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ABSTRACT

In this paper, we suggest to use a modified version of

Smoothed-�0 (SL0) algorithm in the sparse representation

step of iterative dictionary learning algorithms. In addition,

we use a steepest descent for updating the non unit column-

norm dictionary instead of unit column-norm dictionary.

Moreover, to do the dictionary learning task more blindly, we

estimate the average number of active atoms in the sparse rep-

resentation of the training signals, while previous algorithms

assumed that it is known in advance. Our simulation results

show the advantages of our method over K-SVD in terms of

complexity and performance.

Index Terms— Dictionary learning, Sparse represen-

tation, Compressed sensing, Sparse Component Analysis

(SCA).

1. INTRODUCTION

Sparse representation of signals has a wide range of applica-

tions in signal processing including underdetermined Blind

Source Separation (BSS) and Sparse Component Analysis

(SCA) [1] and Compressed Sensing [2]. In all applications,

there should be a dictionary such that the expansion of the

signal based on the columns of the dictionary (called atoms) is

sparse. So, finding the proper dictionary is a pre-processing

task in all the applications. One way is to use some pre-

defined analytically constructed dictionaries, e.g., Wavelet

Packets (WP) and Discrete Cosine Transform (DCT). They

should be designed analytically for each special class of sig-

nals. Another way is to learn a dictionary based on a set of

training signals, which is called dictionary learning.

In dictionary learning, we want to find a dictionary such

that the representations of all training signals in that dictio-

nary are sparse. Consider the following model:

Y = DX + E (1)
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where all the training signals are collected in a signal matrix

Y = [y1, y2, ..., yN ] and all the sparse coefficients are col-

lected in a coefficient matrix X = [x1, x2, ..., xN ] and N is

the number of training signals. D is an n × m overcomplete

dictionary (m > n) which supposed to be learned from the

training signals Y. m is the number of atoms and n is the

length of the signals. E is the collection of observation noises

which can also be considered as approximation errors.

Most dictionary learning algorithms use two step itera-

tive techniques to solve the problem. In the first step, they

use a sparse representation algorithm to determine the sparse

coefficients based on knowing the dictionary. In the second

step, they update the dictionary based on some criteria such

as maximizing a likelihood probability or minimizing a cost

function.

In Method of Optimal Directions (MOD) [3], an optimal

updated direction is computed by minimizing the total Mean

Square Error (MSE) and then a normalizing operation is done

to preserve the norm of the columns of the dictionary. This

normalization may increase the MSE. Some other statistical

methods assume prior sparse distributions for coefficients and

try to update the dictionary optimally in a Bayesian frame-

work [4], [5]. In [4], a Laplacian distribution is used for mod-

eling the sparse sources and update the dictionary based on

the Maximum likelihood (ML) of the dictionary by some ap-

proximations in computing the likelihood. In [5], some prior

information is used for the dictionaries and a Maximum A

Posteriori (MAP) dictionary estimate is used for dictionary

update. The K-SVD algorithm [6] uses a SVD operation for

updating only one column at each iteration based on reduc-

ing MSE. It also allows the coefficients to be updated after

each column update. Another SVD based method is also used

for dictionary learning in the case of unions of orthonormal

bases [7]. Recently, a regularized dictionary learning algo-

rithm is proposed to minimize a cost function under different

constraints on the dictionary [8].

In our paper, we use smoothed-�0(SL0) for finding sparse

coefficients which is a fast and accurate sparse representation

algorithm [9]. For finding exact sparse representation of the

training signals, we suggest to use a thresholded SL0 in the

sparse coefficient update stage of dictionary learning. Two

thresholding schemes are suggested which are thresholding
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on the number of active atoms and thresholding on the ampli-

tude of the coefficients. Both schemes are based on statistical

estimation techniques. In this paper, we focus only on the unit

column-norm constraint on the dictionary. We use a steepest

descent method to reduce the MSE by updating the non unit

column-norm dictionary elements because re-normalizing the

column norms after updating the unit column-norm dictionary

may increase the MSE.

