
INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

N ◦ attribué par la bibliothèque

THESE EN COTUTELLE

pour obtenir le grade de

DOCTEUR DE L’INPG ET DE L’UNIVERSITE SHARIF

Spécialité : �Signal, Image, Parole, Télécoms (SIPT)�

préparée au Laboratoire des Images et des Signaux (LIS)

dans le cadre de l’École Doctorale �Électronique, Électrotechnique, Automatique,
Télécommunications, Signal (EEATS)�

et à l’université technologique SHARIF

présentée et soutenue publiquement

par

Massoud BABAIEZADEH MALMIRI

le 20 septembre 2002

Titre :

On blind source separation in convolutive
and nonlinear mixtures

Directeurs de thèse :

Christian JUTTEN
Kambiz NAYEBI

JURY

M. Dinh-Tuan PHAM , Président
M. Jean-François CARDOSO , Rapporteur
M. Pierre COMON , Rapporteur
M. Christian JUTTEN , Directeur de thèse
M. Kambiz NAYEBI , Directeur de thèse
Mme. Masoomeh NASIRI , Examinatrice

On blind source separation in convolutive and nonlinear

mixtures

Massoud BABAIE-ZADEH

ii

To my family

iv

Acknowledgements

First of all, I offer my special thanks to my thesis supervisor, Pr. Christian JUTTEN, who

has guided me through every step of the thesis with a high attention; and I am proud of

working with him during these years. I have to confess that his interest in research, and his

attention to his students is exceptional and for me, very motivational; he is one of the best

professors I have ever had.

Then, I acknowledge the members of the examination board: Dr. Kambiz NAYEBI, my

advisor at Sharif university of technology (Tehran, Iran), Dr. Pierre COMON and Dr. Jean-

François CARDOSO for accepting to be the reviewers of the thesis and their careful readings,

and Dr. Dinh-Tuan PHAM and Dr. Masoomeh NASIRI.

Finally, I have to thank all the members of the Laboratoire des Images et des Signaux

(LIS) at Grenoble, especially Mari-Noëlle RODET, Danuta EMONET, Michel CREPIN-

JOURDAN, Shahram HOSSEINI, Jordi SOLÉ i CASALS and Mohammad-Ali KHALIGHI.

vi

Contents

1 Introduction 1

2 State of the art 7

2.1 Introduction . 7

2.2 Linear instantaneous mixtures . 7

2.2.1 Separability and indeterminacies . 8

2.2.2 Independence criterion . 8

2.2.3 Geometrical source separation algorithm 12

2.3 Convolutive mixtures . 12

2.3.1 Algorithms in the time domain . 13

2.3.2 Algorithms in the frequency domain 17

2.4 Nonlinear mixtures . 18

2.5 Conclusion and discussion . 20

3 Separability of Nonlinear Mixtures 23

3.1 Introduction . 23

3.2 General nonlinear mixtures . 23

3.3 Smooth transformations . 24

3.4 Post Non-Linear (PNL) mixtures . 27

3.5 Convolutive PNL (CPNL) mixtures . 31

3.6 Conclusion . 32

4 Independence Criterion 33

4.1 Introduction . 33

4.2 Mutual information definition . 33

4.3 Independence in the convolutive context . 34

4.4 Mutual Information and gradient based algorithms 35

4.5 Multi-variate score functions . 37

viii CONTENTS

4.5.1 Definitions . 37

4.5.2 Properties . 38

4.6 Differential of the Mutual Information . 42

4.7 Estimating multi-variate score functions . 43

4.7.1 Estimating JSF . 43

4.7.2 Estimating SFD . 45

4.8 Mutual Information minimization . 49

4.8.1 General nonlinear mixtures . 49

4.8.2 Gradient approach . 52

4.8.3 Projection approach . 53

4.9 Application to linear instantaneous mixtures 53

4.9.1 Gradient approach . 53

4.9.2 Projection approach . 56

4.10 conclusion . 58

5 Convolutive Mixtures 59

5.1 Introduction . 59

5.2 Preliminary issues . 59

5.3 Gradient approach . 62

5.3.1 Calculating gradients . 62

5.3.2 Separating algorithm . 63

5.3.3 Experimental results . 63

5.4 Projection approach . 67

5.4.1 Calculating the optimal mapping . 67

5.4.2 Separating algorithm . 71

5.4.3 Experimental results . 71

5.5 A special case: Post-Convolutive mixtures . 72

5.5.1 Preliminary issues . 72

5.5.2 Estimating equations . 73

5.5.3 Separating algorithm . 75

5.5.4 Experiments . 75

5.6 Conclusion . 77

6 Post Non-Linear Mixtures 79

6.1 Introduction . 79

6.2 Geometric approach for separating PNL mixtures 80

6.2.1 Preliminary issues . 80

CONTENTS ix

6.2.2 Estimating the borders . 81

6.2.3 Compensating for the nonlinearities 82

6.2.4 Separating the linear mixture . 87

6.2.5 The algorithm . 88

6.2.6 Experimental results . 88

6.3 Gradient approach . 90

6.3.1 Estimating equations . 91

6.3.2 Separating algorithm . 93

6.3.3 Experimental results . 95

6.4 Projection approach . 96

6.4.1 Finding the optimal system . 96

6.4.2 Separating algorithm . 97

6.4.3 Experimental results . 98

6.5 Conclusion . 101

7 CPNL Mixtures 105

7.1 Introduction . 105

7.2 Gradient approach . 106

7.2.1 Estimating equations . 106

7.2.2 Separating algorithm . 108

7.2.3 Experimental results . 108

7.3 Projection approach . 112

7.3.1 Finding the optimal system . 113

7.3.2 Separation algorithm . 114

7.3.3 Experimental results . 114

7.4 Conclusion . 116

8 Conclusion and Perspectives 117

A Spline Functions 121

A.1 Definitions . 121

A.2 Some interesting properties of splines . 123

A.3 End-conditions in approximation with cubic splines 125

A.4 Multi-dimensional smoothing splines . 126

B Proofs 127

B.1 Theorem 4.1 . 127

B.2 Theorem 5.1 . 129

x CONTENTS

C Scalar Score Functions 131

D Kernel Estimators 133

D.1 Scalar density kernel estimation . 133

D.2 Multivariate density kernel estimation . 134

E Some simple lemmas 137

Chapter 1

Introduction

Blind Source Separation (BSS) or Independent Component Analysis (ICA) is a relatively new

subject in signal processing which has been started in the mid 80’s by the work of Ans, Hérault

and Jutten [7, 45, 44] when they were working on a biological problem (see [51] for historical

notes on BSS). The problem consists in retrieving unobserved independent mixed signals from

mixtures of them, assuming there is information neither about the original source signals, nor

about the mixing system (hence the term Blind1). This problem has a lot of applications

in different areas including feature extraction, brain imaging, telecommunications, speech

enhancement, etc [68].

Suppose we have N observed signals x1(t), . . . , xN (t) which are assumed to be the mix-

tures of N independent source signals s1(t), . . . , sN (t). Note that here the number of sources

is assumed to be equal to the number of observations. Then s(t) � (s1(t), . . . , sN (t))T and

x(t) � (x1(t), . . . , xN (t))T are called the source vector and the observation vector , respec-

tively. Hence, x(t) = F(s(t)), where F is the unknown mixing system. In the general form,

F may be nonlinear or may have memory. The goal of BSS is to construct a separating

system G (Fig. 1.1) in order to isolate in each component of the output vector y(t) � G(x(t)
)

the image of one source. In other words, each component of the output vector y(t) must

depend on only one component of s(t). In general case, this relation may be nonlinear or

have memory. To summarize, the goal is to obtain:

yi(t) = hi

(
sσ(i)(t)

)
, i = 1, . . . , N (1.1)

where σ is a permutation, and hi stands for any invertible mapping.

Since the sole information about the sources is their statistical independence, one can try

to construct the separating system G in such a way that the output vector has independent
1Strictly speaking, a totally blind solution is not possible because we need some assumptions about the

general form of the mixing system (linear instantaneous, convolutive, . . .).

2 Introduction

F G�� �s x y

Figure 1.1: Mixing and separating systems.

components. The important question is now: Does the independence of the components of

y (ICA) imply necessarily the separation of the sources (BSS) in the sense of (1.1)?

The answer of this question, which regards to the separability of a mixing model, is not

positive in the general case. This problem will be considered in more details in the chapter 3.

However, in the context of factor analysis, Darmois [32] and Skitovich [92] have proved

the following theorem for linear mappings F (refer to [52] for better accessibility):

Theorem 1.1 (Darmois-Skitovich) Let x1, . . . , xN be some independent random vari-

ables, and define the random variables y1 and y2 by:


y1 � a1x1 + a2x2 + · · · + aNxN

y2 � b1x1 + b2x2 + · · · + bNxN

(1.2)

If y1 and y2 are independent, all xk’s for which akbk �= 0 are Gaussian.

This theorem shows that nongaussian sources cannot be mixed linearly (and instanta-

neously) and generate independent outputs. Consequently, if the mixing-separating system

is linear and instantaneous (memoryless), the independence of the outputs insures the sep-

aration of the sources. In other words, linear instantaneous mixtures, are separable. By a

linear instantaneous mixture we mean a mixture of the form x = As, where A is called the

mixing matrix. Then, a separating matrix must be estimated to generate independent com-

ponent outputs y = Bx. However, there is two indeterminacies in estimating the sources in

a linear instantaneous mixture: a permutation and a change of scale. This can be seen from

the fact that the permutation of the sources or changing their energies has no effect on their

independence.

In many applications, an instantaneous (memoryless) mixing model may be unsuitable.

One can then consider linear convolutive mixtures. For these mixtures, the mixing matrix is

composed of linear filters:

x(t) = [A(z)] s(t) �
∑

k

Ak s(t − k) (1.3)

Naturally, the separating system, too, is chosen as a filter B(z) to generate y(t) = [B(z)]x(t).

It has been shown [108] that these mixtures, too, are separable. However, in this case, the

3

scale indeterminacy of the linear instantaneous mixtures is enlarged to a filtering indeter-

minacy. In other words, although the output independence results in the separation of the

sources, the resulting outputs are not the original sources, but filtered versions of them. This

indeterminacy is more severe than the scale indeterminacy of linear instantaneous mixtures.

However, as it has been shown in [91], the effect of each source on each sensor (that is, what

each sensor sees when all the other sources are zero) can be calculated after this separation

(this fact will be more explained in the next chapter).

The equivalency of ICA and BSS problems disappears as soon as we leave the linear

domain. We mention here an example which is derived from [98]:

Example. Suppose that s1 is a Rayleigh distributed random variable with the Probability

Density Function (PDF) ps1(s1) = s1 exp(−s2
1/2) and s2 is a random variable, independent of s1,

with a uniform distribution on [0, 2π). Consider now the nonlinear mapping:


y1 = s1 cos(s2)

y2 = s1 sin(s2)
(1.4)

Then the Jacobian of this transformation is:

J(s1, s2) =

[
cos(s2) −s1 sin(s2)

sin(s2) s1 cos(s2)

]
(1.5)

and:

py1y2(y1, y2) =
ps1s2(s1, s2)
|J(s1, s2)| =

1
2π

exp(−y2
1 + y2

2

2
) =
(

1√
2π

exp(−y2
1

2
)
)(

1√
2π

exp(−y2
2

2
)
)

(1.6)

Consequently y1 and y2 will be two independent Gaussian random variables with zero means and unit

variances.

This example shows that nonlinear systems can provide independent outputs without

separating the sources. Hence in the general case, nonlinear mixtures are not separable.

Although nonlinear mixtures are not separable in the most general case, we still can

find some practically important subclasses of them which are separable. An example is the

(instantaneous) Post Non-Linear (PNL) mixtures which is introduced by Taleb and Jutten

[98]. In the PNL mixtures, an instantaneous linear mixture is followed by component-wise

and invertible nonlinearities (see Fig. 1.2):

ei = fi

(∑
j

aij sj

)
, i = 1, . . . , N (1.7)

where ei’s are the observations. This type of mixing, corresponds to the (realistic enough)

case where the mixture is itself linear, but the sensors have nonlinear memoryless effects,

such as saturation. For separating these mixtures, one can use the mirror structure of

4 Introduction

A
f1

fN

g1

gN

B
�

�

�

�

�

�

�

�

�

�

wN

w1

eN

e1

xN

x1

sN

s1

yN

y1

...
......

...

Mixing System� � Separating System� �

Figure 1.2: The mixing-separating system for PNL mixtures.

Linear
�

�
...
�

�
... Linear

�

�

�

�
...

�

�

�

�

Linear
�

�
...

...

Figure 1.3: The mixing-separating system for a cascade of PNL mixtures.

the mixing system: compensating first for the nonlinear effects of the sensors, and then

separating the resulting linear mixtures. Taleb and Jutten [98] have proved that, for this

mixing-separating structure, the output independence implies the separation of the sources2.

Moreover, provided that the signals are really mixed before nonlinearities (i.e. if there is at

least two non-zero elements in each raw or each column of A), then the indeterminacies are

the same as linear instantaneous mixtures: a scale and a permutation indeterminacy.

An extension of PNL mixtures, is Convolutive Post Non-Linear (CPNL) mixtures, in

which a linear convolutive mixture is followed by component-wise nonlinearities (the same

system as in Fig. 1.2, but where A and B are convolutive). For independent identically

distributed (iid) sources, the separability of this model can be deduced from the separability

of PNL mixtures (see section 3.5).

Another extension of PNL mixtures is a cascade of PNL mixing blocks (see Fig. 1.3). This

model appears for example when the signals are amplified by several amplifying stages during

their propagations, or when the mixing system can be well modeled by a constrained3 Multi-

Layer Perceptron (MLP). By now, the separability of this model is still an open question

(see also [99]).

In this thesis, the extension of PNL mixtures to CPNL mixtures is addressed. The

materials of the thesis are organized as follows:

• Chapter 2 contains a brief state-of-the-art of the blind source separation problem, which

consists of spotlights on a few important results.

2Another proof will be given in section 3.4 for bounded sources.
3For separability using a mirror structure, it is intuitively required that each linear block is a square

invertible matrix.

5

• In chapter 3, the problem of separability in nonlinear mixtures is considered. In this

chapter, we present a new proof for the separability of PNL mixtures (for bounded

sources), and we point out the separability of CPNL model. We also show that in

general nonlinear mixtures, the smoothness of the nonlinear transformation does not

insure the separability. In other words, for separating nonlinear mixtures, having a

structural constraint seems to be essential.

• The independence criterion which is used (the mutual information) is considered in de-

tails in Chapter 4. We obtain an expression for its stochastic gradient, and we consider

the estimation of this gradient, too. We also show that the mutual information has no

local minimum (see theorem 4.2). Moreover, in this chapter we introduce two general

approaches for separating the sources using the gradient of the mutual information:

gradient and projection approaches. As an example, we use these approaches for sep-

arating linear instantaneous mixtures. In this chapter (see section 4.8.1), one can find

a method for general nonlinear ICA (which is not equivalent to source separation).

• Separating convolutive mixtures by means of the gradient and the projection ap-

proaches is considered in Chapter 5. Moreover, a special kind of the convolutive mix-

tures, called Post Convolutive mixtures, is considered in this chapter. We will show

that for this special convolutive mixture, contrary to general convolutive mixtures, the

instantaneous independence of the outputs is sufficient for separating the sources.

• Chapter 6 is devoted to PNL mixtures. In this chapter, in addition to gradient and

projection approaches, we present a geometric approach for separating the PNL mix-

tures of bounded sources. As a remark, the geometric approach shows the possibility

of nonlinear compensation before separating the sources.

• The CPNL mixtures is considered in chapter 7. Two algorithms, based on gradient

and projection approaches, are proposed.

• Finally, chapter 8 contains the conclusion and perspectives for future works.

6 Introduction

Chapter 2

State of the art

2.1 Introduction

The problem of Blind Source Separation (BSS) has been first introduced by Ans, Hérault

and Jutten [7, 45, 44] for linear instantaneous mixtures. Then, many researchers have been

attracted by the subject, and many other works appeared. For example, see [26, 14, 21,

61, 54, 96, 69, 74, 6, 98, 57, 79] which are some of the most important papers on linear

instantaneous BSS, and [68] which is a recently published book on the subject. A good

overview of the problem can be found in [18].

The early works on the BSS and ICA problems concerned linear instantaneous mixtures,

and by now, a lot of algorithms are available for separating them. Then, as an extension to the

instantaneous mixtures, the convolutive mixtures have been considered by some researchers

since early 90s [50, 100, 62, 23, 108, 58, 91].

Nonlinear mixtures have been much less considered in the literature [15, 75, 107, 98, 5],

and till now a very few results are available. One reason is of course the mathematical

difficulty of nonlinear systems, but another important reason is the fact that nonlinear mix-

tures are not separable (the separability problem in nonlinear mixtures is considered in more

details in chapter 3).

2.2 Linear instantaneous mixtures

The simplest BSS model is the linear instantaneous model, in which, the N observed sig-

nals x1(t), . . . , xN (t) are assumed to be linear instantaneous mixtures of N zero-mean and

statistically independent source signals s1(t), . . . , sN (t):

xi(t) =
N∑

j=1

aijsj(t) , j = 1, . . . , N (2.1)

8 State of the art

where aij are unknown constants. It must be noted that here the number of sources is

assumed to be equal to the number of observations. This model is compactly represented by

the matrix equation x(t) = As(t), or simply x = As, where A � [aij] denotes the unknown

mixing matrix, s � (s1, . . . , sN)T is an N × 1 column vector collecting the source signals

(usually called the source vector), and similarly x � (x1, . . . , xN)T is the observation vector.

The (linear instantaneous) BSS problem consists in finding an N×N separating matrix, such

that the output vector y = Bx is an estimate of the source vector s.

2.2.1 Separability and indeterminacies

The sole information about the source signals is their independence. If the components of y

are statistically independent, are they necessarily equal to the sources, i.e. B = A−1? We

can easily find some linear transformations which preserve the independence. For example,

permuting the sources, or changing their energies does not change their independence. On

the other hand, if s1 and s2 are both zero mean unit variance Gaussian sources, and A is

any unitary matrix (rotation transformation), it can be easily verified that y1 and y2 will

be independent, too. However, it has been shown [26] that these cases are the only cases

for which a linear transformation preserves the independence. More precisely, Comon has

shown in [26] that “if there is at most one Gaussian source, then the independence of the

components of y (and even pairwise independence) implies BA = PD, where P and D

represent a permutation and a diagonal matrix, respectively”. In other words, the linear

instantaneous mixtures are separable, up to some trivial indeterminacies (a permutation and

a change of scale), provided that there is at most one Gaussian source.

2.2.2 Independence criterion

From decorrelation to HOS

It is well known that the independence is much more than decorrelation. In fact, transforming

the observation vector to decorrelated outputs, which is usually called Principal Component

Analysis (PCA), is not sufficient for separating the sources (ICA).

Another way to state the insufficiency of the output decorrelation for solving the BSS

problem is as follows. For estimating the N × N matrix A, taking into account N scale

indeterminacies, we must determine N2 − N = N(N − 1) unknown coefficients. The decor-

relation constraints E {yiyj} = 0 for all pairs 1 ≤ i �= j ≤ N , gives us N(N −1)/2 equations,

which is not sufficient for determining A: the second order independence (decorrelation)

of the outputs only does “half of the ICA job”. This fact shows that for finding the other

required equations in a fully blind context, higher order independence constraints must be

2.2 Linear instantaneous mixtures 9

A W U� � � �s x z y

B

Figure 2.1: Decorrelation leaves an unknown rotation.

used. It also shows why the Gaussian sources cannot be separated: they have no higher

(than 2) order statistics.

Finally, it is interesting to note that the second order independence, reduces the ICA

problem to a rotation. In fact, suppose that the energies of the outputs are normalized and

consider the factorization B = UW of the mixing matrix, where W is the (spatial) whitening

matrix of the observations. In other words, for z = Wx, we have1 E
{
zzT
}

= I. Now, since

the outputs are independent, then from E
{
yyT
}

= UE
{
zzT
}
UT = I, we deduce UUT = I,

that is, U is a unitary (rotation) matrix. Consequently, the ICA transformation can be seen

as the cascade of a whitening and a rotation transformation (see Fig. 2.1).

The idea of the first work on BSS (HJ algorithm [44]) is that if, for two odd nonlinear

functions f and g, f(yi) and g(yj) (i �= j) are decorrelated, then from the Taylor expansion

of f and g, we deduct that all the cross-moments of yi and yj are zero, and hence these

variables are independent. Then, the algorithm is based on an adaptive manner for canceling

E {f(yi)g(yj)}. Although this claim is not true in the general case, and it has been shown that

there exists source distributions and nonlinear functions for which the algorithm converges

to spurious solutions [94, 59].

Looking for the other necessary independence constraints, some algorithms [50, 56, 22,

71, 61, 19] have used Higher Order Statistics (HOS) methods and mainly canceling 4th

order cross-cumulants [73] of the outputs (since 3rd order cumulants vanish for symmetric

distributions, they are not usually used in BSS).

