synthetic data

In the synthetic data test, we first generated a random 25× 50
dictionary whose entries come from an i.i.d. N (0, 1) distribu-
tion and then scaled its columns to have unit `2 norm. We ran-
domly selected 3 atoms of dictionary and linearly combined
them using 3 i.i.d. N (0, 1) coefficients to generate a sam-
ple and using this procedure, we formed two sets of training



and test samples of sizes 2500 and 500, respectively. Training
samples were then scaled to lave unit `2 norm and a random
vector fromN (0, 0.012I) was added to each of training sam-
ples. To generate outliers, we added random vectors from
N (0, 0.042I) to some training samples and considered those
samples to be outliers.
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Fig. 1: Representation RMSE versus iteration. About 2% of
training samples are outliers.
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Fig. 2: Representation RMSE versus iteration. About 6% of
training samples are outliers.

The training signals were then fed into MOD and OADL
to estimate the underlying dictionary (DCT was chosen as the
initial dictionary in both algorithms). To compare the resul-
tant dictionaries, we examined their ability to approximate
test samples using 3 atoms in the sense of representation root
mean square error (RMSE), defined as ‖Y−DX‖F /(n ·L).
We conducted each experiment 20 times and the averaged re-
sults are reported.

Figure 1 shows the representation RMSE of test samples
along MOD and OADL when 2% of training samples were
outliers. In this case, the two algorithms perform nearly the
same in both steady state values and convergence speed, but
as the number of outliers with respect to training samples in-
creases, OADL shows its superiority. Figure 2 shows the rep-
resentation RMSE when 6% of the training samples were out-
liers. As can be seen, OADL outperform MOD significantly
in terms of representation RMSE while it converges a little
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Fig. 3: Representation RMSE versus iteration. About 12% of
training samples are outliers.
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Fig. 4: Difference in steady state values of the representation
RMSE between MOD and OADL versus percentage of out-
liers.

slower than MOD. According to our formulation, as the num-
ber of outliers increases, we go to a direction that violates our
assumption and as a result we expect a reduction in perfor-
mance of OADL. Figure 3 shows the representation RMSE
when 12% of the training samples were outliers and as we
see, OADL does not outperform MOD. This is because in this
case, the number of outlier blocks is not small enough com-
pared to to total number of training signals. Figure 4 shows
the difference in the steady state representation RMSE be-
tween MOD and OADL when the percentage of outliers is
varied. As we see, OADL is superior to MOD when the per-
centage of outliers is less than 12%.

Another important point that should be mentioned is the
procedure of choosing λ. As λ increases, we go toward MOD
and as it decreases, we go toward a situation that more sam-
ples are considered as outliers, so large λ is proper for small
percentage of outliers and small λ is suited for large percent-
age of outliers. For each of outliers percentage, we perform
the experiment for different λ between 0.05 and 1 with step-
size of 0.05. Figure 5 shows the best λ (λopt) that is the
lambda that minimizes RMSE of the representation of the test
data, for different values of outlier percentage. It is seen, be-



fore p = 6 the increase in outlier percentage leads to decrease
in λ as we expected, but after p = 6, increasing p also in-
creases λ which shows that OADL is going toward MOD.
In this situation, MOD is becoming better than our proposed
method.
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Fig. 5: Best λ, which minimizes test data representation
RMSE, versus percentage of outliers.

4.2. Image Denoising

Our second experiment is a denoising scheme using overcom-
plete dictionary learning [2]. Consider an image contami-
nated by a low variance i.i.d. normal noise and a high vari-
ance i.i.d. normal noise in small blocks in different parts of
the image. A general denoising scheme based on dictionary
learning is as follows. First, an overcomplete dictionary is
trained using (some of) the noisy image patches. Then, the
whole noisy image patches are denoised over the learned dic-
tionary. Some of the training patches may come from noisier
parts of the image which can be considered as outliers. In
this case, OADL can help us to train a better dictionary. De-
noising scheme using OADL is based on outlier-aware sparse
coding; see Section 2.

We used six benchmark images (Lena, Peppers, Camera-
man, House, Mandril and Pirate) of size 256×256. At first we
added a low variance (102) i.i.d. zero mean normal noise to
all pixels of each image and then we defined 9, 36×36 square
blocks equidistantly in each image (in 3 columns and 3 rows).
In each stage, we added high variance (202) i.i.d. zero mean
normal noise to the pixels of one block. To denoise each im-
age, 40,000 blocks of size 8×8 were randomly chosen as the
training signals. We use 20 iterations for dictionary learning
and 5 iterations for denoising each image patch.