2. THRESHOLDED SL0 FOR SPARSE
REPRESENTATION

In SL0 algorithm, �0 norm which is a discontinuous measure

of sparsity, is approximated by the continuous function [9]:

||x||0 ≈ m −
m∑

i=1

exp(− x2
i

2σ2
) (2)

where σ → 0. Then, SL0 uses a steepest ascent method, for

maximizing Fσ(x) �
∑m

i=1 exp(− x2
i

2σ2 ) subject to y = Dx
[9]. This algorithm is very fast and is about 2 or 3 orders of

magnitude faster than Basis Pursuit (BP) based on �1-magic

[9].

Our motivation to use this method is to reduce the com-

plexity of dictionary learning algorithms which is a more

complicated task than just a sparse representation problem. It

can be viewed as many simultaneously sparse representation

problem at the same time. The problem, in the dictionary

learning application in the noisy case, is that SL0 finds the

sparse coefficients which are not exactly sparse. It means

that since it uses numerical optimization of a continuous

approximation to �0 norm, all the coefficients have some am-

plitudes which may be very small. To find sparse coefficients

with limited number of nonzero coefficients, we suggest to

use two thresholding schemes on the solution of the SL0

algorithm.

2.1. Thresholding on the number of active atoms

In this method, we select the K largest coefficients of the SL0

solution. Similarly, K-SVD algorithm uses K atoms for sparse

representation which is done by Orthogonal Matching Pursuit

(OMP) [6]. In K-SVD, the number K is assumed to be known

in advance. But, we propose an statistical method to estimate

the average number of active atoms.

To estimate the number of active atoms in sparse repre-

sentations of training signals, we assume a statistical model

for the coefficients. We use Bernoulli-Gaussian (BG) model

for that. So, we assume:

p(xij) = (1 − p)δ(xij) + pN(0, σ2
r) (3)

where 1 ≤ i ≤ m and j is the index of the training signal

(0 ≤ j ≤ N ). p is the probability of having nonzero coeffi-

cient (or activity of atoms) and σ2
r is the variance of nonzero

coefficients. The probability of having exact k nonzero coef-

ficients has a binomial distribution which is p(K = k) =(
m
k

)
pk(1 − p)m−k. This binomial distribution can be ap-

proximated by a continuous Gaussian distribution which is

N(mp,mp(1 − p)). So, the Maximum likelihood estimation

of K, the number of active atoms, is mp that is the same as

the expected value of the binomial distribution. Therefore,

the average value of K is equivalent to its ML estimation and

is equal to mp.

To estimate p, we use some similar moment based tech-

niques which was used for parameter estimation in SCA [10].

In [10], the matrix is known in advance, but here we assume

a statistical nature for our dictionary matrix. We consider

each element of the training signal as a random variable as

yij =
∑m

r=1 dirxrj + eij . We use the second and fourth

order moment of this random variable for estimating p. We

have:

E(y2
ij) ≈ mE(d2

ir)E(x2
rj) (4)

E(y4
ij) ≈ mE(d4

ir)E(x4
rj) + 6

(
m

2

)
E2(d2

ir)E
2(x2

rj) (5)

where we neglect the noise term and we assume that dictio-

nary elements are zero mean and independent of BG coeffi-

cients. Since we assume that the columns of the dictionary

have unit norms, we can write
∑n

i=1 d2
ir = 1. Taking ex-

pectation from the both sides of this equation and assuming

that all the elements have identical distribution, we will have

E(d2
ir) = 1

n . We also have (
∑n

i=1 d2
ir)

2 = 1. Again, com-

puting expectation of both sides of this equation, we have

nE(d4
ir) + n(n − 1)E2(d2

ir) = 1. Then, we can find that

E(d4
ir) = 1

n2 . If we define m2 � E(x2
rj) and m4 � E(x4

rj),
they can be found by (4) and (5), in which E(d2

ir) = 1
n and

E(d4
ir) = 1

n2 and the second and fourth moment of training

signal elements yij are calculated by simple averaging. After

finding m2 and m4, similar to [10], the parameter p can be

estimated as:

p̂ =
3m2

2

m4
(6)

Therefore, in our method, we can find an estimation of

K̂ = mp̂ for the number of active atoms based on (6).