Contrast functions

The concept of contrast functions for source separation has been first presented by Comon [26],

inspired from the contrast functions for deconvolution [37]. A contrast function for source

separation (or simply a contrast) is a real valued function of the distribution of a random

vector which is minimized when the source separation achieved. In other words, a contrast

1One way for finding this matrix is to use the Cholesky decomposition of the covariance matrix of the

observations. In other words, W is an upper triangular matrix which satisfies Rx = WWT , where Rx �
E
{
xxT
}

denotes the covariance matrix of x.

10 State of the art

function φ satisfies φ {Cs} ≥ φ {s} for any independent component random vector s, and

the equality holds if and only if C = PD, where P and D are a permutation and a diago-

nal matrix, respectively. Consequently, a source separation algorithm can be based on the

minimization of a contrast function of the outputs.

As an example, it has been shown [26, 18] that the sum of the 4th order cross-cumulants

of the components is a contrast function (provided that the prewhitening has been done).

Other examples can be found in [26, 18, 68].

Mutual Information

Another independence criterion or contrast function is the mutual information of the outputs.

The mutual information of the random variables y1, . . . , yN is defined as the Kullback-Leibler

divergence2 [27] of py(y) and
∏

i pyi(yi):

I(y) �
∫
y

py(y) ln
py(y)∏
i pyi(yi)

dy (2.2)

where y � (y1, . . . , yN)T and p denotes the Probability Density Function (PDF). Mutual

information can also be expressed by the equation:

I(y) =
N∑

i=1

H(yi) − H(y) (2.3)

where H(·) � −E
{
ln p(·)(·)

}
denotes the Shannon’s entropy. From the well known properties

of the Kullback-Leibler divergence [27], we know that I(y) is always non-negative, and is

zero if and only if py(y) =
∏

i pyi(yi), that is, if y1, . . . , yN are independent. Consequently,

I(y) is a contrast function for source separation, and separation algorithms can be designed

based on its minimization.

Mutual information and Maximum Likelihood

Source separation based on the minimization of the mutual information of the outputs has

another nice property which makes this approach very attractive: it is asymptotically a

Maximum Likelihood (ML) estimation of the sources [18, 95]. Consequently, more and more

recent works are based on this criterion [96, 78, 5]. This is also the criterion we have used

throughout this thesis.

2The Kullback-Leibler divergence between two probability density functions f(x) and g(x) is defined as∫ +∞
−∞ f(x) ln f(x)

g(x)
dx. It is well known that this quantity is always non-negative, and is zero if and only if f

and g are identical. Although it is not a distance (it is not symmetric), it can be seen as a measure of the

closeness of f and g.

2.2 Linear instantaneous mixtures 11

BSS and mutual information

The mutual information depends on the densities of the random variables, which must be

estimated from the data. One method for the estimation of the PDF of a random variable,

consists in writing an expansion like Edgeworth or Gram-Charlier [55]. This approach leads

again to cumulant-based contrast functions [26]. Another approach based on the mutual

information, is to calculate its gradient with respect to the separating matrix, and to estimate

this gradient from the data [96]. This approach points out the relevance of the score function

(the log-derivative of the density) of a random variable.

BSS and Non-Gaussianity

Another important class of source separation algorithms is based on the nongaussianity of the

outputs [35, 69, 60, 67]. To state the idea, suppose that the whitening z = Wx has been done,

and hence the unitary (rotation) matrix U must be estimated to achieve independent outputs.

Now, from y = Uz we have py(y) = pz(z)/|detU| = pz(z). Consequently, H(y) = H(z) and

I(y) =
∑

i H(yi) − H(z). Since H(z) does not depend on U, minimizing I(y) with respect

to U is equivalent to minimizing the sum of the marginal entropies. Moreover, −H(yi) can

be seen as the Kullback-Leibler divergence between the density of yi and a zero-mean unit-

variance Gaussian density (up to a constant term). This leads us to this conclusion that

U must be estimated to produce the outputs as nongaussian as possible. This fact has a

nice intuitive interpretation: from the central limit theorem [77] we know that the mixing

tends to gaussianize the observations, and hence the separating system should go to the

opposite direction. A well-known algorithm based on the nongaussianity of the outputs is

FastICA [67] which uses negentropy3 as a measure of nongaussianity.

Semi-blind approaches

Up to now, no time structure has been assumed about the sources (like time correlation or

nonstationarity). However, usual practical signals are not series of independent and identi-

cally distributed (iid) samples, and this fact can be used in source separation (see also [20]).

If we know that the sources have time correlations (i.e. they are colored signals which is

equivalent to dropping the first ‘i’ in iid), then in addition to E {yiyj} = 0, one can use the

decorrelation at different time lags:

E {yi(t) yj(t − τ)} = 0 , for all i, j, τ (2.4)

3The negentropy of a random vector (or random variable) is defined as the difference between it entropy

and the entropy of a Gaussian random vector with the same covariance matrix.

12 State of the art

This idea, which requires the existence of some time structure, results in second order sep-

aration algorithms [101, 68] (note that each τ �= 0 adds a set of N(N − 1) equations). In

addition to their simplicity, an advantage of second order algorithms is that they can be

applied for Gaussian sources, too.

On the other hand, if it is assumed that the sources are non-stationary (dropping the sec-

ond ‘i’ of iid), then we can divide the signals into short windows and consider the covariances

in each one:

Et∈Tk

{
yi(t)yj(t)

}
(2.5)

where Tk =
(
kT, (k + 1)T

]
. Then, the “joint diagonalization” of the covariance matrices at

different segments can separate the sources [65, 82].

2.2.3 Geometrical source separation algorithm

Another method for source separation is the geometric source separation algorithm [83, 64].

Since, we have generalized this method to Post Non-Linear (PNL) mixtures (see section 6.2),

we state it with some more details.

This approach, which holds essentially for two sources and two sensors, is based on a

geometrical interpretation of the independence of two random variables. To state the idea

more clearly, suppose that the marginal PDF’s of the sources s1 and s2 are non-zero only

within the intervals M1 ≤ s1 ≤ M2 and N1 ≤ s2 ≤ N2. Then, from the independence

of s1 and s2, we have ps1s2(s1, s2) = ps1(s1)ps2(s2), and hence the support of ps1s2(s1, s2)

will be the rectangular region {(s1, s2) | M1 ≤ s1 ≤ M2, N1 ≤ s2 ≤ N2}. In other words, the

scatter plot of the source samples forms a rectangular region in the (s1, s2) plane. The

linear mapping x = As transforms this region into a parallelogram region. Figure 2.2 shows

the scatter plot of the sources and the observations for two uniform random sources. Now,

without loss of generality (due to the scale indeterminacy), one can write:

A =

[
1 a

b 1

]
(2.6)

then it can be seen that the slopes of the borders of the scatter plot of the observations will

be b and 1/a. Hence, if we estimate the slopes of the borders of this parallelogram, we can

find the mixing matrix, and then easily separate the sources.

2.3 Convolutive mixtures

In linear instantaneous mixtures, it has been implicitly assumed that the difference between

the effect of one source on two different sensors is only a scale factor. However, in many

2.3 Convolutive mixtures 13

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s
1

s 2
(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

(b)

Figure 2.2: The joint distributions of s and x for a linear instantaneous mixture.

applications this is not the case, because one has to take into account the propagation in

the medium, from one source to different sensors. Consequently, each source passes through

different transfer functions for arriving to the different sensors.

The existing algorithms for solving this problem can be mainly divided in two different

categories: the algorithms in the time domain (eg. [25, 50, 100, 23, 24, 41, 58, 108, 62, 42])

and the algorithms in the frequency domain (eg. [106, 17]). Recently, a third approach based

on time-frequency representation has also been investigated [87, 86]. They are based on the

implicit source separation in the time-frequency plane, provided that the signals are sparse

in time and frequency. It seems to be very efficient, especially for speech signals.

2.3.1 Algorithms in the time domain

The model

In solving a convolutive BSS problem, we are dealing with the mixing model:

xi(t) =
N∑

j=1

aij(t) ∗ sj(t) (2.7)

where aij(t) denotes the impulse response from the j-th source to the i-th sensor, and ‘∗’ is

the convolution operator.

In discrete form, the model can be written as:

xi(n) =
N∑

j=1

[Aij(z)]sj(n) (2.8)

where Aij(z) =
∑

k aij(k)z−k is the transfer function between the j-th source and the i-th

14 State of the art

sensor, and [Aij(z)]sj(n) stands for the filtering operation:

[Aij(z)]sj(n) �
+∞∑

k=−∞
aij(k)sj(n − k) (2.9)

We can also rewrite these equations in the matrix form:

x(n) = [A(z)] s(n) �
∑

k

A(k)s(n − k) (2.10)

where A(k) is a matrix with entries aij(k).

The mixtures is then separated by a separating matrix B(z) = [Bij(z)] composed on

linear filters:

y(n) = [B(z)]x(n) (2.11)

Separability and indeterminacies

The convolutive mixing model is more complicated than the linear instantaneous mixing

model, and less considered in the literature (moreover, it has mainly addressed for the simple

case of two sources and two sensors). It has been proved [108] that the convolutive mixtures

are separable, that is, in a convolutive mixing-separating system, the independence of the

outputs insures the separation of the sources. But, the indeterminacies in this case are not

as trivial as in the instantaneous case: the permutation indeterminacy still exists, but the

scaling one now becomes a filtering indeterminacy. This can be seen from the fact that

if s1(n) and s2(n) are independent, then [H1(z)]s1(n) and [H2(z)]s2(n) are independent,

too, for any invertible filters H1 and H2. This indeterminacy may be unacceptable, since it

can strongly distort the sources. However, as it has been proposed by Simon [91], after the

separation of the sources, the effect of each source on each sensor can be estimated. To clarify

the idea, suppose that after the separation (i.e. after the independence of the outputs), yi(n)

is a filtered version of si(n). Now, let Hji(z) be the filter which minimizes:

E
{(

xj(n) − [Hji(z)]yi(n)
)2} (2.12)

then, from the independence of the sources we can say that [Hji(z)]yi(n) = [Aji(z)]si(n). In

other words, we can estimate the effect of the i-th source on j-th sensor, which is what the

j-th sensor sees when all the sources but the i-th one are zero.

Time domain algorithms can be divided into two main categories: second order ap-

proaches [41, 58, 104], and higher order approaches [50, 108, 100, 23, 24]. One can also

mention algorithms [1, 62, 42, 36] that convert first the convolutive mixture to an instanta-

neous mixture based on a second order approach, and this instantaneous mixture would be

separated with higher order approaches.

2.3 Convolutive mixtures 15

Second order approaches

These approaches can be seen as the generalization of the Widrow’s Adaptive Noise Can-

cellation (ANC) principle [105]. His adaptive noise canceling system is a special convolutive

mixture, in which we already know that one of the sources (called signal) has no influence

on one of the observations (called noise reference).

Weinstein et. al. [104] have used a second order approach for the case of 2 sources, and

2 sensors. In their approach, it is assumed that A11(z) = A22(z) = B11(z) = B22(z) = 1,

which is not restrictive, because of the filtering indeterminacy. Then, they use the fact that

the decorrelation of the outputs is equivalent to cancel the cross Power Spectral Density

(PSD) of the outputs [77], that is, Sy1y2(ω) ≡ 0. Then, it is obvious that at each frequency,

we have one equation, but two unknowns (B12(ω) and B21(ω)), which is not sufficient for

determining them. Hence, Weinstein et. al. assume that the sources are nonstationary. In

fact, they divide the signals into different segments, and they assume that in each segment the

sources are stationary, but their PSD is not the same in different segments. This assumption

permits them to construct the other required equations and separate the sources.

An adaptive second order algorithm has been developed by Van Gerven and Van Comper-

nolle [41]. This algorithm is based on an adaptive manner for canceling E {y1(t)y2(t − τ)} for

τ = 0 and τ = deg(B12), and E {y2(t)y1(t − τ)} for τ = 0 and τ = deg(B21). Consequently,

for insuring the uniqueness of the solution, they need to assume that the diagonal elements

of A(z) and B(z) are 1, and that A12, A21, B12 and B21 are Finite Impulse Response (FIR),

which is somewhat restrictive. They also assume that det(A(z)) is minimum phase (which

is required for having a causal inverse).

Lindgren and Broman [58] have proved that, under some assumptions, the decorrelation

of the outputs has a unique answer, and they developed an algorithm for decorrelating the

outputs. In their approach, it is first assumed that the sources are purely nondeterministic,

that is, they can be stated as the (linear) filtered versions of some white noises. They also

assume that A11(z) = A22(z) = B11(z) = B22(z) = 1 and that A12, A21, B12 and B21 are

FIR. They also need that A(z) be minimum phase, and causal, and in each Bij(z) (i �= j),

there is at least two non-zero coefficients. They also need that deg(Bij(z)) ≥ deg(Aij(z)).

Essentially second order approaches

These algorithms use a second order approach to convert the convolutive mixture to an

instantaneous mixture, which will be separated by a higher order approach.

Abed-Meraim et. al. [1], Gorokhov and Loubaton [42] and Mansour et. al. [63] have used

subspace methods for separating the sources. These algorithms require the knowledge of the

16 State of the art

exact degree of the mixing filters. Moreover, the number of sensors must be strictly greater

than the number of the sources. Another difficulty of this approach is the existence of very

large matrices, which results in high computational cost.

Delfosse and Loubaton [35, 36] have developed a linear prediction approach. In this

method, it is assumed that the sources can be stated as the outputs of some linear systems

which are excited by unit-variance white noises. If we denote these white noises by ν(t) =

(ν1(t), . . . , νN (t))T , it can be seen that ν(t) is a normalized innovation process4 of x(t).

Hence, a normalized innovation process of x(n) is first estimated with a linear prediction

approach, and it is converted to another independent component innovation process by means

of a linear instantaneous ICA method. The resulting innovation, is the innovation processes

of the sources, which can be used to determine the effect of each source on each sensor.

Higher order approaches

It seems that the first work on the convolutive mixtures has been proposed by Jutten

et. al. [50], as an attempt for extending the HJ algorithm to convolutive mixtures. In this

algorithm, an adaptive manner has been proposed for eliminating E {f(y1(n))g(y2(n − m))},
where f and g are two odd nonlinearities. N. Charkani et. al. [23, 24] have used the same

separation criterion, but with a different separating system.

In [100], Nguyen and Jutten proposed an algorithm for separating the convolutive mix-

tures based on the cancellation of the 4th order cross cumulant Cum22(y1(n), y2(n − k)).

Yellin and Weinstein [108] proposed an algorithm based on the cancellation of the cross

bi-spectra or tri-spectra of the outputs. The polyspectrum of the joint random processes

x1(t), . . . , xk(t) associated with the set of indices k0, k1, . . . , km ∈ {1, 2, . . . , k} is defined by:

Pxk0
xk1

···xkm
(ω1, . . . , ωm) �

∑
τ1

· · ·
∑
τm

Cum
(
xk0(t), xk1(t + τ1), . . . , xkm(t + τm)

)
e−j
∑m

i=1 ωiτi

= F {Cum
(
xk0(t), xk1(t + τ1), . . . , xkm(t + τm)

)}
(2.13)

4The innovation process of a vectorial stochastic process x(n), is the process i(n) defined by i(n) =

[P(z)]x(n), where P(z) = 1 +
∑

k≥1 Pkz−k is the filter which minimizes:

P(z) = argmin
Q

E

{∥∥∥∥∥x(n) +

∞∑
k=1

Qkx(n − k)

∥∥∥∥∥
2}

Now, if Ri � E
{
i(n)iT (n)

}
is the covariance matrix of i, and L is a matrix satisfying Ri = LLT , then it can

be seen that the covariance matrix of ν(n) � L−1i(n) is I. Then, ν(n) is called the normalized innovation

process of x(n). It can be easily verified that, for any unitary matrix U, Uν(n) is also an innovation process

of x(n).

2.3 Convolutive mixtures 17

They prove that, under some mild assumptions, the joint cancellation of the bi-spectra

Py∗
1y1y2(ω1, ω2) and Py∗

2y2y1(ω1, ω2) implies the separation of the sources. This requires

that Py∗
i yiyi(ω1, ω2) is not identically zero, which is not satisfied if yi has a symmetric den-

sity. For symmetric densities, they propose to use the joint cancellation of the tri-spectra

Py∗
i yiyiy∗

j
(ω1, ω2, ω2) (i �= j) for separating the sources.

2.3.2 Algorithms in the frequency domain

In frequency domain approaches [106, 17], the mixing system is first written in the frequency

domain:

X(f) = A(f)S(f) (2.14)

which is like an instantaneous mixture (but with a varying mixing matrix). There are

two difficulties for using the instantaneous ICA techniques for separating this instantaneous

model:

• If we divide the frequency band into different frequency bins, and if we assume that

in each bin A(f) is approximately constant (but complex-valued), then for the i-th

frequency bin we can write:

X(i)(f) = A(i)S(i)(f) (2.15)

which corresponds to an instantaneous mixture, that can be separated by using an

instantaneous BSS technique. This gives an estimation of the sources Ŝ(i)
k (f) (k =

1, . . . , N) in that bin. However, we know that in the instantaneous BSS methods, the

sources are estimated with a permutation and a scale indeterminacies. Consequently, a

manner must be found for (a) associating an estimated source in a frequency bin to one

of the estimated sources in the neighbor frequency bin, and (b) adjusting its energy.

• From the central limit theorem we know that the Fourier transform of a random source

tends to be Gaussian. But the instantaneous BSS techniques based on high order

statistics are not efficient for the distributions near Gaussian: one has to prefer second

order algorithms using extra information like time correlation or nonstationarity of

sources.

Servière et. al. [16, 17, 29] have considered this approach for the case that the sources come

from rotating machines. They have shown that the Fourier transform of these sources does

not become Gaussian. Then in each frequency bin a method based on PCA followed by

canceling 4-th order cross-cumulants has been used for separating the instantaneous mixture

in each frequency bin. Finally, for solving the permutation problem, they introduce a method

based on the coherence between the sources estimated in adjacent frequency bins.

18 State of the art

2.4 Nonlinear mixtures

An (instantaneous) nonlinear mixing system, in its most general form, is a mapping x = F(s),

where x and s denote the observation and source vectors, respectively. One has then to find

another mapping y = G(x) such that the components of y be independent (ICA). However, in

nonlinear mappings, independence does not imply source separation (BSS). Hence, nonlinear

mixtures are not separable, and the independence assumption is not strong enough to lead

to source estimation. In other words, for nonlinear mixtures, a totally blind solution is not

possible and one must have some extra information e.g. about the structure of the mixing

system. In the next chapter, we will consider the separability problem of nonlinear mixtures

with more details.

The problem of nonlinear mixtures traces back to [49], where C. Jutten used soft nonlinear

mixtures in order to assess the robustness and the performance of the HJ algorithm.

Later, Burel [15] proposed a neural network based solution. In his algorithm, it is assumed

that the mixing structure in known but depends on unknown parameters. Then, despite

the restricted model, the algorithm tries to find independent outputs by means of a very

complicated independence criterion.

Pajunen et. al. [75] used the Kohonen’s Self-Organizing Maps (SOM) for separating the

nonlinear mixtures. The SOM [43] is a well known mapping method that, in an unsupervised

manner, learns a nonlinear mapping from the data into a (usually) two-dimensional grid. It

is based on quantizing the data with an array of neurons. The SOM can be used to map

the data so that it would be uniformly distributed on the rectangular grid. Then they use

this approach to find a mapping that transforms the observations to a uniformly distributed

grid data. Moreover, this approach counts on the smoothness of the transformation provided

by a SOM5. One difficulty of this approach is the tendency to create uniformly distributed

outputs. To solve this problem, in [76], Generative Topographic Mappings (GTP) has been

used as an alternative to SOM’s [68]. In this approach, the sources can have any distribution,

but it must be previously known.

Deco and Brauer [34] also addressed the problem, considering a volume preservation con-

dition on the nonlinear transforms. Yang et. al. [107] have also studied the problem for special

kind mixtures, with the assumption that the inverse nonlinearities can be approximated with

a two layer perceptron.

Valpola et. al. [102, 103] proposed an ensemble learning approach. In their approach, the

mapping from s to x is modeled by a Multi-Layer Perceptron (MLP) neural network, and

5In section 3.3 we will present an example of a smooth nonlinear mapping which maps two uniform

independent random variables to two other uniform independent random variables. Consequently, the SOM

can do nothing for separating it.

2.4 Nonlinear mixtures 19

G
ψN

ψ1

�

�

�

�

�

�

xN

x1

yN

y1

zN

z1
...

...
......

Separating
system

� � uniform
pdf

� �

Figure 2.3: The idea used by Almeida.

A
f1

fN

g1

gN

B
�

�

�

�

�

�

�

�

�

�

wN

w1

eN

e1

xN

x1

sN

s1

yN

y1

...
......

...

Mixing System� � Separating System� �

Figure 2.4: The mixing-separating system for PNL mixtures.

the learning procedure is based on the unsupervised Bayesian ensemble learning.