In order to check the performance of different denoising
methods, we use PSNR defined as:

PSNR = 10 log
2552

MSE
(12)

where MSE is:

MSE =
1

m× n

m∑
i=1

n∑
j=1

{F̂(i, j)− F(i, j)}2 (13)

where m and n are image size, F is the original image and F̂
is the denoised image.

Figure 6 shows the averaged PSNR over six images for
different number of outlier blocks. We can see the robust-
ness of our algorithm against outliers. As the number of out-
lier blocks increases, OADL denoising scheme performs bet-
ter than the denoising schemes based on MOD and DCT. On
the other hand, MOD performance becomes superior to DCT
which shows that learning of dictionary shows its advantages.
To select λ, we perform our experiment for different λ be-
tween 5 and 100 with the step-size of 5 and choose the best λ
(λopt), that is, the lambda that maximizes the resultant PSNR.
Figure 7 shows λopt versus number of outlier blocks. As we
expected, increasing the number of outlier blocks lead to de-
crease in λopt (For MOD and DCT, as σ = 10 is not optimum,
we sweep σ between 10 and 20 with the step-size of 2 and se-
lect the best one in terms of maximizing PSNR).
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Fig. 6: Averaged PSNR over 6 different test images versus
number of outlier blocks.

Table 1 shows the result of denoising, in terms of PSNR,
for different number of outlier blocks (the denoising perfor-
mance using DCT has also been shown as a baseline). The
value of λ is chosen according to Fig. 7. As we can see in
Table 1, denoising based on OADL has superior performance
in most of benchmark images and number of outlier blocks.
Just in “Mandril” image, denoising based on MOD outper-
forms OADL in most of outlier block values which we be-
lieve it originates from high frequency components available
in the image. Our simulations show that increasing the num-
ber of atoms lead to a better performance in OADL than MOD
in “Mandril” image but it also increases the complexity and
time of simulations.

5. CONCLUSION

In this paper, we proposed a new dictionary learning algo-
rithm which is robust to outliers. Unlike previous robust
formulations for dictionary learning which target solely the
sparse corruptions in the training signals, we considered an
outlier as an unpleasant data vector included in the training



Table 1: Image denoising performance in PSNR for six different benchmark images. In each cell, top left, top right, bottom
left and bottom right correspond to the PSNR (in dB) of noisy image, denoised image using DCT, denoised image using MOD
and denoised image using OADL, respectively.

# Blocks Lena Peppers Cameraman House Mandril Pirate

2
27.48 33.05 27.48 33.06 27.48 32.69 27.48 33.57 27.48 29.97 27.48 31.49
33.21 33.44 33.29 33.55 32.84 33.98 33.87 34.15 30.03 29.89 31.63 31.66

4
26.92 31.77 26.92 31.80 26.92 31.53 26.92 32.18 26.92 29.27 26.92 30.57
31.93 32.31 31.98 32.38 31.66 31.98 32.39 32.83 29.37 29.32 30.71 30.84

6
26.43 31.10 26.43 31.09 26.43 30.87 26.43 31.58 26.43 28.49 26.43 29.72
31.33 31.68 31.32 31.76 31.03 31.24 31.87 32.30 28.58 28.50 29.92 30.04

8
26.00 30.54 26.00 30.56 26.00 30.32 26.00 30.99 26.00 28.17 26.00 29.90
30.97 31.27 30.98 31.38 30.57 30.78 31.91 32.08 27.82 27.94 29.27 29.46
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Fig. 7: Best λ, which maximizes PSNR, versus percentage of
outliers.

signals whose structure does not match the others. We then
propose an iterative algorithm to solve the resultant robust
problem. We finally experimentally evaluated the perfor-
mance of our proposed algorithm and traditional algorithms
by performing some simulations on synthetic and real data.
Simulations results emphasized on the robustness of the pro-
posed method against outliers. Also, as simulations showed,
to have a better performance in our algorithm, the number of
outliers should be small in comparison to the total number of
training signals (as a rule of thumb, the percentage of outliers
being less than about 12% leads to promising results).
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