2.2. Thresholding on the amplitude of the coefficients

Another method for thresholding the solution of the SL0 algo-

rithm is to use a threshold on the absolute value of the ampli-

tude of the SL0 coefficients. To find some optimal threshold,

again we use another a bit different BG model for the coeffi-

cients. Now, we assign a small variance σoff for the small co-

efficients of the SL0 solution and a larger variance σon for ac-

tive coefficients. If x̃ij is the SL0 coefficient, we assume that

p(x̃ij) = (1−p)N(0, σ2
off)+pN(0, σ2

on), where σoff � σon.

Then, a hypothesis testing is used to decide the coefficient is

active or inactive. Using Bayes rule, the posterior probabili-

ties are p(Activity|x̃ij) ∝ p(Activity)p(x̃ij |Activity) and
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p(Inactivity|x̃ij) ∝ p(Inactivity)p(x̃ij |Inactivity) where

p(Activity) = p and p(Inactivity) = (1 − p). The likeli-

hood are also Gaussian. If we do some simple calculations

for hypothesis testing, we will find that the decision for the

activity is as follows:

Activity : |x̃ij | >

√√√√2 log 1−p
p

σon
σoff

1
σ2
off

− 1
σ2
on

� Thopt (7)

where the optimal threshold can be approximated with

Thopt ≈ ασoff where α =
√

2 log( 1−p
p

σon
σoff

). Because of the

sparsity of the coefficients, we can slightly overestimate σoff

by the variance of all the coefficients which is σ2
off � E(x̃2

ij).
For typical parameters p = .9 and σon

σoff
= 100, the value of α

is equal to 3.69.

3. STEEPEST DESCENT DICTIONARY UPDATE
WITH UNIT NORM COLUMN CONSTRAINT

In this paper, we focus on the unit column-norm constraint

rather than Frobeniuos-norm constraint. The authors of [8]

convert this constraint to a term in their cost function by a

Lagrangian method and because determining the optimum

Lagrangian multipliers was difficult, they used an iterative

method by adding some terms to their cost function to op-

timize it. Here, we solve the problem of preserving the

norm of the columns by considering a model that automat-

ically have unit norms for columns. If C is the non unit

column-norm dictionary and D is the unit column-norm dic-

tionary, then the relation between this two dictionaries is

dij = cij√Pm
i=1 d2

ij

. We use this relation to directly optimize

the non unit column-norm dictionary C by considering the

true MSE which is defined with respect to unit column-norm

dictionary D. The MSE, which we want to minimize or at

least to decrease, is F � MSE = ||Y − DX||. In K-SVD,

an Singular Value Decomposition (SVD) which is a complex

operation is done to update only one atom. But, we use a sim-

ple steepest descent method to decrease MSE with respect

to C. The steepest descent for the elements of matrix C is

cij ← cij − μ ∂F
∂cij

. We have ∂F
∂cij

= ∂F
∂dij

∂dij

∂cij
. By writing

F =
∑N

r=1 ||yr − Dxr||22 =
∑N

r=1(yr − Dxr)T (yr − Dxr)
and by some further calculations, we have:

∂F

∂dij
=

N∑
r=1

(−2yrxT
r + 2DxrxT

r ) (8)

The partial derivative
∂dij

∂cij
can also be computed easily as

gij � ∂dij

∂cij
= ||cj ||22−c2

ij

||cj ||32 , where cj is the j’th column of the

matrix C. Finally, the overall steepest descent for dictionary

update is:

C ← C − η(
N∑

r=1

(Dxi − yi)x
T
i ) 	 G (9)

where μ has been replaced by η just for scaling and the matrix

G is a correction matrix due to using the steepest descent for

matrix C (which has not any constraint) instead of the unit

column-norm dictionary D. The notation 	 is the Hadamard

product which means the element-wise multiplication.