Another method (used for both linear and smooth nonlinear mixtures), which is based

on the outputs’ mutual information, has been proposed by Almeida [5]. This approach

can be seen as an extension of the INFOMAX method of Bell and Sejnowsky [14]. In this

approach, the independence criterion is the mutual information of the outputs. However, for

its minimization, they first apply invertible componentwise nonlinearities on each output (see

Fig. 2.3). It can be shown that the mutual information remains unchanged by componentwise

invertible nonlinearities, and hence I(y) = I(z) =
∑

i H(zi) − H(z). Almeida uses the

Cumulative Probability Functions (CPF) of yi’s as the nonlinearities and hence each zi

is always uniform and H(zi) is constant. Consequently, minimizing I(y) is equivalent to

maximizing H(z) (in the original INFOMAX algorithm, ψi’s are some fixed functions). Then,

he uses a neural network approach for maximizing H(z) and generating independent outputs.

Most of the above works, even if they are based on a good intuition, lacked theoretical

justification. In fact, in most of the cases, the goal has been to find independent component

outputs, which, in general nonlinear mixtures, is not equivalent to the separation of the

sources. In some works, this is justified by forcing the transformation to be smooth (with

G modeled by neural networks for instance), with the hope that a smooth transformation

cannot both preserve the independence and mix the sources. However, as we will see in the

next chapter, this is not the case (see section 3.3). Consequently, for separating nonlinear

mixtures, adding some knowledge about the structure of the mixing system seems to be

essential.

20 State of the art

The Post Non-Linear (PNL) mixtures that have been presented in the previous chapter,

have been first introduced by A. Taleb and C. Jutten [98, 97, 95], as a realistic nonlinear

mixture which is separable. Figure 2.4 shows the mixing-separating system. These mixtures

have also been considered by some other researchers [2, 3, 109]. For separating these mix-

tures, Taleb and Jutten have used the mutual information of the outputs as the separation

criterion, and then developed a gradient based approach for adjusting the parameters of the

separating system. In [98] they used MLP’s for modeling the compensating nonlinearities,

but in [97] they proposed a non-parametric approach for estimating the nonlinearities. This

non-parametric approach has been developed more clearly in [2].

2.5 Conclusion and discussion

In this chapter we briefly reviewed the blind source separation methods for linear (instanta-

neous and convolutive) and instantaneous nonlinear mixtures.

With a look at the existing methods for separating the convolutive and the PNL mixtures,

we notice that the extension to Convolutive Post Non-Linear (CPNL) mixtures is not obvious.

The difficulty comes from the fact that the criteria used for separating the convolutive and the

PNL mixtures are different. In PNL mixtures, the criterion used is the mutual information

of the outputs. Till now, this criterion has never been applied for separating convolutive

mixtures. Moreover, the extension of methods used in convolutive mixtures to PNL mixtures

is not possible or is very difficult. For example, it does not seem that the 4-th order cumulant

methods is suitable for nonlinear mixtures, because although the fourth order independence

is sufficient for separating linear mixtures, its sufficiency in nonlinear mixtures is not obvious.

In fact, in [98] the authors have shown the inefficiency of the estimation of a PDF with the

Gram-Charlier expansion for separation of PNL mixtures, which is equivalent to using 4th

order cumulants.

Consequently, we will first develop a method for separating the convolutive mixtures

based on minimizing the mutual information of the outputs, i.e. the same criterion used for

separating PNL mixtures. This method is presented in the chapter 5.

Moreover, the methods of separating instantaneous PNL mixtures cannot be easily ex-

tended to the convolutive case. In fact, as we will see in the chapter 4, the method of

Taleb and Jutten, relies highly on the instantaneous relation y = Bx (see Fig. 3.4) and

py(y) = px(x)/|detB|, for calculating the gradients of the mutual information of the out-

puts with respect to the nonlinearities. To overcome this problem, we compute an expression

for the differential of the mutual information in the general case (see Theorem 4.1). Using

this differential, we first develop another method for the separation of the PNL mixtures

2.5 Conclusion and discussion 21

based on minimization of the mutual information of the outputs (it is the subject of the

chapter 6).

Finally, the combination of the different approaches for separating convolutive and PNL

mixtures, results in an algorithm for separating CPNL mixtures, which is presented in the

chapter 7.

22 State of the art

Chapter 3

Separability of Nonlinear Mixtures

3.1 Introduction

In this chapter, the problem of separability is considered. A model is called separable, if the

independence of the outputs implies the separation of the sources, that is, if ICA and BSS

are equivalent for that model.

To be more precise, consider a model y(t) = H(s(t)). This model is called separable, if the

statistical independence of the components of y insures that H is the trivial transformation:

yi(t) = hi

(
sσ(i)(t)

)
, i = 1, . . . , N (3.1)

where σ denotes a permutation. In other words, the separability of a model, enables us to

separate the sources only using the independence of the outputs.

As we saw in chapter 1, in the general case, such a property does not hold. Especially,

for any random vector it is always possible to find nonlinear systems which transform it to

a random vector with independent components [70].

It must be emphasized that source separation in the sense of (3.1), is not itself equivalent

to retrieve the original sources. This is because of the remaining distortion introduced by

the systems hi, which can strongly modify the source signals.

3.2 General nonlinear mixtures

In linear instantaneous domain, the transformation which maps a non-Gaussian random

vector with independent components to another random vector with independent components

must be trivial (which is here a mixture of permutation and scaling), that is, it is unique

up to some trivial transformation. This property is a direct result of the Darmois-Skitovich

theorem, which has been mentioned in Chapter 1. However, in nonlinear mappings, such a

24 Separability of Nonlinear Mixtures

transformation is by no means unique, and hence the nonlinear mixtures are not separable.

A simple example has been mentioned in chapter 1.

This result has been established in early 50’s by Darmois [31] (in factor analysis domain),

where he used a simple constructive method for decomposing any random vector as a non-

trivial mapping of independent variables.

The uniqueness and existence of the transformations which preserve the independence

has also been addressed by Hyvarinen and Pajunen [70]. As it has been shown in their

paper and is strongly inspired from the Darmois’ work, it is always possible to construct a

transformation which maps any random vector to a random vector with uniform distribution

on the hypercube [0, 1]N (which clearly has independent components). Moreover, they have

presented a Gram-Schmidt like recursion for actually constructing such a transformation.

These results show the existence of non-trivial transformations H which still “mix” the

variables while preserving their statistical independence. This is a negative result, because it

shows that, for general nonlinear systems, without constraints on the transformation model,

source separation is simply “impossible” by only using the statistical independence.

In the conclusion of [31], Darmois clearly states: “These properties [. . .] clarify the

general problem of factor analysis by showing the large indeterminacies it presents as soon

as one leaves the field, already very wide, of linear diagrams”.

3.3 Smooth transformations

At the first glance, one may think that the nontrivial mappings which preserve the inde-

pendence are very complicated mappings. Hence, there are some works on nonlinear BSS

(e.g. [75, 5]) which constraint the nonlinear mapping to be a smooth transformation, with

the hope to avoid the nontrivial transformations with this regularization.

However, this is not true. The following example shows that even smooth transfor-

mations are able to mix independent sources and preserve their statistical independence.

Consequently, in nonlinear source separation, we prefer to add structural constraints which

are more restrictive than constraining the mapping to be smooth.

Example. Let s1 and s2 be two independent random variables. Now consider a rotation in

such a way that the angle of rotation depends on ‖s‖, where s = (s1, s2)T :[
y1

y2

]
=

[
cos α − sin α

sin α cos α

][
s1

s2

]
, α = f

(√
s2
1 + s2

2

)
(3.2)

where f is a differentiable function. The Jacobian matrix of this transformation is:

J �
[

∂y1
∂s1

∂y1
∂s2

∂y2
∂s1

∂y2
∂s2

]
(3.3)

3.3 Smooth transformations 25

 1

f(r)

r

α0

Figure 3.1: The graph of f defined in (3.12).

It can be easily seen that:

∂y1

∂s1
= (1 − s2

∂α

∂s1
) cos α − s1

∂α

∂s1
sin α (3.4)

∂y1

∂s2
= −(1 + s1

∂α

∂s2
) sin α − s2

∂α

∂s2
cos α (3.5)

∂y2

∂s1
= (1 − s2

∂α

∂s1
) sin α + s1

∂α

∂s1
cos α (3.6)

∂y2

∂s2
= (1 + s1

∂α

∂s2
) cos α − s2

∂α

∂s2
sin α (3.7)

and hence:

J =

[
cos α − sin α

sinα cos α

][
1 − s2

∂α
∂s1

−s2
∂α
∂s2

s1
∂α
∂s1

1 + s1
∂α
∂s2

]
(3.8)

From this relation, we will have:

det(J) = 1 + s1
∂α

∂s2
− s2

∂α

∂s1
(3.9)

However, it can be seen that:

s1
∂α

∂s2
= s2

∂α

∂s1
=

s1s2√
s2
1 + s2

2

f ′
(√

s2
1 + s2

2

)
(3.10)

consequently det(J) = 1. Finally, we have:

py1y2(y1, y2) = ps1s2(s1, s2) (3.11)

Consider now for example:

r ∈ R
+ ⇒ f(r) �

{
α0(1 − r)n ; if 0 ≤ r ≤ 1

0 ; if r ≥ 1
(3.12)

The graph of this function is sketched in Fig. 3.1. This is a smooth function (it is n − 1 times

differentiable everywhere). Moreover, with f defined as (3.12), the transformation (3.2) maps the

region −1 ≤ s1, s2 ≤ 1 to −1 ≤ y1, y2 ≤ 1. Consequently, from (3.11), we conclude that this

mapping transforms two independent random variables with uniform distributions on (−1, 1) to two

other independent random variables with the same distributions. That is, in spite of its smoothness,

this transformation is not trivial but preserves the independence. Figure 3.2 shows the resulting

mapping for n = 2 and α0 = π/2 and Fig. 3.3 shows the input and output joint distributions for two

independent random variables with uniform distributions on (−1, 1)1.

26 Separability of Nonlinear Mixtures

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s
1

s 2

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y
1

y 2

Figure 3.2: A smooth mapping.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s
1

s 2

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y
1

y 2

Figure 3.3: The input-output joint distributions for the mapping of Fig. 3.2.

The above example shows that, a regularization constraint (looking for a smooth map-

ping) is not sufficient for separating nonlinear mixtures. Then, we suggest to use structural

constraints for avoiding non-trivial transformations. In other words, a totally Blind solution

is not possible, and we need to have, or assume, a certain structure for the mixing system,

and consequently for the separating system, too.

Kagan et. al. [53] have been extended the Darmois-Skitovich theorem (chapter 1) to a

subclass of nonlinear mappings, and its usage in BSS has been considered by Eriksson and

Koivunen [38]. Here, we will consider two other important subclass of nonlinear mappings,

for which a separability result can be stated.

1Notice that any random variable x, can be transformed to a uniform random variable on [0, 1] with the

mapping y = Fx(x), where Fx is the Cumulative Probability Function (CPF) of x. Hence, we can construct

many other independence preserving transformation based on this example.

3.4 Post Non-Linear (PNL) mixtures 27

A
f1

fN

g1

gN

B
�

�

�

�

�

�

�

�

�

�

wN

w1

eN

e1

xN

x1

sN

s1

yN

y1

...
......

...

Mixing System� � Separating System� �

Figure 3.4: The mixing-separating system for PNL mixtures.

3.4 Post Non-Linear (PNL) mixtures

One important subclass of separable nonlinear mixtures, is the so called Post Non-Linear

(PNL) mixtures (we will design separation algorithms for these mixtures in chapter 6). As

it has been explained in chapter 1, a PNL mixture consists of a linear mixture followed by

componentwise nonlinearities, which correspond to nonlinear effects of the sensors. Fig. 3.4

shows the mixing-separating system for these mixtures. As it can be seen in this figure, the

separating system first tries to compensate for the sensor nonlinearities and then separate

the resulting linear mixture.

The separability of this mixing-separating system has been already pointed out [98, 95].

Here, we propose another proof for the separability of these mixtures for bounded sources.

For sake of simplicity, we first state the proof for the case of two sources and two sensors,

and then we point out how it can be extended to more general cases. This proof will also

result in a method for separating PNL mixtures (section 6.2).

The proof is based on a geometric interpretation of the statistical independence. In fact,

if the sources s1 and s2 are independent (with a unimodal bounded distribution), then the

joint distribution of (s1, s2) forms a rectangular region in the (s1, s2) plane. In fact, note that

ps1s2(s1, s2) = ps1(s1)ps2(s2). Hence, if ps1(s1) and ps2(s2) have the supports M1 ≤ s1 ≤ M2

and N1 ≤ s1 ≤ N2, respectively, then the support of ps1s2(s1, s2) will be the rectangular

region {(s1, s2) | M1 ≤ s1 ≤ M2, N1 ≤ s1 ≤ N2}. After applying the linear transformation

A, this rectangular region will be converted to a parallelogram region in (w1, w2) plane (see

Fig. 3.5). As we have seen in section 2.2.3, the geometric source separation method for linear

mixtures, is based on the slope estimation of the parallelogram borders, which determines

the mixing matrix.

For PNL mixtures, the output independence, means that the joint distribution of (y1, y2)

is a rectangular region, and hence the joint distribution of (x1, x2) is another parallelogram.

Consequently, if we prove that the only componentwise transformation which maps a paral-

lelogram to a parallelogram, is a linear transformation, then the separability of PNL mixtures

will be proved (i.e. it proves that output independence results in the linearity of the functions

28 Separability of Nonlinear Mixtures

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s
1

s 2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

w
1

w
2

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

e
1

e 2

Figure 3.5: The joint distributions in s, w and e planes for PNL mixtures.

gi◦fi, and consequently in separating the sources up to the classical indeterminacies of linear

instantaneous mixtures).

We first present the following theorem, which states such a property for the ‘borders’ of

a parallelogram:

Theorem 3.1 Consider the transformation:{
x1 = h1(w1)

x2 = h2(w2)
(3.13)

where h1 and h2 are analytic functions2. If the borders of a parallelogram in the (w1, w2)

plane are transformed to the borders of a parallelogram in the (x1, x2) plane, and the borders

of these parallelograms are not parallel to the coordinate axes, then, there exist constants a1,

a2, b1 and b2 such that: {
h1(x) = a1x + b1

h2(x) = a2x + b2

(3.14)

Before proving the theorem, we mention a few remarks.

Remark 1: The above theorem is stated for the borders of the parallelograms, not the

whole region itself. Hence, to use it for proving the separability of PNL mixtures, we must

prove that the borders of a parallelogram in (w1, w2) plane will be transformed to the borders

of the parallelogram in (x1, x2) plane. This can be done with the assumption that h1 and h2

are monotonous (which is equivalent to assume that they are invertible). In fact, with (3.13),

w2 = cte is mapped into x2 = cte. Moreover, as it has been shown in Fig. 3.6, if h1 and

h2 are monotonous, then the point order on this line remains unchanged (h1 increasing) or

reversed (h1 decreasing). Therefore, the borders of any transformed region in (x1, x2) are the

mappings of the borders of the corresponding region in (w1, w2). Hence, the above theorem

also proves that the only componentwise mapping (with monotonous nonlinearities) which

transforms a parallelogram region to a parallelogram region is a generalized linear mapping.
2A function is called analytic on an interval, if it can be expressed with a Taylor series on that interval.

3.4 Post Non-Linear (PNL) mixtures 29

1 2 3 4

1 2 3 4

x1

x2

w1

w2

w∗
2

x∗
2

Figure 3.6: Under a componentwise mapping with monotone nonlinearities, the borders of a

region will be mapped to the borders of its transformation.

Remark 2: Note that the theorem holds only when the borders of the parallelogram

are not parallel to the coordinate axes. In fact, any componentwise transformation will

transforms a rectangle with the borders parallel to coordinate axes to another rectangle.

This condition, is another statement of the fact that in PNL mixtures, we need that the

sources are really mixed before nonlinearities, that is, there must be at least two non-zero

elements in each raw or each column of the mixing matrix A.

Remark 3: The theorem shows that, as for linear mixtures with bounded sources, the

borders of the joint plot are sufficient for separating the sources.

Remark 4: The existence of the constants b1 and b2, emphasizes on a DC3 indeterminacy

in separating PNL mixtures. This indeterminacy exists also in linear mixtures but is generally

skipped by assuming zero-mean sources.

Remark 5: The theorem suggests a geometrical method for separating PNL mixtures:

first, estimate the borders of the scatter plot of (e1, e2), then find the unique (up to a scale and

a DC indeterminacies, as suggested by (3.14)) componentwise transformation which maps

these borders to a parallelogram, and finally separate the resulting linear mixture. We will

develop this method in details in section 6.2. However, although the proof is mathematically

applicable to all independent and bounded sources, the separation method is practically

restricted to the sources that permit a good estimation of the borders of the scatter plot

using a finite number of observations.

The proof of the theorem requires the following lemmas:

Lemma 3.1 Let f be an analytic function on the interval Df ⊆ R such that 0 ∈ Df . Suppose

that for all x in a neighborhood of 0 we have:

f(x) = c1f(c2x) (3.15)
3We use the term DC (Direct Current) of a waveform x(n), for its mean E {x(n)}.

30 Separability of Nonlinear Mixtures

where c1 �= 1 and c2 �= 1.

1. If ∃n ∈ N such that c1c
n
2 = 1, then ∃a ∈ R such that f(x) = a xn, ∀x ∈ Df ,

2. if ∀n ∈ N, c1c
n
2 �= 1, then f(x) = 0, ∀x ∈ Df .

Proof. From (3.15), we deduce f (n)(x) = c1c
n
2f (n)(c2x) where f (n)(x) denotes the n-th

order derivative of f . By letting x = 0, we conclude that, ∀n such that c1c
n
2 �= 1, we have

f (n)(0) = 0. Consequently, in the Taylor expansion of f around x = 0:

f(x) = f(0) +
1
1!

f ′(0)x +
1
2!

f ′′(0)x2 + · · · + 1
n!

f (n)(0)xn + · · · , ∀x ∈ Df (3.16)

the coefficients of all the terms, except probably the n-th which satisfies c1c
n
2 �= 1, are zero.

Hence, if there is such an integer, then f(x) = a xn; otherwise, f(x) = 0. �

Lemma 3.2 Consider the componentwise transformation in (3.13) with invertible nonlin-

earities. Suppose that the transformation of two intersecting lines w2 = c1w1 and w2 = c2w1

which are not parallel to coordinate axes, is two intersecting lines x2 = d1x1 and x2 = d2x1.

Then, there exists real constants a1 and a2 and an integer n such that:{
x1 = h1(w1) = a1w

n
1

x2 = h2(w2) = a2w
n
2

(3.17)

Proof. Since the transformation is one to one, the transformed lines x2 = d1x1 and

x2 = d2x1 cannot be parallel to the coordinate axes, too. That is, d1 and d2 are neither zero

nor infinite. Now, from the assumptions of the lemma, we have{
h2(c1w) = d1h1(w)

h2(c2w) = d2h1(w)
(3.18)

Combining these equations, with a little algebra, leads to:

h2(w) =
d1

d2
h2(

c2

c1
w) (3.19)

The conditions of the lemma 3.1 are now satisfied (note that c1 �= c2 and d1 �= d2), and we

conclude that h2(w) = a2w
n. Then, from this result and (3.18), we also conclude h1(w) =

a1w
n. �

Proof of theorem 1. In the proof, we assume, without loss of generality (the general case

is trivial by changing the variables), that h1(0) = h2(0) = 0 and the origin is a corner of the

parallelogram.

3.5 Convolutive PNL (CPNL) mixtures 31

A(z)
f1

fN

g1

gN

B(z)
�

�

�

�

�

�

�

�

�

�

wN

w1

eN

e1

xN

x1

sN

s1

yN

y1

...
......

...

Mixing System� � Separating System� �

Figure 3.7: The mixing-separating system for CPNL mixtures.

Consider two borders of the parallelogram crossing the origin. Since the mappings of

w2 = c1w1 and w2 = c2w1 (the borders in the (w1, w2) plane) are x2 = d1x1 and x2 = d2x1

(the borders in the (x1, x2) plane), the conditions of the lemma 3.2 are satisfied, and the

transformation must be in the form of (3.17). Now, if n �= 1, then the mappings of the other

borders, which are not crossing the origin, cannot be straight lines. Hence, n = 1, i.e. h1

and h2 are both linear. �

Generalization to more than two sources and two sensors: For the case of more

than two sources and two sensors, we can repeat the above proof by considering two pairs

wi and wj . Here the support of pwiwj (wi, wj) (and hence the scatter plot of (wi, wj)) is not

a parallelogram4, because of the effects of the other sources. However, in this case too, if

we assume that in each raw of A there is at least two non zero elements, then the scatter

plot of (wi, wj) contains straight line borders which are not parallel to coordinate axes.

Consequently, by considering an intersecting pair of these borders, we conclude that the

transformation must be in the form of (3.17). But n must be 1, because the transformation

of the other borders (which do not pass through the intersection of the two first ones) are

still straight lines.

3.5 Convolutive PNL (CPNL) mixtures

As it has been mentioned in chapter 1, one extension to the PNL mixtures is the Convo-

lutive Post Non-Linear (CPNL) mixtures. CPNL mixtures consist of a convolutive mixing

system followed by componentwise nonlinearities, as shown in Fig. 3.7. Like PNL mixtures,

the nonlinearities correspond to nonlinear effects of the sensors. The design of separation

algorithms of these mixtures will be considered in details in chapter 7.

The separating system is composed of componentwise nonlinear blocks, gi, such that

xi = gi(ei) and of a linear separating filter, B(z), such that the estimated sources are

y(n) = [B(z)]x(n). For iid sources and FIR mixing filters, the separability of CPNL mixtures

4It is a polygon, with 2N edges (N is the number of sources) which are parallel two by two.

32 Separability of Nonlinear Mixtures

can be directly deduced from the separability of instantaneous PNL mixtures. In fact,

denoting A(z) =
∑

n Anz−n, and:

s =
(
. . . , sT (n − 1), sT (n), sT (n + 1), . . .

)T
(3.20)

e =
(
. . . , eT (n − 1), eT (n), eT (n + 1), . . .

)T
(3.21)

we have:

e = f
(
Ās
)

(3.22)

where f acts componentwise, and:

Ā =




· · · · · · · · · · · · · · ·
· · · An+1 An An−1 · · ·
· · · An+2 An+1 An · · ·
· · · · · · · · · · · · · · ·


 (3.23)

The iid nature of the sources insures the spatial independence of s. Then, the CPNL mixtures

can be viewed as a particular PNL mixtures. For FIR mixing matrix A(z), (3.22) corresponds

to a finite dimension PNL mixture and the separability holds. For more general filter (IIR)

matrix, (3.22) is an infinite dimension PNL mixture, and the separability can be conjectured.

3.6 Conclusion

In this chapter, we considered the separability problem in nonlinear mixtures. First, by

using an example, we showed that smooth nonlinear systems may preserve the statistical

independence with still mixing the sources. This property shows that, in separating nonlinear

mixtures, using some structural constraints is essential.

Then, we pointed out the separability of two special nonlinear mixtures, that is, PNL

and CPNL mixtures. In fact, we have shown, that for these mixtures the independence of

the outputs insures the separation of the sources, provided that the separating system be

the mirror structure of the mixing system.

Chapter 4

Independence Criterion

4.1 Introduction

In this chapter, we deal with the mutual information, as the independence criterion we have

used for separating different mixing models. First of all, we emphasize that, in convolutive

context, “independence” is in the sense of independence of stochastic processes, while in

instantaneous context, it is in the sense of independence of random variables. This fact will

result in more complicated independence criterion in convolutive mixtures.

Then, we consider the mutual information more deeply, and we will find an expression

for its differential, which requires multivariate score functions for random vectors. After

considering the properties of these score functions, we discuss their empirical estimation.

After that, we will present two different approaches for using the differential of the mutual

information in source separation: the first one consists in calculating the gradient of the

outputs’ mutual information with respect to the components of the separating system, and

the second one is a “projection method”. Finally, as an example, we use these approaches

for designing new separation algorithms for linear instantaneous mixtures.

4.2 Mutual information definition

Recall from the chapter 2 that the mutual information of random variables x1, x2, . . . , xN is

defined by the Kullback-Leibler divergence between px(x) and
∏N

i=1 pxi(xi):

I(x) = KL

(
px(x)‖

N∏
i=1

pxi(xi)

)
=
∫
x

px(x) ln
px(x)∏
i pxi(xi)

dx =
∑

iH(xi) − H(x) (4.1)

where x = (x1, . . . , xN)T , px and pxi are the PDFs of x and xi, respectively, and H denotes

the Shannon’s entropy. From the properties of the Kullback-Leibler divergence, we deduce

34 Independence Criterion

that the mutual information is always non-negative, and is zero if and only if px(x) =∏N
i=1 pxi(xi), i.e. when x1, . . . , xN are independent. This property of the mutual information

makes it an interesting independence criterion for blind source separation, and it has been

already used frequently in BSS and ICA (e.g. [26, 96, 18, 98, 78, 5]). In fact, for separating the

sources, we must minimize the mutual information of the outputs. Moreover, as it has been

mentioned in chapter 2, source separation based on minimization of the mutual information

is asymptotically a Maximum Likelihood (ML) estimation of the sources [18, 95].

4.3 Independence in the convolutive context

As we have seen in the previous chapters, linear mixtures (instantaneous or convolutive) are

separable, that is, the independence of the outputs insures the separation of the sources, up

to a few indeterminacies [26, 108]. However, the meaning of the independence is not the

same in convolutive and instantaneous contexts. This can be better stated by the following

example.

Example. Let the sources s1(n) and s2(n) be iid. Consider now the convolutive mixing-

separating system y(n) = [B(z)A(z)] s(n), where:

B(z)A(z) =

[
1 z−1

0 1

]
(4.2)

hence: {
y1(n) = s1(n) + s2(n − 1)

y2(n) = s2(n)
(4.3)

It can be seen that y1(n) and y2(n) are independent for all n, but the sources have not been separated.

The problem comes from the fact that in the convolutive context, y1(n) and y2(n) have

to be independent in the sense of stochastic processes1 [77], which requires the independence

of the random variables y1(n) and y2(n − m) for all n and all m2. Therefore, although

I(y1(n), y2(n)), where I(., .) denotes the mutual information, is a good independence criterion

1Two stochastic processes y1(t) and y2(t) are independent if and only if for any set t1, . . . , tn, t′1, . . . , t
′
m

the group {y1(t1), . . . , y1(tn)} is independent from the group {y2(t
′
1), . . . , y2(t

′
m)}.

2This fact reveals an intrinsic difficulty of convolutive mixtures: in instantaneous mixtures we are dealing

with random variables, and each sample of signals is treated as an observation of a random variable. That

is, with N data points, we have N observations of some joint random variables, and from them, we would

like to estimate the parameters of the mixing system. However, in convolutive mixtures, we are dealing with

stochastic processes, and with N data points, we have observed N points of a “sole” observation of a stochastic

process.

4.4 Mutual Information and gradient based algorithms 35

for instantaneous mixtures, it cannot be applied for convolutive mixtures. Instead, we can

use the criterion3:

J =
∑
m

I(y1(n), y2(n − m)) (4.4)

The limits of the above summation, depends on the degree of the filters corresponding to

the whole mixing-separating system. For Infinite Impulse Response (IIR) filters, the range

of m is from −∞ to +∞. If we knew the maximum degree of the whole mixing-separating

system, say M , the limits of the above summation could be selected in the range −M and

M . But, in practice, we have not this information. However, when we use FIR separating

filters, it seems that we do not need to use more independent terms in the criterion than the

number of separating parameters, and hence M can be chosen equal to twice the maximum

degree of separating filters.

The criterion (4.4) is computationally expensive. However, in gradient based algorithms

(which are our approach for source separation), we can use a simple trick: at each iteration

choose randomly a different value for m, and use I(y1(n), y2(n−m)) as the current separation

criterion. This is, in fact, a stochastic implementation of the criterion (4.4), but with a highly

smaller computational load. Also, it can be said intuitively that with this trick, the speed

of convergence (in the sense of the number of iterations) will not be highly affected, because

most real signals are not iid, and hence the information in the different terms of (4.4) are

correlated.

4.4 Mutual Information and gradient based algorithms

Suppose that, in a source separation algorithm, the mutual information of the outputs I(y)

has been chosen as the independence criterion. Now if we use the steepest descent gradient

algorithm for its minimization, we do not need to estimate I(y) itself, but only its derivative

with respect to the parameters of the separating system.

As it is evident from (4.1), the mutual information depends on the multivariate joint PDF

px(x), and hence it is natural to expect that its derivative with respect to the parameters of

the separating system depends on the partial derivatives of px(x). Unfortunately, the joint

density is not easy to estimate. However, the previously known methods escape from this

problem by a simple trick. For example, in linear instantaneous mixtures, the separating

matrix B must be estimated in such a way that the mutual information of y = Bx be

minimized. The steepest descent algorithm B ← B − µ∂I(y)
∂B , requires the estimation of

3Another approach for using the mutual information based criteria in the convolutive context is considered

by D.-T. Pham [78, 80].

36 Independence Criterion

∂I(y)
∂B . From y = Bx, we have:

py(y) =
px(x)
|detB| (4.5)

Taking the logarithm of both sides of the above equation, gives us:

ln py(y) = ln px(x) − ln |detB| (4.6)

The key point here is that in (4.6), the output joint PDF in expressed as the sum of a fixed

term (which does not depend on the separating system) and a term which does not depend

on any multi-variate joint PDF. This property is a direct result of the fact that the relation

(4.5) is multiplicative.

Finally, by combining (4.6) with H(·) = −E
{
ln p(·)(·)

}
and I(y) =

∑
i H(yi)−H(y), we

obtain:

I(y) =
∑

i

H(yi) − H(x) − ln |detB| (4.7)

From (4.7), the desired gradient ∂I(y)
∂B can be easily computed. Since H(x) is constant

with respect to B, it disappears in the differentiation and hence ∂I(y)
∂B only depends on the

derivatives of the marginal PDFs. In fact:

∂

∂B
I(y) = E

{
ψy(y)xT

}− B−T (4.8)

where ψy(y) = (ψy1(y1), . . . , ψyN (yN))T is the vector of score functions4 of the components

of y (a review on the score function of a random variable is presented in the Appendix C).

A similar trick is used in PNL mixtures for escaping from the multivariate PDFs. In fact,

for these mixtures too, the relation between pe(e) and py(y) is multiplicative:

py(y) =
pe(e)

|(detB)
∏

i g
′(ei)| (4.9)

where e is the observation vector, and gi’s are the nonlinear compensating functions. Con-

sequently, we can use the logarithm to separate the multivariate part from the separating

parameters, and obtain finally the equation:

I(y) =
∑

i

H(yi) − H(e) − ln |detB| −
∑

i

E
{
ln
∣∣g′i(ei)

∣∣} (4.10)

However, these tricks cannot be applied in the convolutive case, because the relation

between the joint PDF’s of the observations and the joint PDF’s of the outputs is no longer

multiplicative. For example, in a linear convolutive mixture and using FIR separating filters

with the maximum order p, we have:

y(n) = B0x(n) + B1x(n − 1) + · · · + Bpx(n − p) (4.11)
4Later, we will call it the Marginal Score Function (MSF) of the random vector y.

4.5 Multi-variate score functions 37

and hence, the relation between px(x) and py(y) is not multiplicative. Therefore, if we

want to use mutual information as the separation criterion in convolutive mixtures, we are

obliged to deal with multi dimensional distributions. However, in this case too, we are

mainly interested in estimating the gradient of the mutual information, and not the mutual

information itself. This gradient will be calculated in the following sections, but first we need

to define multivariate score functions.

Another problem when using gradient based methods concerns the possibility of the exis-

tence of local minimum. We will prove in the following sections, that the mutual information,

has no “local minimum” by itself (see Theorem 4.2, page 42).

4.5 Multi-variate score functions

In this section, we extend the concept of score function of random variables to random

vectors. These score functions are required for expressing the “gradient” of the mutual

information in the next section. After defining these score functions, we consider some of

their properties, which are necessary for better understanding their importance and finding

methods for estimating them.

4.5.1 Definitions

First of all, recall the definition of the score function of a random variable:

Definition 4.1 (Score Function) The score function of a scalar random variable x is the

opposite of the log derivative of its density, i.e. :

ψx(x) � − d

dx
ln px(x) = −p′x(x)

px(x)
(4.12)

where px denotes the PDF of x.

In conjunction with this definition, we define two different types of score functions for a

random vector x = (x1, . . . , xN)T :

Definition 4.2 (MSF) The Marginal Score Function (MSF) of x is the vector of score

functions of its components. That is:

ψx(x) � (ψ1(x1), . . . , ψN (xN))T (4.13)

where:

ψi(xi) � − d

dxi
ln pxi(xi) = −p′xi

(xi)
pxi(xi)

(4.14)

38 Independence Criterion

Definition 4.3 (JSF) The Joint Score Function (JSF) of x is the gradient of “− ln px(x)”,

that is:

ϕx(x) � (ϕ1(x), . . . , ϕN (x))T (4.15)

where:

ϕi(x) � − ∂

∂xi
ln px(x) = −

∂
∂xi

px(x)

px(x)
(4.16)

In the following sections, we will see that the difference between these two score functions

contains a lot of information about the independence of the components of a random vector.

Thus, it worths enough to give a formal name to this difference:

Definition 4.4 (SFD) The Score Function Difference (SFD) of x is the difference between

its MSF and JSF, that is:

βx(x) � ψx(x) − ϕx(x) (4.17)

4.5.2 Properties

The first property presented here points out that SFD contains information about the inde-

pendence of the components of a random vector:

Property 4.1 The components of a random vector x = (x1, . . . , xN)T are independent if

and only if βx(x) ≡ 0, that is:

ϕx(x) = ψx(x) (4.18)

Proof. Here, for the sake of simplicity, we prove this property only for two dimensional

case. Its generalization to higher dimensions is obvious.

If the components of x are independent, then (4.18) can be easily obtained. Conversely,

suppose that (4.18) holds. Then we have ∂
∂x1

ln px(x1, x2) = ∂
∂x1

ln px1(x1). Integrating both

sides of this equation with respect to x1, leads to:

ln px(x1, x2) = ln px1(x1) + g(x2) ⇒ px(x1, x2) = px1(x1)h(x2) (4.19)

By integrating both sides of this equation with respect to x1 from −∞ to +∞, we have

h(x2) = px2(x2), which proves the property. �

Property 4.2 For a random vector x = (x1, . . . , xN)T we have:

βi(x) =
∂

∂xi
ln p(x1, . . . , xi−1, xi+1, . . . , xN |xi) (4.20)

where βi(x) denotes the i-th component of the SFD of x.

4.5 Multi-variate score functions 39

Proof. Without loss of generality, let i = 1. Then we can write:

β1(x) = ψ1(x1) − ϕ1(x)

=
∂

∂x1
ln px(x) − ∂

∂x1
ln px1(x1)

=
∂

∂x1
ln

px(x1, . . . , xN)
px1(x1)

=
∂

∂x1
ln px2,...,xN (x2, . . . , xN | x1)

(4.21)

�

It is interesting to note the relationship between this property and Property 4.1. For

example, for two dimensional case, we can write:

β1(x1, x2) =
∂

∂x1
ln p(x2 | x1) (4.22)

β2(x1, x2) =
∂

∂x2
ln p(x1 | x2) (4.23)

In other words, β1(x1, x2) = 0 if p(x2|x1) does not depend on x1, i.e. when x1 and x2 are

independent. For the N -dimensional case too, βi(x) = 0 if “xi and the other components of x

are independent”, that is, if p(x1, . . . , xi−1, xi+1, . . . , xN |xi) = p(x1, . . . , xi−1, xi+1, . . . , xN),

or p(x) = p(x1, . . . , xi−1, xi+1, . . . , xN)p(xi).

The following property is, in fact, a generalization of the similar property for the score

function of a scalar random variable (refer to Appendix C, Property C.1).

Property 4.3 Let x be a random vector with a density px and a JSF ϕx. Moreover, let

f(x) be a multivariate function with continuous partial derivatives and:

lim
xi→±∞

∫
x1,...,xi−1,xi+1,...,xN

f(x)px(x) dx1 · · · dxi−1 dxi+1 · · · dxN = 0 (4.24)

Then we have:

E {f(x)ϕi(x)} = E

{
∂f

∂xi
(x)
}

(4.25)

Note that the condition (4.24) is not too restrictive for usual sources, because for most

physical signals px(x) decreases rapidly when ‖x‖ goes to infinity. In fact, most real signals

are “bounded”, and for them (4.24) holds.

Proof. Without loss of generality, let i = 1. We write:

E {f(x)ϕ1(x)} =
∫

f(x)ϕ1(x)px(x)dx (4.26)

= −
∫

x2,...,xN

∫
x1

f(x)
∂px(x)

∂x1
dx1 dx2 · · · dxN (4.27)

Now, by applying integration by parts for the inner integral and using (4.24) the desired

relation will be obtained. �

40 Independence Criterion

Corollary 1 For bounded random vector x:

E {ϕi(x)xj} =

{
1 ; if i = j

0 ; if i �= j
(4.28)

or equivalently:

E
{
ϕx(x)xT

}
= I (4.29)

where I denotes the identity matrix.

Corollary 2 Suppose we would like to estimate ϕi(x) by a parametric function f(x;w),

where w = (w1, . . . , wK)T is the parameters vector. Then:

argmin
w

E
{(

ϕi(x) − f(x;w)
)2} = argmin

w

{
E
{
f2(x;w)

}− 2E

{
∂f

∂xi
(x,w)

}}
(4.30)

This corollary shows a nice property of JSF: even without knowledge about ϕi(x), we can

design a minimum mean square error (MMSE) estimator for it.

Property 4.4 For a random vector x = (x1, . . . , xN)T we have:

ψi(x) = E {ϕi(x) | xi = x} (4.31)

where ϕi and ψi denote the i-th component of JSF and MSF of x, respectively.

Proof. Without loss of generality let i = 1. Then we write:

E {ϕ1(x) | x1} =
∫

x2,...,xN

ϕ1(x) p(x2, . . . , xN | x1) dx2 · · · dxN

= −
∫

x2,...,xN

∂
∂x1

px(x)
p(x)

· p(x)
px1(x1)

dx2 · · · dxN

= − 1
px1(x1)

· ∂

∂x1

∫
x2,...,xN

p(x) dx2 · · · dxN

= − 1
px1(x1)

· ∂

∂x1
px1(x1)

= ψ1(x1)

(4.32)

which proves the property. �

The above property needs more explanation. Consider ϕi as a function5 of xi, denoted

by ϕi(xi). If xi is independent from the other variables, then ϕi(xi) = ψi(xi). However, if

the other variables depend on xi, ϕi(xi) is no longer equal to ψi(xi), but the above property
5Strictly speaking, it is a “relation” not a “function”, because for each value of xi we have several values

for ϕi.

4.5 Multi-variate score functions 41

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

ϕ1

ψ1

x1

Figure 4.1: ϕ1 and ψ1 versus x1 in the presence of statistical dependence.

says that its “mean” will be still equal to ψi(xi). In other words, the statistical dependence,

can introduce some fluctuations in ϕi(xi), but only around its constant “mean”. We will

later use this property for estimating the SFD.

Example. Let s1 and s2 be two independent random variables with uniform distributions on

the interval (−0.5, 0.5). We define random variables x1 and x2 by:{
x1 = s1

x2 = s2 + ks1

(4.33)

For k = 0, x1 and x2 are independent and we have ϕ1(x1) = ψ1(x1). Now, if we vary k, ψ1(x1) remains

unchanged (because it does not depend on k) but ϕ1(x1) will be varied. However, Property 4.4 states

that its “mean” remains unchanged. Figure 4.1 shows the estimated6 ϕ1(x) and ψ1(x) for k = 0.5.

Therefore, we can conclude that: The SFD is, in fact, a measure of the variations of JSF

(around its smoothed value).

Property 4.5 Let y = Bx, where x and y are random vectors and B is a non-singular

square matrix. Then:

ϕy(y) = B−T ϕx(x) (4.34)

Proof. From y = Bx we have:

py(y) =
px(x)
|detB| ⇒ ln px(x) = ln py(y) + ln |detB| (4.35)

6These curves have been obtained by using kernel estimators (see appendix D).

42 Independence Criterion

Therefore, for i = 1, . . . , N we can write:

ϕx,i(x) = − ∂

∂xi
ln px(x)

= − ∂

∂xi
ln py(y)

= −
∑

k

∂

∂yk
ln py(y) · ∂yk

∂xi

=
∑

k

bki ϕy,k(y)

(4.36)

where ϕx,i(x) and ϕy,i(y) denote the i-th components of the JSFs of x and y, respectively.

From the above relation, we have ϕx(x) = BT ϕy(y), which proves the property. �

4.6 Differential of the Mutual Information

We can now state the theorem concerning the variation of the mutual information of a

random vector resulting from a small variation in its argument. Since its proof is somewhat

long and needs two other lemmas, it is presented in the appendix B.

Theorem 4.1 (Differential of the mutual information) Let x be a bounded random

vector, and let ∆ be a ‘small’ random vector with the same dimension, then:

I(x + ∆) − I(x) = E
{
∆T βx(x)

}
+ o(∆) (4.37)

where βx is the SFD of x, and o(∆) denotes higher order terms in ∆.

Recall that for a multivariate (differentiable) function f(x) we have:

f(x + ∆) − f(x) = ∆T · (∇f(x)) + o(∆) (4.38)

Comparing this equation with (4.37), we can call SFD the “stochastic gradient” of the mutual

information.

Recall now the property 4.1, which states that SFD is zero if and only if I(x) is minimum.

For a usual multivariate function f(x), if ∇f(x) = 0 is equivalent to global minimization of

f , we can conclude that the function f has no local minimum. In this case, too, we can state

the following theorem, which, in fact, points out that “the mutual information has no local

minimum”.

Theorem 4.2 Let x0 be a random vector with a continuously differentiable PDF. If for any

“small” random vector ∆, I(x0) ≤ I(x0 + ∆) holds, then I(x0) = 0.