4. EXPERIMENTS

In this section, we investigate our proposed method which

uses a new steepest descent formulation for dictionary up-

date. We used two thresholding schemes. One is thresh-

olding on the amplitude and the other is thresholding on the

number of active atoms. For abbreviation, we nominate them

ATH-SL0 (Amplitude THresholded SL0) and KTH-SL0 (K-

THresholded SL0), respectively. For performance compari-

son, we used the success definition as [6] with the difference

that we state the success in percent (number of all successes

divided by the number of columns). We repeated our exper-

iment for 20 times and report the averaged success of each

algorithm. We also use the CPU time as a measure of com-

plexity. Our simulations were performed in MATLAB7.0 en-

vironment using an Intel 2.80 GHz processor with 1024 MB

of RAM and under Linux operating system.

In our experiments, we used a random dictionary matrix

with uniformly distributed elements on [−1, 1], and then nor-

malized its columns. The dictionary size was selected as m =
40 and n = 20. The sparse coefficients were generated from

a BG model with parameters p = K
m and σr = 1 based on

model (3). K which is the average number of active atoms

was selected between 3 and 8. The training signals were gen-

erated from model (1). Number of training signals was se-

lected as 1000 and the variance of the Gaussian noise was

selected as σn = .01.

Our algorithm with its different versions are compared

with K-SVD algorithm in various conditions. In ATH-SL0,

we used α = 3 and α = 5. For KTH-SL0, we used two val-

ues for choosing the number of atoms. Firstly, we assumed

that K was known in advance. Secondly, we used our es-

timated value K̂ = mp̂. For K-SVD, we considered three

cases. Firstly, we assumed that the value of K was known

as a prior information. Secondly, we used an underestimate

K = 3. Thirdly, we used an overestimate value K = 7.

We first examine our parameter estimation approach

stated in Sec. 2.1. Table 1 shows the average estimated value

of K̂ = mp̂ versus K = mp averaged over 100 different

experiments and the variance of these estimations. It can be

seen that the accuracy of estimations is good. Secondly, the

performance of all algorithms are compared with each other

in Fig. 1. It can be seen that ATH-SL0 has the best perfor-

mance. The parameter α = 3 is better than α = 5 for wider

range of values for K. KTH-SL0 with estimated parameter is

worse than KTH-SL0 with true parameter (less than 10%). It

also can be seen that the performance of K-SVD is decreased

when the exact value of K is not known in advance in both
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Table 1. Result of estimating the averaged number of active

atoms for the case m = 40, n = 20, p = K
m , σr = 1 and

σn = .01.
K 3 4 5 6 7 8

Mean(K̂) 3.35 4.47 5.50 6.72 7.87 9.06

Var(K̂) 0.13 0.26 0.29 0.50 0.78 1.22
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Fig. 1. The success rate for various algorithms versus K. The parameters

are m = 40, n = 20, p = K
m

, σr = 1, σn = .01, η = 10−2 and

N = 1000. 20 iterations are used for all algorithms.

K = 3 and K = 8 cases. Figure 2 shows the simulation

time versus the value of K. It can be seen that our algorithm

is approximately one order of magnitude faster than K-SVD

because both sparse coefficient recovery stage (using SL0

instead of OMP) and the dictionary update stage (steepest

descent instead of SVD) is simpler than K-SVD.

5. CONCLUSION

In this paper, to reduce the complexity of dictionary learning

algorithms, we suggested to use the SL0 method. We pro-

posed two modified version of this algorithm to be used with

dictionary learning. We also estimated the average number

of active atoms in dictionary learning with a moment based

approach. We also used a modified steepest descent for up-

dating the direction of the non unit column-norm dictionary

instead of unit column-norm dictionary. In the simulations,

our algorithm shows better results than K-SVD both in terms

of complexity and performance.
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