4.7 Estimating multi-variate score functions 43

Proof. Suppose that I(x0) �= 0. Then, we conclude that the components of x0 are not

independent, and hence βx0
(x0) cannot be zero. Moreover, the continuity of the function

βx0
(x) shows that E

{∥∥βx0
(x0)
∥∥2} cannot be zero, too. Now, let ∆ = −µβx0

(x0), where

µ is a small positive constant which insures that ∆ is a “small” random vector. From

Theorem 4.1 we can write (up to first order terms):

I(x0 + ∆) − I(x0) = −µE
{∥∥βx0

(x0)
∥∥2} < 0 (4.39)

hence I(x0 +∆) < I(x0), which is a contradiction. Therefore, we must have I(x0) = 0, that

is, I is in its global minimum. �

�
Note: In the above theorem, it is not necessary that the PDF of x0 is continuously

differentiable on all its support. In fact, it is sufficient that if the function βx0
(x) is not identically

zero, we are able to conclude that E
{∥∥βx0

(x0)
∥∥2} is not zero, too. This property certainly holds for

all “usual” random vectors.

�
Note: Although the above theorem guaranties that the mutual information has no local

minimum, it tells nothing about the local minimum of a parametric separating system with respect to

the parameter space. In other words, for the nonlinear separating system y = g(x;w), the function

h(w) = I(y) may have some local minima with respect to the parameter vector w. The same problem

exists, for example, in MMSE estimation of any nonlinear model: although the function (·)2 has no

local minimum, the function h(w) = E
{
(y − g(x;w))2

}
may contain local minima (as a function of

w). The local minimum, can also be introduced by the estimation method of SFD.

4.7 Estimating multi-variate score functions

In this section, we consider the problem of estimating multi-variate score functions and SFD.

Since MSF is nothing but the vector of usual scalar score functions, it can be estimated by

one of the known methods of estimating scalar score functions, and need not to be considered

here.

4.7.1 Estimating JSF

The methods presented here for estimating JSF are, in fact, the generalizations of the cor-

responding methods for estimating uni-variate score functions.

44 Independence Criterion

Kernel Estimators

We define a multi-variate kernel function k(x) = k(x1, . . . , xN) as the PDF of a zero mean

random vector. That is, k(x) is a kernel function if and only if: (a) ∀x ∈ R
N , k(x) ≥ 0,

(b)
∫

RN k(x) dx = 1 and (c)
∫

RN x k(x) dx = 0. The bandwidth of the kernel in the direction

i is defined as the variance of the i-th component of the corresponding random vector:

hi �
∫

RN x2
i k(x) dx.

Suppose now that x is a random vector, from which the samples {x1,x2, . . . ,xT } have

been observed. Then the kernel estimation of the PDF of x is7 [66, 90]:

p̂x(x) � 1
T

T∑
t=1

k(x − xt) (4.40)

And from there, the kernel estimation of the i-th component of JSF will be:

ϕ̂i(x) � −
∂

∂xi
p̂x(x)

p̂x(x)
= −
∑T

t=1
∂k
∂xi

(x − xt)∑T
t=1 k(x − xt)

(4.41)

Remark 1. The bandwidth parameter in the above equations determines the degree

of smoothness of the estimator: the larger bandwidth, the smoother estimated PDF. If it is

chosen too small, the estimated PDF will be too fluctuating, and if it is chosen too large,

the estimated PDF will be a rough shape of the kernel itself. Optimal choice can be done by

cross-validation. However, a rule of thumb is done in the appendix D (see equation (D.6)).

Remark 2. S. Achard has proposed [2] (for the scalar case) that the bandwidth used

for estimating the derivative of PDF must be 1.4 times greater than the value used for

estimating the PDF itself. This is for partly compensating for the differentiation noise,

which is accomplished by forcing more smoothing in the estimation of the derivative of the

PDF.

Remark 3. The bandwidth of the kernel can be different in each direction, which

depends on the spread of data in that direction. However, as suggested by Fukunaga [40, 90]

and is explained in the appendix D, after a whitening process on data, we can use the

isotropic kernels (kernels with equal bandwidths in all directions). To state this idea more

clearly, let Rx denote the covariance matrix of x, and T be its Cholesky decomposition,

i.e. T is an upper triangular matrix which satisfies Rx = TTT . If we now define random

variable y = T−1x, then Ry = I, that is, the variance of y is the same in different directions,

and moreover the variables yi are uncorrelated. Hence, it is natural to use isotropic kernels

for estimating PDF and JSF of y, and then we can use the equations (see the property 4.5):

p̂x(x) =
p̂y(y)
|detT| (4.42)

7Kernel estimators are considered with more details in the appendix D.

4.7 Estimating multi-variate score functions 45

ϕ̂x(x) = T−T ϕ̂y(y) (4.43)

for estimating PDF and JSF of x.

Minimum Mean Square Error (MMSE) estimation

Property 4.3 can be used for designing Minimum Mean Square Error (MMSE) estimates of

ϕi(x) (see also Corollary 2 of the property). Here we consider a parametric model which is

linear with respect to the parameters.

Suppose we would like to estimate ϕi(x) as a linear combination of multi-variate functions

{k1(x), . . . , kL(x)}, that is:

ϕ̂i(x) =
L∑

j=1

wjkj(x) = kT (x)w (4.44)

where k(x) � (k1(x), . . . , kL(x))T , and w � (w1, . . . , wL)T . w can be computed by minimiz-

ing the error:

E = E
{(

ϕi(x) − ϕ̂i(x)
)2} (4.45)

From the orthogonality principle [77], we have:

E
{
k(x)
(
ϕi(x) − ϕ̂i(x)

)}
= 0 (4.46)

which, by using the property 4.3, becomes:

E
{
k(x)kT (x)

}
w = E

{
∂k
∂xi

(x)
}

(4.47)

This equation easily determines w.

4.7.2 Estimating SFD

Since SFD is the gradient of the mutual information, we are mainly interested in estimat-

ing SFD, instead of JSF. Therefore, in this section, we consider some methods for SFD

estimation.

Independent estimations of JSF and MSF

One method for estimating SFD, is to estimate independently JSF and MSF, and then to

compute their difference. That is:

β̂x(x) = ψ̂x(x) − ϕ̂x(x) (4.48)

46 Independence Criterion

We may apply kernel or MMSE estimation of the joint and marginal score functions. In

the latter case, it must be noted that although the estimations of JSF and MSF are both opti-

mal (in the MMSE sense), the estimation of SFD is not. In other words, the independent es-

timations of ϕi(x) and ψi(xi) which minimize E{(ϕi(x)−ϕ̂i(x))2} and E{(ψi(xi)−ψ̂i(xi))2},
respectively, do not necessarily minimize E{(βi(x)− β̂i(x))2}, where βi(x) � ψi(xi)−ϕi(x).

Example. (Polynomial estimation of SFD) We have applied successfully the following es-

timator for separating two linear mixtures (instantaneous or convolutive) of two sources. We estimate

ϕi(x1, x2) by the polynomial:

ϕ̂i(x1, x2) =
7∑

j=1

wij kj(x1, x2) (4.49)

where:

k1(x1, x2) = 1, k2(x1, x2) = x1, k3(x1, x2) = x2
1, k4(x1, x2) = x3

1

k5(x1, x2) = x2, k6(x1, x2) = x2
2, k7(x1, x2) = x3

2

(4.50)

Consequently:

k(x1, x2) =
[

1 x1 x2
1 x3

1 x2 x2
2 x3

2

]T
(4.51)

∂

∂x1
k(x1, x2) =

[
0 1 2x1 3x2

1 0 0 0
]T

(4.52)

∂

∂x2
k(x1, x2) =

[
0 0 0 0 1 2x2 3x2

2

]T
(4.53)

Then from (4.47) we have:

E
{
k(x1, x2)k(x1, x2)T

}
w1 = E

{
∂

∂x1
k(x1, x2)

}
(4.54)

E
{
k(x1, x2)k(x1, x2)T

}
w2 = E

{
∂

∂x2
k(x1, x2)

}
(4.55)

where w1 � (w11, w12, . . . , w17)T and w2 � (w21, w22, . . . , w27)T . These equations determine w1 and

w2, which determine ϕ̂1(x1, x2) and ϕ̂2(x1, x2) from (4.49).

Similarly, ψi(xi) is estimated by:

ψ̂i(xi) = w
(i)
1 + w

(i)
2 xi + w

(i)
3 x2

i + w
(i)
4 x3

i (4.56)

and the optimal values of the coefficients are obtained from:

E

{[
1 xi x2

i x3
i

]T [
1 xi x2

i x3
i

]}
w(i) = E

{[
0 1 2xi 3x2

i

]T}
(4.57)

where w(i) �
(
w

(i)
1 , . . . , w

(i)
4

)T
for i = 1, 2.

Finally, the SFD is estimated by:

β̂1(x1, x2) = ψ̂1(x1) − ϕ̂1(x1, x2) (4.58)

β̂2(x1, x2) = ψ̂2(x2) − ϕ̂2(x1, x2) (4.59)

4.7 Estimating multi-variate score functions 47

Smoothing JSF

The difficulty of the previous method, is that the estimation errors of JSF and MSF are

independent. Recall that a gradient based algorithm for minimizing the mutual information

stops when SFD (the difference between MSF and JSF) vanishes. But when the MSF and JSF

estimation errors are independent, SFD does not vanish exactly for independent variables.

In linear mixtures, the limited degree of freedom of the separating system overcomes this

problem and the above estimator works well. On the contrary, nonlinear mixtures require

more accurate estimation of the SFD.

Then we suggest to estimate MSF from the estimated JSF. From the property 4.4 we

know that MSF is the smoothed version of JSF. Therefore, we can estimate MSF as the

smoothed version of the estimated JSF. With this trick, the estimation errors in JSF and

MSF are no longer independent, and they partially cancel each other when calculating SFD.

In other words, in this method, we estimate SFD as the variations of JSF around its mean

(see Fig. 4.1), and hence the separation algorithm tries to minimize these variations.

Practically, following the property 4.4, ψi(xi) is a regression from xi to ϕi(x), that we

can compute for instance using smoothing splines (see Appendix A). The final estimation

procedure can be summarized in the following steps:

1. From the observed values {x1,x2, . . . ,xT } estimate ϕ̂i,t = ϕ̂i(xt), t = 1, . . . , T (e.g. by

kernel estimators).

2. Compute the smoothing spline (or another regressor) which fits on the data (xi,t, ϕ̂i,t), t =

1, . . . , T . This spline will be the estimated MSF ψ̂i(xi).

3. Estimate SFD by β̂x(x) = ψ̂x(x) − ϕ̂x(x).

Histogram estimation method

Another method for estimating SFD (in two dimensional case) is based on a simple histogram

estimation of the PDF of x. The histogram is not a very accurate estimator for PDF, but

since we estimate SFD directly, we do not need a very good estimation of PDF (for more

details, see Section 4.9.1). In fact, despite of its simplicity, this estimator works very well for

instantaneous linear mixtures.

In this method, we first use a histogram for estimating the joint PDF of x. For two-

dimensional vectors, let N(n1, n2) denote the number of observations in the bin (n1, n2),

then the histogram estimation of px is:

p(n1, n2) =
N(n1, n2)

T
(4.60)

48 Independence Criterion

where T is the number of observations. Then, we obtain a histogram estimation of px1 :

p1(n1) =
∑
n2

p(n1, n2) (4.61)

And from there, we will have an estimation of p(x2|x1):

p(n2|n1) =
p(n1, n2)
p1(n1)

=
N(n1, n2)

N(n1)
(4.62)

Finally, having in mind (4.22), we obtain a histogram estimation of β1(x1, x2):

β1(n1, n2) =
p(n2|n1) − p(n2|n1 − 1)

p(n2|n1)
(4.63)

β2(n1, n2) will be estimated in a similar manner. Note that the value β(n1, n2) will be

assigned to all the points of the bin (n1, n2).

�
Note: p(n2|n1) is not defined in the bins where p1(n1) = 0, but this is not a problem,

because there is no point in these bins, and then we set p(n2|n1) = 0. However, in the left most bins

(the bins with smallest n1), for computing β1(n1, n2) from (4.63), we need the value of p(n2|n1 − 1)

which is not defined. In our simulations, we have used 0 for these values, too.

Pham’s method

Recently D. T. Pham has proposed [81] a method for estimating the “conditional score

function”, which appears in separating temporally correlated sources. The conditional score

function of the random vector x = (x1, . . . , xN)T is defined by:

ψxN |xN−1···x1
(xN |xN−1, . . . , x1) � −∇ ln pxN |xN−1···x1

(xN |xN−1, . . . , x1) (4.64)

where pxN |xN−1···x1
(xN |xN−1, . . . , x1) is the conditional density of xN given x1, . . . , xN−1 are

known. From the property 4.2, we know that this is closely related to the SFD of x.

The Pham’s method starts with a whitening stage for obtaining non correlated random

variables. This is like what is mentioned in the remark 3 of the kernel estimation method

of JSF. He computes also the influence of the whitening on the estimation of the score

functions. This influence will be later compensated using an additive term. Afterwards, the

joint entropies of whitened data are estimated using a discrete Riemann sum and third order

cardinal spline kernels. This discrete Riemann sum, along with the chosen kernel, results in

a fast algorithm, specially when the number of data points is relatively high. The conditional

entropies, defined as (y is the whitened data obtained from x):

H(yN |yN−1, . . . , y1) � −E[log pyN |yN−1···y1
(yN |yN−1, . . . , y1)] (4.65)

4.8 Mutual Information minimization 49

are computed by estimating the joint entropies:

H(yN |yN−1, . . . , y1) = H(yN , yN−1, . . . , y1) − H(yN−1, . . . , y1) (4.66)

The estimator Ĥ(yN |yN−1, · · · , y1) is a function of the observations y(1), . . . ,y(T), where

T stands for the length of the data block. In other words, Ĥ(yN |yN−1, · · · , y1) is stated by an

expression depending on y1(1), y1(2), . . . , y1(T), y2(1), . . . , y2(T), . . . , yN (1), yN (2), . . . , yN (T).

Finally, the l-th component of the conditional score function at a sample point y(n) is com-

puted as:

ψ̂
(l)
yN |yN−1···y1

(yN |yN−1, . . . , y1)
∣∣∣
y=y(t)

= T
∂Ĥ(yN |yN−1, . . . , y1)

∂yl(t)
(4.67)

The idea behind the above formula comes from the fact that if ỹ = y + δ, where δ is a

“small” random vector, then:

H(ỹN |ỹN−1, . . . , ỹ1)−H(yN |yN−1, . . . , y1) = E
{

δT · ψyN |yN−1···y1
(yN |yN−1, . . . , y1)

}
(4.68)

and with (4.67), the above relation holds if the expectation operation (E) is replaced by the

empirical averaging. Note also that the conditional score function is estimated only in the

points y(t), but this is sufficient in our application.

Pham also obtains an expression for an optimal choice of the kernel bandwidths. Finally,

the conditional score function of x is calculated from the conditional score functions of y.

4.8 Mutual Information minimization

In this section, we will show how the main theorem of this chapter (Theorem 4.1) can be

used for Independent Component Analysis and source separation.

4.8.1 General nonlinear mixtures

From the proof of Theorem 4.2, we conclude that the algorithm:

y ← y − µβy(y) (4.69)

will decrease I(y) at each iteration and that the algorithm will stop only when all the

components of y become independent. This gives us the algorithm of Fig. 4.2 for smoothly

transforming any “observation” vector to “independent components”.

Note that the normalization of the output energies is required for canceling the scale

indeterminacy and specially for avoiding that the algorithm converges to y = 0. The second

50 Independence Criterion

• Initialization: y = x.

• Loop:

1. y ← y − µβy(y).

2. For i = 1, . . . , N , replace yi with
its smoothed version (obtained
from transformation x → yi).

3. Remove the DC of each output,
and normalize its energy to 1.

• Repeat until convergence.

Figure 4.2: General nonlinear and non-parametric algorithm

for Independent Component Analysis.

step (smoothing) is needed because physical systems are usually smooth8, and hence the final

transformation (x → y) must be smooth. In other words, if two samples of x(n) are close

to each other, their corresponding y’s must be close, too. This also partially compensate

for the measurement errors (noise). The smoothing can be done, for example, by using

multi-dimensional smoothing splines (see Appendix A), that is, we first calculate the N -

dimensional smoothing spline sp(x) for the regression from x to yi, and then replace yi with

sp(x). Another approach for achieving this smoothing will be considered in Section 4.8.3.

�
Note: As it has been mentioned in Chapter 3, in general nonlinear mixtures, ICA and BSS

are not equivalent, that is, the independence does not insure the separation in absence of some struc-

tural constraints. Therefore, although the above algorithm is an ICA algorithm, without structural

constraints, it cannot be considered as a source separation algorithm.

✎ Experiment 4.1. In this experiment, we use two sources with uniform distributions

on the interval (−√
3/2, +

√
3/2). The mixing system is:{

x1 = s1 + 0.5 s2 + 0.5 s1s2

x2 = 0.6 s1 + s2 + 0.3 s1s2

(4.70)

We have used a block of 500 observations, µ = 0.1, two-dimensional smoothing splines for the

smoothing process, and the Pham’s estimator for estimating SFD. The smoothing parameter

8Note that this is not in contradiction with the result of insufficiency of smooth mappings for source

separation. In fact, here we are giving an algorithm that only finds a smooth mapping which transforms the

observation to independent outputs: it does not necessarily separate the sources. Later, in section 4.8.3, we

replace the smoothing step of this algorithm by structural constraints to obtain the projection approach for

source separation.

4.8 Mutual Information minimization 51

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s
1

s 2

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

−3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
1

y 2

Figure 4.3: The distribution of the sources, observations and outputs (experiment 4.1).

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s
1

s 2

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

−3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
1

y 2
Figure 4.4: The transformations from s-plane to x and y planes (experiment 4.1).

for the multi-dimensional smoothing splines is λ = 0.001 as defined in equation (A.8) of ap-

pendix A. Figure 4.3 shows the joint distributions of sources, observations and the outputs after

25 iterations. Also, Fig. 4.4 shows the mappings from s-plane to x-plane and y-plane. From the

distribution plots, it can be seen that the outputs are essentially independent. Moreover, as it is

evident from the transformation plot, in this experiment the outputs are approximately separated,

too! But this cannot be generalized to any cases.

Figure 4.5 shows the logarithmic plot of the estimated I(y) with respect to the number of

iterations. For estimating I the algorithm of [30] has been used. It can be seen that in this

method, the convergence achieved after a few iterations.

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Figure 4.5: I(y) versus iteration (experiment 4.1).

52 Independence Criterion

4.8.2 Gradient approach

Theorem 4.1 can be used for computing the gradient of I(y) with respect to the elements

of the separating system. These elements can be scalars, matrices or functions (as in PNL

mixtures). Then, this gradient can be used to apply a steepest descent gradient algorithm

on the elements, and separating the sources. Here, as an example, we state the details of

this calculation for the linear case.

For linear instantaneous mixtures, we have y = Bx, and minimizing I(y) requires its

gradient with respect to B. Let B̂ = B + E , where E is a “small” matrix. Then, we have

ŷ � B̂x = y + Ex. Hence, from Theorem 4.1, and up to first order terms, we can write:

I(ŷ) − I(y) = E
{
βy(y)TEx

}
=
〈E , E
{
βy(y)xT

}〉
(4.71)

where 〈., .〉 stands for the scalar product of two matrices (see appendix E, lemma E.1). From

the above equation, we conclude:

∂

∂B
I(y) = E

{
βy(y)xT

}
(4.72)

Finally, for estimating B, we apply the steepest descent algorithm:

B ← B − µE
{
βy(y)xT

}
(4.73)

Note that the development of (4.72) does not rely on the multiplicativity of (4.5)9. There-

fore, we can use exactly the same method for calculating this gradient for the convolutive

separating system in (4.11). For doing it, let B̂k = Bk + E . Then ŷ(n) = y(n) + Ex(n − k),

and hence:

I
(
ŷ(n)
)− I
(
y(n)
)

= E
{

βy

(
y(n)
)TEx(n − k)

}
=
〈E , E
{
βy

(
y(n)
)
x(n − k)T

}〉
(4.74)

Finally10:
∂

∂Bk
I
(
y(n)
)

= E
{
βy

(
y(n)
)
x(n − k)T

}
(4.75)

�
Note: This technique is, in fact, highly general. For calculating the gradient of the mutual

information of the outputs (or their shifted versions) with respect to some parameter of the separating

system (which can be a scalar, a matrix, or even a function —as in PNL mixtures), first assume a small

variation in this parameter, then calculate its effect on the output, and finally apply the theorem 4.1.

9although this multiplicativity can be used to prove the equivalence of (4.72) and (4.8).
10Remember from Section 4.3 that in convolutive mixtures, minimizing I

(
y(n)
)

does not sufficient for

separating the sources.

4.9 Application to linear instantaneous mixtures 53

A simple experiment with this method (for separating linear instantaneous mixtures) is

presented in Section 4.9.

4.8.3 Projection approach

The idea of this method comes from the idea of general nonlinear ICA algorithm of Sec-

tion 4.8.1 and equation (4.69). The problem of this method is that it has no structural

constraint, that is, although it will generate independent components, the resulting transfor-

mations do not necessarily belong to the desired class. One trick to overcome this problem

is to project the resulting transformation onto the desired class at each iteration and after

modifying y.

For more explanations, suppose that we are looking for a parametric mapping11 y =

g(x; θ). After each modification of y (using (4.69)), we determine the parameters which

minimize the difference between y and g(x; θ) (e.g. in minimum mean square error sense

E{‖y − g(x; θ)‖2}) and then replace y by g(x; θ). Then, this technique minimizes I(y) with

the constraint that the mapping belongs to the desired class.

This technique can be seen as another approach for the smoothing step in the algorithm

of Fig. 4.2 (step 2). However, in this case, the order of steps 2 and 3 of that algorithm must

be reversed, otherwise the output energies does not depend on the values of the parameters,

and hence the algorithm of parameter estimation will not converge.

4.9 Application to linear instantaneous mixtures

In this section, we show how our approaches can be applied for separating linear instanta-

neous mixtures.

4.9.1 Gradient approach

For linear instantaneous mixtures, the separating system is y = Bx, and we already have

calculated the gradient of I(y) with respect to B (see equation (4.72)). However, in linear

instantaneous mixtures, instead of a simple gradient algorithm, it is better to use the equiv-

ariant algorithm [21, 6], for obtaining a performance independent of the mixture hardness.

In equivariant algorithms, instead of ∂I
∂B , we use the natural (or relative) gradient:

∇BI � ∂I

∂B
BT = E

{
βy(y)yT

}
(4.76)

11This equation must not be seen as an instantaneous relation to include convolutive mixtures, too. Even

(as in PNL mixtures) some parameters can be functions, and not scalars. Hence this notation is only for

stating the idea of the method.

54 Independence Criterion

• Initialization: B = I.

• Loop:

1. y = Bx.

2. Estimate βy(y) (e.g. by histogram
method).

3. ∇BI = E
{
βy(y)yT

}
4. B ← (I − µ∇BI)B.

5. Normalization: Divide the i-th
row of the matrix B by σi, where
σ2

i is the energy of yi.

• Repeat until convergence.

Figure 4.6: Separation algorithm for linear instantaneous mixtures

and the updating algorithm for B is:

B ← (I − µ∇BI)B (4.77)

where I denotes the identity matrix. Figure 4.6 shows the final algorithm for separating

linear instantaneous mixtures.

✎ Experiment 4.2. In this experiment, we use two uniform random sources with zero

means and unit variances. The mixing matrix is:

A =

[
1 0.7

0.5 1

]
(4.78)

and the parameters of the separating algorithm are: (a) Histogram estimation of SFD, by using a

10×10 histogram, (b) 500 point data block, and (c) µ = 0.1. The experiment has been repeated

100 times (for 100 different realization of the sources). For measuring the quality of separation,

we use output Signal to Noise Ratio (SNR), defined by (assuming there is no permutation):

SNRi = 10 log10

E
{
s2
i

}
E {(si − yi)2} (4.79)

Figure 4.7 shows the averaged SNR’s over 100 runs of the algorithm, versus iterations.

Run time: For giving an idea about the run-time of the experiments in separating different

mixing systems considered in the thesis, we give the time required for 100 iterations of each algo-

rithm on our computer, which is a 1GHz Pentium III with 256MB of memory and the Mandrake

Linux 8.2 operating system. Our programs are written by a mixture of MATLAB (version 6.1)

and C codes, and are not optimized for the speed (the C codes are mainly for kernel estimation

4.9 Application to linear instantaneous mixtures 55

0 50 100 150 200
0

5

10

15

20

25

30

35

40

dB

SNR
1

SNR
2

Figure 4.7: Averaged output SNR’s versus iteration, in separating linear instantaneous mix-

tures by using gradient method and histogram estimation of SFD.

of SFD). Consequently, these times are not suitable for an exact comparison between the com-

putational cost of the algorithms. However, they seems to be a useful information for giving an

idea about the runtime of the algorithms.

In this experiment, the required time for 100 iterations of the algorithm for each realization

of the sources is approximately 3.73 seconds.

As it can be seen in the above experiment, despite of the simplicity of the SFD estimator

(a 10× 10 histogram), a very good separation performance has been obtained. This fact can

be explained as follows. First note that we can rewrite (4.76) as:

∇BI = E
{
βy(y)yT

}
= E
{
ψy(y)yT

}− E
{
ϕy(y)yT

}
= E
{
ψy(y)yT

}− I

(4.80)

Which is the equation used in the previous methods. Practically, this equation is simpler than

(4.76), since it only requires estimation of marginal score functions. However, the separation

information is contained in the averaged SFD, as the gradient of the mutual information, and

the separating algorithms will stop when it becomes zero. Moreover, SFD is the difference of

two terms. In (4.80), one of these terms is theoretically computed. Hence, a good estimation

of the other term is required for separating the sources, since the difference of the two terms

must vanish for achieving the source separation. But in our method which is based on the

direct use of the SFD, since we estimate it directly, a good estimation of B can be achieved

even with a coarse estimation of the SFD (e.g. a simple histogram).

56 Independence Criterion

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

dB

Figure 4.8: Averaged output SNR’s versus iteration, in separating linear instantaneous mix-

tures by using gradient method and polynomial estimation of SFD.

✎ Experiment 4.3. We repeat the previous experiment with the polynomial estimator

of SFD. All the parameters are the same as the previous experiment but the SFD estimation

method. Figure 4.8 shows the averaged outputs SNR’s versus iteration. It can be seen that

we have obtained better results compared to histogram estimators (better separation with fewer

iterations).

Run time: In this experiment, the required time for 100 iterations of the algorithm for each

realization of the sources is approximately 0.96 seconds12.

4.9.2 Projection approach

For applying the method of Section 4.8.3 on linear instantaneous mixtures, we must do the

following tasks at each iteration: first modifying y using (4.69), then calculating the matrix

B which minimizes E
{
‖y − Bx‖2

}
, and finally replacing y by Bx. Hence, we need the

following lemma:

Lemma 4.1 The matrix B which minimizes E
{
‖y − Bx‖2

}
is:

Bopt = E
{
yxT
} (

E
{
xxT
})−1

(4.81)

12We emphasize again that these run times are only for giving an idea to the reader. The programs are

not optimized for speed. Here it can be seen that the time needed for a polynomial estimation of SFD is less

than its histogram estimation, although the histogram estimation has less computational cost. This comes

from our MATLAB implementation, which is slow for the loops required for the histogram estimator, but is

fast for the matrix manipulations required for the polynomial estimator.

4.9 Application to linear instantaneous mixtures 57

• Initialization: y = x.

• Loop:

1. y ← y − µβy(y).

2. Remove the DC of each output,
and normalize its energy to 1.

3. B = E
{
yxT
} (

E
{
xxT
})−1

4. y = Bx.

• Repeat until convergence.

Figure 4.9: Projection algorithm for separating linear instantaneous mixtures.

Proof. We write:

C � E
{
‖y − Bx‖2

}
= E
{

(y − Bx)T (y − Bx)
}

= E
{
yTy
}− E

{
yTBx

}− E
{
xTBTy

}
+ E
{
xTBTBx

}
= E
{
yTy
}− 2E

{
yTBx

}
+ E
{
‖Bx‖2

}
(4.82)

Then, from the lemmas E.3 and E.4 (see Appendix E) we have:

∂C
∂B

= −2E
{
yxT
}

+ 2BE
{
xxT
}

(4.83)

Finally, setting ∂C/∂B = 0 proves the lemma. �

From the above lemma, the projection algorithm for separating linear instantaneous

mixtures will be obtained as shown in Fig. 4.9.

✎ Experiment 4.4. We repeat the experiment 4.3 using the projection approach. In

this experiment, the sources are two uniform random signals with zero means and unit variances.

The mixing matrix is:

A =

[
1 0.7

0.5 1

]
(4.84)

and the parameters of the separating algorithm are: (a) Polynomial estimation of SFD, (b) 500

point data block, and (c) µ = 0.1. Figure 4.10 shows the averaged SNR’s taken over 100 runs

of the algorithm versus iteration. It clearly shows the ability of the algorithm for separating the

sources. Moreover, it can be seen that it converges faster than the gradient approach.

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is about 1.62 seconds (note that we do not actually need to run 100 iterations).

58 Independence Criterion

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

dB

Figure 4.10: Averaged output SNR’s versus iteration, in separating linear instantaneous

mixtures by using the projection approach.

4.10 conclusion

In this chapter, we considered the mutual information more deeply, and we found its “differ-

ential”, which can be used for its minimization. We also showed that SFD is the stochastic

“gradient” of the mutual information and that the mutual information has no local mini-

mum. Then, we have considered a few methods for estimating SFD from data. After that,

we proposed two general approaches for using SFD in source separation: (1) Using it for

calculating the gradient of I(y) with respect to the elements of the separating system, and

(2) Projection methods. Finally, we designed practical algorithms for separating linear in-

stantaneous mixtures and proposed some experiments. In the following chapters, we apply

the gradient and projections approaches for separating other mixing types.

Chapter 5

Convolutive Mixtures

5.1 Introduction

In this chapter we deal with convolutive mixtures and mainly for the case of two sources

and two sensors. First, we consider some general remarks about these mixtures, and then

we use the gradient and projection approaches of the previous chapter for separating them.

In each approach, after obtaining the estimation equations, the separation algorithm will be

presented followed by some experimental results. Finally, we present a special type of convo-

lutive mixtures, called Post-Convolutive mixtures which has a nice property: instantaneous

independence is sufficient for separating it.

5.2 Preliminary issues

In convolutive mixtures, the observation vector x(n) is obtained from the sources s(n)

through the mixing system:

x(n) = [A(z)] s(n) (5.1)

This model appears for example in modeling the “cocktail party problem” (separating

mixed speech signals): the effects of one speech on different microphones do not differ only

in a scale factor and there is usually different transfer functions and at least a time delay.

For separating these mixtures, we first need to assume that A(z) is invertible. This is

equivalent to assuming that det(A(z)) is minimum phase [91]. Then, we apply the separating

filter B(z) to obtain the output signals by:

y(n) = [B(z)]x(n) (5.2)

As it has been proved in [108], if B(z) is determined in such a way that the output signals

become independent, then the sources are separated. However, the indeterminacies are more

60 Convolutive Mixtures

serious for convolutive mixtures than for linear instantaneous mixtures: the sources will be

determined up to a permutation and a filtering indeterminacy . This can be seen from the

fact that if s1(n) and s2(n) are independent, then for any filters H1(z) and H2(z), the signals

[H1(z)]s1(n) and [H2(z)]s2(n) will also be independent.

Here, we summarize some important remarks about convolutive mixtures.

Remark 1. (Independence Criterion) As it has been stated in the section 4.3,

in convolutive mixtures we are dealing with random processes, not random variables. The

output independence, too, must be seen as the independence of two random processes, not

independence of random variables. In other words, the independence of y1(n) and y2(n)

for all n does not insure the source separation, and we need that y1(n) and y2(n − m) be

independent for all n and all m (see the example of the page 34). Therefore, I(y1(n), y2(n))

is not a separation criterion, and we will use the separation criterion:

J �
+M∑

m=−M

I
(
y1(n), y2(n − m)

)
(5.3)

Theoretically, the limits of this summation must be −∞ and +∞. However, this is not

practically possible, and as explained in the section 4.3, we use M = 2p, where p is the

maximum degree of the separating filters. In fact, in many previously known methods for

separating the convolutive mixtures, this limitation exists implicitly. For example, Charkani

[23] and Nguyen and Jutten [100] have used approximate independence criteria of y1(n) and

y2(n − m) for the values of m between 0 and M , where M is the maximum degree of the

FIR filters which exist in their feedback models.

Since this criterion is very expensive, we use its stochastic version. In other words, at

each iteration we take I(y1(n), y2(n−m)) as the current independence criterion, but with a

different randomly chosen m from the set {−M, . . . , M}.
�

Note: It may seem that it is harmful to choose a very large M in (5.3). However, in

our statistical implementation of this criterion, if M is highly greater than the degree of the whole

mixing-separating system, and if the sources are iid, then in most iterations the criterion has no

information, and it slows down the convergence rate.

�
Note: This criterion is for the case of two sources and two sensors. One can define a similar

criterion for higher dimensions, too. For example, for the 3-dimensional case:

J �
∑
m1

∑
m2

I
(
y1(n), y2(n − m1), y3(n − m2)

)
(5.4)

It is obvious that the computational load increases very rapidly, with increasing the dimensionality.

5.2 Preliminary issues 61

Moreover, it is necessary to estimate the joint PDF’s of the outputs. Consequently, we have developed

and tested the algorithms mainly for the case of two sources and two sensors.

Remark 2. (Filtering Indeterminacy) Because of the filtering indeterminacy

which exists in separating convolutive mixtures, after achieving output independence, the

outputs will be the filtered versions of the sources, instead of the original ones. However,

as it has been explained in the chapter 2, the effect of each source on each sensor can be

determined. In fact, after obtaining output independence, if we calculate the filters Hij(z)

which minimize:

E
{(

xi(n) − [Hij(z)] yj(n)
)2} (5.5)

then, the signal [Hij(z)] yj(n) will be the effect of j-th source on the i-th sensor, that is,

what the i-th sensor receives, when there is no other sources (here, we assumed that there is

no permutation). It is obvious that this is sufficient for many real applications (e.g. in the

cocktail party problem).

Remark 3. (FIR Separating Filters) Throughout this thesis, we will always

use FIR separating filters. In digital signal processing, when one uses an FIR filter for

estimating an inverse system, there must exist some good reasons for assuming that the

system is itself all-pole, or one must be sure that the degree of the FIR filter is sufficiently

large for approximately modeling the inverse system.

However, in separating convolutive mixtures, we can take the filtering indeterminacy as

an advantage, and use it to apply FIR separating filters. In fact, if all the components of

A(z) are rational functions in z, then the separating filter B(z) can be always chosen FIR.

To clarifying the idea, consider the two-dimensional mixing system:

A(z) =


 N11(z)

D11(z)
N12(z)
D12(z)

N21(z)
D21(z)

N22(z)
D22(z)


 (5.6)

Then, the following FIR system results in the independence of the outputs:

B(z) =


 N22(z)

D22(z) −N12(z)
D12(z)

−N21(z)
D21(z)

N11(z)
D11(z)


∏

i,j

Dij(z) (5.7)

Remark 4. (Separation versus system identification) In convolutive mixtures,

separation of the sources does not necessarily identify the mixing system. Of course, theo-

retically the outputs become independent only when the overall system C(z) = B(z)A(z) is

a diagonal matrix. However, in practice (as confirmed by our experiences, too) it is possible

to achieve the separation, without obtaining a diagonal C(z).

62 Convolutive Mixtures

Example. Suppose that the sources have a high temporal correlation, and let the overall

mixing-separating system be:{
y1(n) = s1(n) + αs2(n) + βs2(n − 1)

y2(n) = s2(n)
(5.8)

Mathematically, y1 and y2 are independent if and only if α = β = 0. However, since the correlation

between s2(n) and s2(n − 1) is large (for instance, when s2 is low frequency with respect to the

sampling frequency), s2(n) � s2(n − 1), and hence if β � −α, then y1(n) � s1(n) and we have

obtained good separation, without obtaining a diagonal C(z). In fact, having in mind that we are

working with a limited number of samples, the algorithm cannot discriminate between the cases

β � −α and β = α = 0.

5.3 Gradient approach

In this section, we apply the gradient approach for separating convolutive mixtures. We have

published the algorithm presented in this section in [11]. Suppose we would like to separate

the sources by means of FIR filters with the maximum degree p. Then the separating system

will be:

y(n) = B0x(n) + B1x(n − 1) + · · · + Bpx(n − p) (5.9)

and we must estimate the matrices Bk which generate independent outputs. Hence, we must

first calculate the gradients of the separation criterion with respect to each Bk, and then

apply a steepest descent gradient algorithm on each Bk.

5.3.1 Calculating gradients

In Section 4.8.2 we have shown how to calculate the gradient of I(y1(n), y2(n)) with respect

to Bk’s. However, it is not sufficient, because the criterion 5.3 requires the gradients of

I(y1(n), y2(n − m)), for all m.

For calculating these gradients, we first define the following notation for any signal y(n) =

(y1(n), y2(n))T :

y(m)(n) �
[

y1(n)

y2(n − m)

]
(5.10)

In other words, y(m)(n) shows a shift operation on the second component of y(n) with respect

to the first one.

With this notation, we must calculate the gradient of I
(
y(m)(n)

)
. To calculate its gra-

dient with respect to Bk, let B̂i = Bi for i �= k and B̂k = Bk + E , where E is a “small”

5.3 Gradient approach 63

matrix. Then, from (5.9) we conclude that ŷ(n) � [B̂(z)]x(n) = y(n) + Ex(n − k). De-

noting ∆(n) = Ex(n − k), we will have ŷ(m)(n) = y(m)(n) + ∆(m)(n), and hence from the

Theorem 4.1:

I
(
ŷ(m)(n)

)
− I
(
y(m)(n)

)
= E
{

βy(m)(n)T∆(m)(n)
}

= E
{

βy(m),1(n)∆(m)
1 (n)

}
+ E
{

βy(m),2(n)∆(m)
2 (n)

}
= E
{

βy(m),1(n)∆1(n)
}

+ E
{

βy(m),2(n)∆2(n − m)
}

= E
{

βy(m),1(n)∆1(n)
}

+ E
{

βy(m),2(n + m)∆2(n)
}

(5.11)

where βy(m)(n) stands for βy(m)

(
y(m)(n)

)
. Note that in writing the above equations, we

have assumed that the sources are stationary. Now, we define:

βm(n) � β
(−m)

y(m) (n) =

[
βy(m),1(n)

βy(m),2(n + m)

]
(5.12)

In other words, for obtaining βm(n), the second component of y(n) must be shifted m times,

then after calculating its SFD, the second component of SFD must be shifted back m times:(
y1(n)

y2(n)

)
Shift−−−→
(

y1(n)

y2(n − m)

)
SFD−−−→

(
β�

1(n)

β�
2(n)

)
Shift back−−−−−−−→

(
β�

1(n)

β�
2(n + m)

)
� βm(n)

By using this notation, we can write:

I
(
ŷ(m)(n)

)
− I
(
y(m)(n)

)
= E
{
βm(n)T∆(n)

}
= E
{
βm(n)TEx(n − k)

}
=
〈E , E
{
βm(n)x(n − k)T

}〉 (5.13)

and finally:
∂

∂Bk
I
(
y1(n), y2(n − m)

)
= E
{
βm(n)x(n − k)T

}
(5.14)

5.3.2 Separating algorithm

From (5.14) we can design a gradient based algorithm for separating the sources. Practically,

to overcome the scale indeterminacy and preventing the algorithm from converging to y = 0,

we normalize the output energies at each iteration. The final algorithm is shown in Fig. 5.1.

5.3.3 Experimental results

Here, we present some experimental results. For measuring the separation quality, we use

the output SNR’s defined by:

SNRi = 10 log10

E
{
y2

i

}
E
{

y2
i

∣∣
si=0

} (5.15)

64 Convolutive Mixtures

• Initialization:

1. B0 = I.

2. For k = 1 . . . p, Bk = 0.

3. y(n) = x(n).

• Loop:

1. Choose a random m from the set
{−M, . . . ,+M}.

2. Estimate β�(n), the SFD of(
y1(n), y2(n − m)

)T .

3. Let βm(n) = (β�
1(n), β�

2(n + m))T .

4. For k = 0 . . . p :

Bk ← Bk − µE
{
βm(n)x(n − k)T

}
5. Calculate y(n) = [B(z)]x(n).

6. Normalization:

– Let yi = yi/σi, where σ2
i is the en-

ergy of yi.
– Divide the i-th raw of B(z) by σi.

• Repeat until convergence.

Figure 5.1: Gradient algorithm for separating convolutive mixtures.

5.3 Gradient approach 65

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

dB

Figure 5.2: Averaged output SNR’s versus iterations, for the experiment 5.1

where yi|si=0 stands for what is at the i-th output, where the i-th input is zero (assuming

there is no permutation). By using this definition, SNR will be a measure of “separation”,

that is, a high SNR means that there is not a large leakage from the other sources to this

output. However, it can be a filtered version of the actual source, and a post-processing can

be done for recovering the effect of this source on each sensor (as noted in the remark 2,

page 61).

✎ Experiment 5.1. In this experiment, we mix two uniform random sources with zeros

means and unit variances. The mixing system is:

A(z) =

[
1 + 0.2z−1 + 0.1z−2 0.5 + 0.3z−1 + 0.1z−2

0.5 + 0.3z−1 + 0.1z−2 1 + 0.2z−1 + 0.1z−2

]
(5.16)

For separating this mixture, we use second order filters (p = 2), and M = 2p = 4. The

adaptation rate is µ = 0.3. The number of observations is 500, and the Pham’s estimator is used

for estimating the SFD.

The experiment is repeated 100 times with different realizations of the sources. Figure 5.2

shows the averaged SNR’s (taken over 100 repetition of the experiment) versus iterations.

The averaged calculated B(z) over this 100 experiments is (up to 2 decimal digits):

B(z) =

[
1.31 + 0.04z−1 + 0.04z−2 −0.66 − 0.28z−1 − 0.04z−2

−0.66 − 0.30z−1 − 0.06z−2 1.31 + 0.10z−1 + 0.07z−2

]
(5.17)

66 Convolutive Mixtures

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

5

10

15

20

25

dB

Figure 5.3: Averaged output SNR’s versus iterations, with polynomial estimation of the SFD

which results in the overall mixing-separating system (up to two decimal digits):

B(z)A(z) =[
0.98 − 0.03z−1 + 0.02z−2 − 0.03z−3 + 0.00z−4 0.00 + 0.00z−1 + 0.01z−2 − 0.02z−3 + 0.00z−4

−0.00 + 0.01z−1 + 0.00z−2 − 0.01z−3 + 0.00z−4 0.99 + 0.01z−1 + 0.03z−2 − 0.03z−3 + 0.00z−4

]

(5.18)

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is about 4.94 seconds.

✎ Experiment 5.2. The above experiment is repeated with the polynomial estimator of

SFD. Figure 5.3 shows the resulting SNR’s (averaged on 50 experiments). It can be seen that

the polynomial estimation of SFD leads to worse performance than the Pham’s estimator. We

have also tried the kernel estimation of SFD (not presented here). This estimator leads to very

bad results in convolutive mixtures (although it gives better results than Pham’s estimator in

PNL mixtures). The interpretation of this result remains as an open question.

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is about 1.37 seconds. However, the price of this speed-up compared with the

previous one is the less separation quality.

✎ Experiment 5.3. To see the effect of M , we repeat the experiment 5.1 with M = 2.

All the other parameters are the same as the experiment 5.1. Figure 5.4 shows the averaged

output SNR’s taken over 100 runs of the experiment.

5.4 Projection approach 67

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

dB

Figure 5.4: Averaged output SNR’s versus iterations for M = 2, which is smaller than what

is required.

We have repeated the experiment for M = 6, too. The obtained result is similar to the one

shown in the Fig. 5.2, and we do not plot it again.

5.4 Projection approach

In this section, the projection algorithm for separating convolutive mixtures will be devel-

oped (refer to Section 4.8.3 for the idea of the projection approach). For using this ap-

proach, we must do, at each iteration, the following main tasks: (a) Updating the outputs

by y(m) ← y(m) − µβy(m)(y(m)), (b) Finding the matrix B(z) which minimizes the error

E
{
‖y(n) − [B(z)]x(n)‖2

}
, and (c) Replacing y(n) by [B(z)]x(n).

5.4.1 Calculating the optimal mapping

Here, our objective is to find the filter B(z) which minimizes E
{
‖y(n) − [B(z)]x(n)‖2

}
.

For simplicity we use the notation xi for x(n− i), and y for y(n). Hence, we are looking for

the matrices B0,B1, . . . ,Bp which minimize the empirical expectation:

C = Ê



∥∥∥∥∥y −

p∑
i=0

Bixi

∥∥∥∥∥
2

 (5.19)

Note that in practice, we have a limited number of samples. Suppose that we know the values

of x(n), for n = 0, . . . , T − 1. Then, in computing the values of y(n) for 0 ≤ n ≤ p − 1, we

need the values of x(n) for n < 0, and as usual we assume that they are zero. On the other

hand, for estimating the expectation operation, we use a temporal averaging. However, since

68 Convolutive Mixtures

we cannot trust on the first p values of y(n), we exclude them from the averaging. In other

words, in the following equations, Ê means:

Ê ≡ 1
T − p

T−1∑
n=p

(5.20)

Now, we rewrite the error term (5.19) as:

C = Ê



(

y −
p∑

i=0

Bixi

)T

y −

p∑
j=0

Bjxj






= Ê



(

yT −
p∑

i=0

xT
i BT

i

)y −
p∑

j=0

Bjxj






= Ê
{
yTy
}− 2

p∑
j=0

Ê
{
yTBjxj

}
+

p∑
i=0

p∑
j=0

Ê
{
xT

i BT
i Bjxj

}

= Ê
{
yTy
}− 2

p∑
j=0

Ê
{
yTBjxj

}
+

p∑
i=0

Ê
{
xT

i BT
i Bixi

}
+

p∑
i=0

p∑
j=0
j �=i

Ê
{
xT

i BT
i Bjxj

}

By using Lemmas E.3 and E.4 of Appendix E, we will have:

∂C
∂Bk

= −2Ê
{
yxT

k

}
+ 2BkÊ

{
xkxT

k

}
+

p∑
j=0
j �=k

∂

∂Bk
Ê
{
xT

k BT
k Bjxj

}
+

p∑
i=0
i�=k

∂

∂Bk
Ê
{
xT

i BT
i Bkxk

}

= −2Ê
{
yxT

k

}
+ 2BkÊ

{
xkxT

k

}
+ 2

p∑
j=0
j �=k

∂

∂Bk
Ê
{
xT

k BT
k Bjxj

}

= −2Ê
{
yxT

k

}
+ 2BkÊ

{
xkxT

k

}
+ 2

p∑
j=0
j �=k

BjÊ
{
xjxT

k

}

= −2Ê
{
yxT

k

}
+ 2

p∑
j=0

BjÊ
{
xjxT

k

}

Finally, we let ∂C/∂Bk = 0 for k = 0, . . . , p, and from there we obtain the following equations

for determining the matrices Bk’s:

p∑
j=0

BjÊ
{
xjxT

k

}
= Ê
{
yxT

k

}
, k = 1, . . . , p (5.21)

For writing the above equations in a more compact form, we first define the following N ×N

matrices (note that Ê denotes the empirical expectation as defined in (5.20)):

R̂xx(j, k) � Ê
{
x(n − j)xT (n − k)

}
(5.22)

R̂yx(j, k) � Ê
{
y(n − j)xT (n − k)

}
(5.23)

5.4 Projection approach 69

By these definitions, we can write (5.21) as:

p∑
j=0

BjR̂xx(j, k) = R̂yx(0, k) , k = 1, . . . , p (5.24)

or:

[B0 B1 · · · Bp]




R̂xx(0, 0) R̂xx(0, 1) · · · R̂xx(0, p)

R̂xx(1, 0) R̂xx(1, 1) · · · R̂xx(1, p)
...

...
. . .

...

R̂xx(p, 0) R̂xx(p, 1) · · · R̂xx(p, p)




=
[

R̂yx(0, 0) R̂yx(0, 1) · · · R̂yx(0, p)
]

(5.25)

We define now the large matrices:

B � [B0 B1 · · · Bp] (5.26)

R̂xx �




R̂xx(0, 0) R̂xx(0, 1) · · · R̂xx(0, p)

R̂xx(1, 0) R̂xx(1, 1) · · · R̂xx(1, p)
...

...
. . .

...

R̂xx(p, 0) R̂xx(p, 1) · · · R̂xx(p, p)


 (5.27)

R̂yx �
[

R̂yx(0, 0) R̂yx(0, 1) · · · R̂yx(0, p)
]

(5.28)

The dimensions of B, R̂xx and R̂yx are N×(p+1)N , (p+1)N×(p+1)N and N×(p+1)N ,

respectively.

Consequently, (5.25) will be written as BR̂xx = R̂yx, and hence:

B = R̂yxR̂
−1

xx (5.29)

which determines the Bk’s.

�
Note: If we assume that the signals are stationary, then R̂xx and R̂yx, as defined in

equations (5.22) and (5.23), will be the autocorrelation and cross correlation matrices Rxx(k− j) and

Ryx(k − j), where:

Rxx(k) � E
{
x(n)xT (n − k)

}
(5.30)

Ryx(k) � E
{
y(n)xT (n − k)

}
(5.31)

70 Convolutive Mixtures

And the equation system (5.25) will be written as:

[B0 B1 · · · Bp]




Rxx(0) Rxx(1) · · · Rxx(p)

Rxx(−1) Rxx(0) · · · Rxx(p − 1)
...

...
. . .

...

Rxx(−p) Rxx(−p + 1) · · · Rxx(0)




=
[

Ryx(0) Ryx(1) · · · Ryx(p)
]

(5.32)

or by taking the transpose of both sides:


Rxx(0) Rxx(1) · · · Rxx(p)

Rxx(−1) Rxx(0) · · · Rxx(p − 1)
...

...
. . .

...

Rxx(−p) Rxx(−p + 1) · · · Rxx(0)







BT
0

BT
1

...

BT
p


 =




Ryx(0)

Ryx(−1)
...

Ryx(−p)


 (5.33)

which is very similar to Yule-Walker equations in Auto-Regressive (AR) modeling of data. However,

here the dimension is higher, and each component of the above equation stands for a matrix, not a

scalar. This similarity comes from the similarity of (5.9) to AR data modeling. Due to the similarity of

equation (5.25) to the “covariance method” in AR data modeling, we call it the “covariance method”.

In the same manner, we call the method of equation (5.32), the “autocorrelation method”. However,

we prefer to use the covariance method, because there is no approximation in it. For example, if

we use the autocorrelation method, we have implicitly assumed that R̂xx(0, 0) = R̂xx(1, 1) = · · · =

R̂xx(p, p) = Rxx(0).

✎ Experiment 5.4. To see the effect of the approximations used in the autocorrelation

method for estimating Bk’s, we use two random signals x1(n) and x2(n), both with uniform

distribution on (−1, 1). Then, we mix them by the mixing filter:

A(z) =

[
1 + z−1 + 0.7z−2 0.5 + 0.3z−1 + 0.2z−2

0.5 + 0.3z−1 + 0.9z−2 1 + 0.8z−1 + 0.8z−2

]

Now, by knowing x(n) and y(n) � [A(z)]x(n), we would like to estimate a second order filter

B(z) which minimizes (5.9). Clearly, the true answer is B(z) = A(z). If the ij’th component

of B(z) is denoted by Bij(z) =
∑

k b
(k)
ij z−k, then we define the estimation error by E2 �∑

i,j,k

(
b
(k)
ij − a

(k)
ij

)2
.

Now, if we use 1000 sample points, the covariance method results in E = 8.35 × 10−16

but the autocorrelation method results in E = 0.0053 (for 12 parameters). In fact, there is no

approximation in the covariance method, and hence, even this small error must be considered as

a result of the limitations of representing floating point numbers in digital computers. Of course,

this smaller error has been obtained at the expense of an increased computational volume.

5.4 Projection approach 71

• Initialization: y(n) = x(n).

• Loop:

1. Choose a random m from the set
{−M, . . . ,+M}.

2. Estimate βy(m) , the SFD of(
y1(n), y2(n − m)

)T .

3. Update the outputs by:

y(m) ← y(m) − µβy(m)(y(m))

4. Remove the DC of each output,
and normalize its energy.

5. Compute the matrices Bk, k =
0, . . . , p, from (5.25).

6. Let y(n) = [B(z)]x(n).

• Repeat until convergence.

Figure 5.5: Projection algorithm for separating convolutive mixtures.

5.4.2 Separating algorithm

From the previous section, the final separating algorithm for convolutive mixtures will be

obtained as shown in Fig. 5.5.

5.4.3 Experimental results

✎ Experiment 5.5. The experiment 5.1 is repeated for the projection approach. That is,

we mix two uniform random sources with zeros means and unit variances. The mixing system is:

A(z) =

[
1 + 0.2z−1 + 0.1z−2 0.5 + 0.3z−1 + 0.1z−2

0.5 + 0.3z−1 + 0.1z−2 1 + 0.2z−1 + 0.1z−2

]
(5.34)

For separating this mixture, we use second order filters (p = 2), and M = 2p = 4. The

adaptation rate is µ = 0.1. The number of observations is 500, and the Pham’s estimator is used

for estimating the SFD.

The averaged SNR’s (taken over 100 runs of the algorithm), can be seen in the Fig. 5.6.

A comparison between the figures 5.6 and 5.2 shows that the quality of the projection approach

is a slightly less than the gradient approach.

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is about 5.13 seconds.

72 Convolutive Mixtures

0 5000 10000 15000
4

6

8

10

12

14

16

18

20

22

dB

Figure 5.6: The output SNR’s versus iterations by using the projection algorithm (Experi-

ment 5.5).

A
F1(z)

FN (z)

G1(z)

GN (z)
B

�

�

�

�

�

�

�

�

�

�

wN

w1

eN

e1

xN

x1

sN

s1

yN

y1

...
......

...

Mixing System� � Separating System� �

Figure 5.7: The mixing-separating system for Post-Convolutive mixtures.

5.5 A special case: Post-Convolutive mixtures

In this section, we present briefly a special kind of convolutive mixtures, called Post-Convolutive

mixtures. We have presented the results of this section in [10] and [9].

5.5.1 Preliminary issues

In Post-Convolutive mixtures, it is assumed that the mixture is itself instantaneous, but

the sensors are not ideal and introduce some frequency distortion (which can be due to the

amplifiers associated to the sensors). For separating the mixture, we first compensate for the

frequency distortion of the sensors, and then, separate the resulting instantaneous mixture.

Figure 5.7 shows the whole mixing-separating system.

Let Hi(z) � Gi(z)Fi(z). Then, for this special kind of convolutive mixtures, we can state

the following theorem:

Theorem 5.1 Let the sources s1 and s2 be iid with at most one Gaussian source, and the

5.5 A special case: Post-Convolutive mixtures 73

mixing matrix:

A =

[
1 a1

a2 1

]
(5.35)

be a nonsingular matrix, and a1a2 �= −1. Moreover, suppose that there is an integer m such

that h1(m)h2(m) �= 0. If y1(n) and y2(n) are independent for all n, then y1(n) and y2(n−m)

will be independent for all n and all m.

This theorem states that for iid sources, under some mild assumptions about the mixing

system, random variable (instantaneous) independence is sufficient for source separation.

Consequently, the outputs can be treated as random variables, and I(y) can be used as a

separation criterion. Moreover, although we proved the theorem only for iid sources, our

experiments show that the separation algorithm works for non-iid sources, too.

The proof of the theorem has been left to the Appendix B. It is also interesting to note

that the following corollary comes directly from the proof of the theorem:

Corollary 1 Under the assumptions of theorem 5.1, and if the matrix A satisfies the con-

dition: a1 �= 0 or a2 �= 0, then the independence of y1(n) and y2(n) implies that H1(z) =

cH2(z), where c is an arbitrary constant.

This corollary shows that if the sources are “really mixed” in the instantaneous stage,

then the filtering indeterminacy is less than the general convolutive case: the unknown filters

are the same (up to a scaling factor) on all the outputs.

It also must be noted that this result is stated and proved only for two sources and two

sensors. Unfortunately, its extension to more general case does not seem to be immediate.

5.5.2 Estimating equations

Here, we use the gradient approach for separating post-convolutive mixtures. However, since

we had worked on these mixtures before finding the differential of the mutual information

(Theorem 4.1), we don’t use it in this section. Hence, we will see how the SFD will appear

in the final equations without using this theorem.

For developing estimating equations, we assume that:

1. The compensating filters can be FIR causal filters of order p.

2. The filters Fi(z) are causal.

3. fi[0] �= 0 ∀i.

74 Convolutive Mixtures

With these assumptions, the compensating filters can be chosen of the form:

Gi(z) = 1 +
p∑

j=1

gijz
−j (5.36)

From causality of the filters, and from fi[0] �= 0 and gi[0] �= 0, we can deduce hi[0] �= 0,

and hence the theorem 5.1 can be applied.

Instantaneous stage

For the instantaneous part, all the calculations for obtaining (4.8) can be repeated, which

results in the same equation:

∂I(y)
∂B

= E
{
ψy(y)xT

}− B−T (5.37)

where ψy(y) = (ψ1(y1), . . . , ψN (yN))T .

Filtering stage

From H(y) = H(x) + ln |det B|, we have:

∂H(y)
∂gij

=
∂H(x)
∂gij

= −E

{
∂

∂gij
ln px(x)

}

= −E

{
∂ ln px(x)

∂xi
.
∂xi

∂gij

} (5.38)

Thus:
∂H (y(n))

∂gij
= E {ϕx,i (x(n)) ei(n − j)} (5.39)

where ϕx,i(x) is the i-th component of the JSF of x. Now, for calculating the derivative of∑
H(yk) with respect to gij we write:

∂H(yk)
∂gij

= −E

{
∂

∂gij
ln pyk

(yk)
}

= E

{
ψk(yk) · ∂yk

∂gij

}

= E

{
ψk(yk)

∂

∂gij

(
N∑

l=1

bklxl

)}

= E

{
bkiψk(yk)

∂xi

∂gij

}
(5.40)

Thus:
∂

∂gij

N∑
k=1

H(yk) = E

{(
N∑

k=1

bkiψk

(
yk(n)
))

ei(n − j)

}
(5.41)

5.5 A special case: Post-Convolutive mixtures 75

By defining N × p matrices, G � [gij], and:

E(n) � [e(n − 1), e(n − 2), · · · , e(n − p)] (5.42)

and the vector:

α(n) = BT ψy

(
y(n)
)− ϕx

(
x(n)
)

(5.43)

and applying (5.39) and (5.41), we will have:

∂I(y)
∂G

= E
{
diag
(
α(n)
)
E(n)
}

(5.44)

It is interesting to note that from the property 4.5, we have ϕx(x) = BT ϕy(y), and thus:

α(n) = BT βy

(
y(n)
)

(5.45)

where βy is the SFD of y. This quantity appears also in the estimation equations of PNL

mixtures (see equation (6.33)). A similar quantity appears in separating CPNL mixtures,

too (equation (7.14)).

5.5.3 Separating algorithm

We apply the steepest descent algorithm for estimating the parameters of the separating

system.

In the instantaneous stage, we use the equivariant algorithm:

B ← (I + µ1D)B (5.46)

where:

dij =

{
1 − y2

i if i = j

Ê {ψi(yi)yj} if i �= j
(5.47)

Note that instead of zero, we have used 1 − y2
i in the diagonal entries of D. As it has been

proposed in [96], this forces the algorithm to produce unit variance outputs and overcomes

the scale indeterminacy.

For the filtering part, from (5.44), we use the algorithm:

G ← G − µ2Ê {diag (α(n))E(n)} (5.48)

5.5.4 Experiments

✎ Experiment 5.6. In the first experiment, we use two iid sources with uniform distribution

on (−0.5, 0.5). The mixing matrix is:

A =

[
1 0.5

0.3 1

]

76 Convolutive Mixtures

and the sensor filters are first order low-pass filters:

F1(z) =
1

1 − 0.6z−1
(5.49)

F2(z) =
1

1 − 0.8z−1
(5.50)

For compensating the frequency response of the sensors, we have used the first order FIR filters:

Fi(z) = 1 + giz
−1 (5.51)

The parameters of the separation algorithm are: a block of observation with 100 samples, µ1 = 0.1

and µ2 = 0.05. The experiment has been repeated 50 times. The averaged values for g1 and g2

were −0.5954 and −0.7942, with variances 0.0023 and 0.0008, respectively.

Note that the optimal values for g1 and g2 are −0.6 and −0.8, respectively. Consequently,

it can be seen that the algorithm has been successfully found the values of g1 and g2 near these

optimal values.

✎ Experiment 5.7. We repeat the previous experiment, but with the ill-conditioned

mixing matrix:

A =

[
1 5

1 4

]

In this case, the values µ1 = 0.1 and µ2 = 0.0005 are used. Since the mixture is hard in this

case, we are obliged to choose a very small µ2, otherwise the algorithm does not converge. The

resulting estimated values for g1 and g2 are, in average, 0.6004 and 0.8001, with the variances

7.1 × 10−5 and 3.7 × 10−5, respectively. It can be seen the estimation error in estimating gi’s

is smaller in this case than the previous experiment. This is due to the fact that the separating

matrix B is ill-conditioned and hence is more sensitive to estimation errors in the compensating

filters.

✎ Experiment 5.8. Theorem 5.1 is proved only for iid sources. It is interesting to test

the robustness of the algorithm against this hypothesis. Hence, in the third experiment, we mix

two non-iid sources: a sinusoidal and a triangular signal. We use 100 samples, and the mixing

matrix:

A =

[
1 0.5

0.5 1

]

and step sizes are µ1 = 0.1 and µ2 = 0.01. Figure 5.8 shows the output SNR’s versus iteration.

The results clearly show the ability of the algorithm to separate non-iid sources as well as iid

sources.

5.6 Conclusion 77

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

SNR
1

0 500 1000 1500 2000 2500
0

5

10

15

20

25

SNR
2

Figure 5.8: Separation of post-convolutive mixture of two non-iid sources (experiment 5.8):

Output SNR’s (in dB) versus iterations.

5.6 Conclusion

In this chapter, we showed how the mutual information can be used as a criterion for sep-

arating convolutive mixtures. As we knew, instantaneous independence is not sufficient for

separating general convolutive mixtures, and thus the separation criterion contains the mu-

tual information of the shifted versions of the outputs. Then, we used the gradient and

projection approaches for separating convolutive mixtures. These approaches are based on

minimization of the mutual information of the outputs. Consequently, they can be combined

with the separation techniques used for separating PNL mixtures, to obtain a separation

algorithm for CPNL mixtures. However, this combination needs some modifications in the

previously known algorithms of PNL mixtures, which will be the subject of the next chapter.

In this chapter, we have also presented a special kind of convolutive mixtures called Post-

convolutive mixtures. We showed that, if we use a separating structure adapted to the mixing

model, we can apply a much simpler separation criterion than for the general convolutive

mixtures. This property comes from the fact that, for these mixing-separating systems, the

instantaneous independence of the outputs is sufficient for separating the sources.

78 Convolutive Mixtures

Chapter 6

Post Non-Linear Mixtures

6.1 Introduction

In this chapter, the instantaneous Post Non-Linear (PNL) mixtures will be considered. In

PNL mixtures, as it can be seen in Fig. 6.1, the mixing system is composed of a linear

mixing part, followed by component-wise invertible nonlinearities. This model corresponds

to the case where the mixture is itself linear but the sensors introduce the nonlinear effects

(e.g. saturation of the amplifiers).

For separating these mixtures, we use the structure shown in Fig. 6.1, that is, we first

compensate for the sensor nonlinearities (by using gi’s), and then separate the resulting linear

mixture. As we have seen in chapter 3 with this mixing-separating system, under some mild

conditions, the output independence guaranties the separation of the sources. The interesting

point is that the sources are separated only up to a scale and a permutation indeterminacy:

even the nonlinear indeterminacy disappears (i.e. the sources will be obtained without any

nonlinear distortion). This occurs under the condition that the sources are “really” mixed

after the linear part, that is, there is at least two non-zero elements in each raw or each

column of the matrix A.

In this chapter, except for the section 6.2, the independence criterion is the mutual

A
f1

fN

g1

gN

B
�

�

�

�

�

�

�

�

�

�

wN

w1

eN

e1

xN

x1

sN

s1

yN

y1

...
......

...

Mixing System� � Separating System� �

Figure 6.1: The mixing-separating system for PNL mixtures.

80 Post Non-Linear Mixtures

information of the outputs, and we will consider its minimization through gradient and

projection approaches.

The mutual information minimization has been already used for separating PNL mix-

tures [95, 2]. However, our approach for calculating the gradients is different. In fact, the

previous methods rely highly on the multiplicative relation between the output’s PDF and

the observation’s PDF (see Section 4.4), and consequently they cannot be extended to the

convolutive case. However, our approach is based on using SFD as the ‘gradient’ of the

mutual information (Theorem 4.1), which can be easily extended to the convolutive case,

too.

In this chapter, we consider 3 different methods for separating PNL mixtures. Two

of them are, in fact, based on the gradient and projection approaches for minimizing the

outputs’ mutual information. The third one is completely different: it is a geometrical

method. We first present the geometric method, because of its simplicity, and also because

of the fact that it shows that the sensor nonlinearities can be compensated before separating

the sources.

6.2 Geometric approach for separating PNL mixtures

Here, we consider the geometric method for separating PNL mixtures of two sources. We

first state the basics of the method, then we present the algorithm, and finally we conclude

with experimental results.

One limitation of this method is that it is applicable mainly for bounded sources which

permit a good estimation of the borders of the scatter plot of the data (e.g. uniform distri-

butions). Moreover, the method is mainly for the case of two sources and two sensors, and

its generalization to higher dimensions seems tricky.

We have published this method in [12].

6.2.1 Preliminary issues

As we saw in chapter 2, Puntonet et. al. developed a geometrical approach for separating

linear mixtures of bounded sources. The basic idea is that the scatter plot of two such

independent sources forms a rectangular region in the (s1, s2) plane, which is transformed

to a parallelogram by the linear transformation of the mixing system. The slopes of this

parallelogram can determine the coefficients of the mixing matrix.

We can use a similar idea for separating PNL mixtures. Recall the separability proof

of PNL mixtures which has been presented in chapter 3. Theorem 3.1 claims that the only

component-wise transformation which transforms a parallelogram to another parallelogram,

6.2 Geometric approach for separating PNL mixtures 81

is a linear transformation (provided that the borders of the parallelogram are not parallel to

the coordinate axes).

Having in mind this uniqueness, and noting that, after achieving output independence,

the scatter plot in the (x1, x2) plane must be a parallelogram, we conclude that if we find

a mapping which transforms the scatter plot of observations to a parallelogram, then the

sensor nonlinearities are compensated.

On the other hand, note that the Theorem 3.1 is stated only for the borders of the

parallelogram. However, if we assume that the functions hi = gi ◦ fi are monotone, the

borders of a transformed region will be the images of the borders of that region (refer to the

remark after the Theorem 3.1). Therefore, we can separate PNL mixtures in three steps:

(i) estimating the borders of the joint plot, (ii) computing the nonlinear mappings g1 and g2,

which transform these curves to a parallelogram, and (iii) separating the sources from the

resulting linear mixture.

Before continuing with the details of the method, we define some notations. Consider the

vertical line x1 = c, with values c for which two intersections occur with the borders of the

joint plot. Let us denote x2 = Lx(x1) the set of intersection points with smaller coordinates

x2 (we call it the ‘lower’ boundary) and x2 = Ux(x1) the set of intersection points with larger

coordinates x2 (we call it the ‘upper’ boundary), as shown in Fig. 6.2. The corresponding

curves in the (e1, e2) plane are denoted by e2 = Le(e1) and e2 = Ue(e1). The upper and lower

parts of the best parallelogram which fits on Ux and Lx are denoted by lu and ll, respectively

(see Fig. 6.2). The corresponding curves in the (w1, w2) plane are denoted by w2 = Lw(w1)

and w2 = Uw(w1).

Moreover, for the sake of simplicity, here we assume that the mixing matrix is in the

form:

A =

[
1 a

b 1

]
(6.1)

where a and b are both positive. This restriction insures that the functions Ue, Le, Ux

and Lx are all invertible (see Fig. 6.3-left). Without this restriction, too, the method can

be developed, but instead of working with upper and lower curves, we must consider each

border piece (4 pieces), which makes the equations too complicated for stating the main

points (Fig. 6.3-right).

6.2.2 Estimating the borders

First of all, we have to estimate the borders of the scatter plot of observations, that is, the

curves Le and Ue. For this purpose, we first divide e1 in K regular intervals. Let e′1(k) be

the mid-point of the k-th interval. Then we denote e′2,L(k) the minimum value of e2 among

82 Post Non-Linear Mixtures

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lx

Ux
ll

lu

Figure 6.2: Lower and Upper curves in (x1, x2) plane, and the best parallel-

ogram which fits on them. Lx: Solid curve, Ux: Dashed curve, ll: Dash-dotted

curve, lu: Dotted curve.

w1w1

w2w2

Figure 6.3: Lower and Upper curves in the (w1, w2) plane. Left) a and b (see

equation (6.1)) are both positive and hence Lw (the bold line) is invertible. Right) a

is positive, b is negative. Hence Lw is not invertible.

all the points which are in the corresponding strip of e1, and e′2,U (k) their maximum. Then,

we estimate Le and Ue as the smoothing splines fitted on the points (e′1(k), e′2,L(k)) and

(e′1(k), e′2,U (k)), respectively. This choice results in error smoothing and hence improves the

robustness against the errors due to the lack of data. However, the smoothing parameter

of the splines (as defined in Appendix A) must be chosen close to 1, to allow modeling fast

changes in the borders.

6.2.3 Compensating for the nonlinearities

In this section, we develop an iterative method for determining the nonlinear mappings

which transform the boundary curves to a parallelogram. The main idea is to minimize the

difference between the transformed boundary curves and the best parallelogram which fits

6.2 Geometric approach for separating PNL mixtures 83

on them. Consequently, our objective is to find the nonlinear functions g1 and g2 which

minimize a criterion of the form:

E
{(Lx(x1) − ll(x1)

)2}+ E
{(Ux(x1) − lu(x1)

)2} (6.2)

For minimizing this criterion, we use an iterative algorithm on the functions g1 and g2.

Hence, we need to calculate its ‘gradient’ with respect to the functions g1 and g2 (which are

themselves some functions of x1). However, with each modification in g1 or g2, the functions

ll and lu will be changed, which makes calculating these gradients too difficult. Consequently,

we use the following approach: instead of using the ‘gradients’, we use the ‘partial gradients’,

that is, in calculating the gradient of the criterion with respect to g1 and g2 we assume that

ll and lu remain constant. Then, after each modification of these functions, we calculate the

new functions ll and lu to their best values. The main loop for calculating g1 and g2 is then:

• Modify g1 and g2 by the algorithms g1 ← g1 − µ1G1 and g2 ← g2 − µ1G2. Here, G1

and G2 are the ‘partial gradients’ of the criterion with respect to g1 and g2, that is,

assuming ll and lu are fixed.

• Calculate ll and lu by finding the best parallelogram which fits on the curves Lx and

Ux.

�
Note: One may wonder about the mathematical justification of this algorithm: Is this

mathematically correct to assume ll and lu are constant while calculating the gradients? Here, with

an example for functions of scalar values (not functions of functions, as in our problem), we justify

this approach.

Suppose we would like to minimize a 2-variate function f(x, y), and suppose that finding its

minimum is not possible (or difficult) to do explicitly. Suppose also that the function is in such a

form that for each fixed x, the minimum of f(x, y) can be explicitly found with respect to y, and let:

g(x) = argmin
y

f(x, y)

As an example, we can consider f(x, y) = (xex − y)2. Finding its minimum explicitly is not easy, but

for each x, the function is a parabola with respect to y, and its minimum can be found explicitly.

Now, one way to find the minimum of such a function, is minimizing f(x, g(x)) with an iterative

manner, which is equivalent to the algorithm:


xn+1 = xn − µ
d

dx
f(x, g(x))

∣∣∣∣
x=xn

yn+1 = g(xn+1)

(6.3)

However, calculating d
dxf(x, g(x)) requires calculating g′(x) which can be difficult (in our problem,

it is difficult to calculate the gradient of ll with respect to g2).

84 Post Non-Linear Mixtures

One method for avoiding the computation of g′(x), is to use an iteration on both variables x and

y, which results in the algorithm: 


xn+1 = xn − µ1
∂f

∂x
(xn, yn)

yn+1 = yn − µ2
∂f

∂y
(xn, yn)

(6.4)

The problem with this method is that we have not used our ability to determine the exact minimum

with respect to y, which results in moving on a two dimensional surface and hence higher eventuality of

divergence or highly smaller rate of convergence. But, we can think about another method: replacing

the iteration on y with its exact minimum, that is, the algorithm:


xn+1 = xn − µ
∂f

∂x
(xn, yn)

yn+1 = g(xn+1)
(6.5)

Intuitively, it seems to be a correct modification in the algorithm (6.4). However, the nice thing is

that mathematically, the algorithm (6.5) is equivalent to (6.3). In fact, we have:

d

dx
f(x, g(x))

∣∣∣∣
x=xn

=
∂f

∂x
(xn, yn) +

∂f

∂y
(xn, yn)g′(xn)

However, as yn is the minimizer of f(xn, y), we conclude immediately that ∂f
∂y (xn, yn) = 0 and hence:

d

dx
f(x, g(x))

∣∣∣∣
x=xn

=
∂f

∂x
(xn, yn)

Consequently, we must solve two problems: (i) Calculating the functions G1 and G2, and

(ii) Fitting a parallelogram to the curves Ux and Lx.

Calculating G1 and G2

For determining G2 we use the cost function (see Fig. 6.4-Right):

E2 = E
{

[Lx(x1) − ll(x1)]
2
}

+ E
{

[Ux(x1) − lu(x1)]
2
}

(6.6)

This criterion is in fact:

E2 = E
{[

g2(e2) − ll
(
g1(e1)

)]2}
e2=Le(e1)

+ E
{[

g2(e2) − lu
(
g1(e1)

)]2}
e2=Ue(e1)

= E

{[
g2(e2) − ll

(
g1

(L−1
e (e2)

))]2}

+ E

{[
g2(e2) − lu

(
g1

(U−1
e (e2)

))]2}
(6.7)

6.2 Geometric approach for separating PNL mixtures 85

Figure 6.4: E1 and E2 error terms in estimating G1 and G2. The bold line is ll, and

the curve is Lx. Left) E1 is the horizontal error, and Right) E2 is the vertical error.

Note that, in the first equality of the above equation the expectations are calculated on the

curves e2 = Le(e1) and e2 = Ue(e1), while, in the second equality, they are taken over the

whole range of e2, since the constraints are moved into the brackets.

Now, let ĝ2 = g2 + ε2, where ε2 is a ‘small’ function. Direct calculations show that, up to

the first order terms, we have (since ll and lu are assumed to be fixed):

Ê2 − E2

2
= E
{[

g2(e2) − ll

(
g1

(L−1
e (e2)

))]
ε2(e2)
}

+ E
{[

g2(e2) − lu

(
g1

(U−1
e (e2)

))]
ε2(e2)
}

=
∫ +∞

−∞
G2(e2)ε2(e2)pe2(e2)de2

(6.8)

where pe2(e2) is the PDF of e2 and:

G2(e2) � 2g2(e2) − ll

(
g1

(L−1
e (e2)

))− lu

(
g1

(U−1
e (e2)

))
(6.9)

The above equation shows that the ‘gradient’ of E2 with respect to the function g2 via the

weighting function pe2(e2) can be defined as the function G2. In other words, the schematic

algorithm g2 ← g2 − µG2, where µ is a small positive constant, insures decreasing of E2

(provided that all the other parameters remain unchanged).

Calculating the gradient of E2 with respect to g1 is difficult1. Consequently, for g1 we use

the cost function (see Fig. 6.4-Left):

E1 = E
{[L−1

x (x2) − l−1
l (x2)

]2}+ E
{[U−1

x (x2) − l−1
u (x2)

]2} (6.10)

Similarly to what has been done for G2, one finds that the algorithm g1 ← g1 − µG1

insures a reduction in E1, where:

G1(e1) � 2g1(e1) − l−1
l

(
g2

(Le(e1)
))− l−1

u

(
g2

(Ue(e1)
))

(6.11)

1Strictly speaking, such a gradient does not exist. This is because the functions ll and lu are not differen-

tiable in their break-points.

86 Post Non-Linear Mixtures

x1

x2

α1

β01

β1

β2

Figure 6.5: The diagram of the curve ll(x1) = β01 + β1(x1 − α1)− + β2(x1 − α1)+.

(α1, β01) is the intersection point, β1 is the slope of the left piece, and β2 is the slope

of the right piece.

Note that, although the criteria (6.6) and (6.10) are different, their joint minimization

solves our problem. In fact, E2 is a measure of vertical error between the borders and the

parallelogram, and E1 is a measure of horizontal error (as shown in Fig. 6.4).

Fitting the parallelogram

In this subsection, we deal with the problem of fitting a parallelogram to the curves Lx and

Ux. As in the previous section, let ll and lu denote the lower and upper borders of the desired

parallelogram. Hence, we use the following parameterization:

ll(x1) = β01 + β1(x1 − α1)− + β2(x1 − α1)+

lu(x1) = β02 + β2(x1 − α2)− + β1(x1 − α2)+
(6.12)

where (u)− � min(0, u) and (u)+ � max(0, u). Figure 6.5 shows ll(x1). Note that the choice

of the β1 and β2 in the definition of the second curve (lu), forces its segments to be parallel

to the segments of ll, and hence the two curves generate a parallelogram together.

Suppose that the curves Lx and Ux are known via M sample points (x1(k), x21(k)) and

(x1(k), x22(k)), k = 1, . . . , M , where x21(k) = Lx(x1(k)) and x22(k) = Ux(x1(k)). We are

looking for the constants α1, α2, β01, β02, β1 and β2 which minimize C = Cl + Cu, where:

Cl =
∑

k

[x21(k) − ll(x1(k))]2

Cu =
∑

k

[x22(k) − lu(x1(k))]2
(6.13)

Assume we know the change-points α1 and α2. Then we must find β = (β01, β1, β2, β02)T

which minimizes:

C = ‖x21 − L1β‖2 + ‖x22 − L2β‖2 (6.14)

6.2 Geometric approach for separating PNL mixtures 87

where x21 � (x21(1), . . . , x21(M))T , x22 � (x22(1), . . . , x22(M))T and:

L1 �




1 (x1(1) − α1)− (x1(1) − α1)+ 0
...

...
...

...

1 (x1(M) − α1)− (x1(M) − α1)+ 0


 (6.15)

L2 �




0 (x1(1) − α2)+ (x1(1) − α2)− 1
...

...
...

...

0 (x1(M) − α2)+ (x1(M) − α2)− 1


 (6.16)

Writing C as:

C = (L1β − x21)
T (L1β − x21) + (L2β − x22)

T (L2β − x22) (6.17)

and using the well known equations:

∂

∂x

(
aTx
)

= a (6.18)

∂

∂x

(
xTATAx

)
= 2ATAx (6.19)

we have:
∂C
∂β

= 2LT
1 L1β − 2LT

1 x21 + 2LT
2 L2β − 2LT

2 x22 (6.20)

Now, by letting ∂C/∂β = 0, we obtain:

βopt = (LT
1 L1 + LT

2 L2)−1(LT
1 x21 + LT

2 x22) (6.21)

Determining the change-points α1 and α2 for minimizing C is difficult. Instead of this, we

compute the values of α1 and α2 which minimize Cl and Cu, respectively. This is done by using

the Hudson’s algorithm [48, 89] for fitting a segmented line to a set of data points. Although

these values do not necessarily minimize C, intuitively it seems a reasonable approximation,

which is confirmed by experiments.

6.2.4 Separating the linear mixture

After compensating for the nonlinearities, we must separate the resulting linear mixture.

Since at this point, we have already calculated the best parallelogram fitted on data, we can

use the geometric linear source separation approach for separating it. The idea of geometric

source separation, tells us that the separating matrix is:

B̂ =

[
1 1/β2

β1 1

]−1

(6.22)

88 Post Non-Linear Mixtures

6.2.5 The algorithm

As a final note, we must limit the degree of freedom in determining the functions gi, otherwise

it can generate too varying functions, which are not invertible. In other words, we require

that the functions g1 and g2 be somewhat smooth: if for two different data points (e1, e2) and

(e′1, e′2), e1 and e2 are close to each other, then the corresponding x1 and x′
1 must be close,

too. Therefore, at each iteration, we apply a smoothing procedure on these functions by

using the smoothing splines. That is, at each iteration, gi will be replaced by the smoothing

spline which fits on the (ei, xi) data points.

On the other hand, in PNL mixtures, we have a DC and scale indeterminacy on xi’s. To

overcome these indeterminacies, at each iteration, we remove the DC of xi’s and normalize

their energies.

Figure 6.6 gives the final separating algorithm.

6.2.6 Experimental results

✎ Experiment 6.1. Here, we present the separation result for PNL mixtures of a sine and

a triangle waveforms. The sources are mixed by:

A =

[
1 0.5

0.5 1

]
(6.23)

and the sensor nonlinearities are:

f1(x) = tanh(x) + 0.1x

f2(x) = tanh(2x) + 0.1x
(6.24)

The main parameters are: the sample size is 3,000, M = 500 (M is the number of points

used for approximating the boundary curves), µ = 0.05 and λ = 0.99999 (λ is the smoothing

parameter of all the smoothing splines, used for estimating Le and Ue, and for smoothing the

gi’s). Fifty intervals are used in the range of variations of e1 for estimating Le and Ue (K = 50).

Figure 6.7 shows the output Signal to Noise Ratios (SNR’s) in dB, defined by (assuming there

is no permutation):

SNRi = 10 log10

s2
i

(yi − si)2
(6.25)

Figure 6.8 shows the scatter plot of the observations and the estimated Le and Ue curves.

Figure 6.9 shows the resulting estimated parallelogram in the (x1, x2) plane. The fluctuations in

the estimated borders comes from estimation errors due to the sparse number of points close to

the borders in the joint plot in the (e1, e2) plane. However, the experimental results show that,

6.2 Geometric approach for separating PNL mixtures 89

• Initialization:

1. B=I.

2. gi(ei) = ei, i = 1, 2.

3. Estimate the functions Ue and Le

and compute them at M points

e′2,L(k) = Le(e′1(k)), e′2,U (k) =

Ue(e′1(k)), k = 1, . . . ,M .

• Loop:

1. Find the best parallelogram which

fits on (g1(e′1(k)), g2(e′2,L(k))) and

(g1(e′1(k)), g2(e′2,U (k))).

2. For i = 1, 2, modify the function

gi by gi ← gi −µGi (See (6.9) and

(6.11)).

3. For each gi, do a smoothing pro-

cedure (using smoothing splines),

remove its DC and normalize its

energy on the range of variations

of its argument.

4. Estimate B by (6.22).

5. Compute the outputs by y =

Bg(e).

• Repeat until convergence

Figure 6.6: Geometric algorithm for separating PNL mixtures.

90 Post Non-Linear Mixtures

SNR1

SNR2

dB

0 200 400 600 800 10005

10

15

20

25

30

Figure 6.7: The result of geometrical approach for separating PNL mixtures: output SNR’s versus

iterations.

Le

Ue

e1

e 2 0

0
−1.5

−1.5

−1

−1

−0.5

−0.5

0.5

0.5

1

1

1.5

1.5

Figure 6.8: Scatter plot of observations and estimated curves Le and Ue.

although these borders have been roughly estimated, the separating parameters are very close to

the optimal ones, due to spline smoothing estimation of gi’s.

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is approximately 77 seconds.

6.3 Gradient approach

In this section, we consider the gradient approach (see Section 4.8.2) for separating PNL

mixtures. The results of this section have been presented in [13].

In the gradient approach, we must first estimate the ‘gradients’ of I(y) with respect to

the parameters of the separating system (the matrix B and the functions gi), then use a

steepest descent algorithm on these parameters for minimizing I(y).

6.3 Gradient approach 91

Lx

Ux

x1

x
2 0

−2.5 −1.5 −0.5 0.5 1.5 2.5
−4

−2

2

4

Figure 6.9: The curves Lx and Ux.

For calculating the ‘gradients’ of I(y) with respect to the functions gi, two different

approaches can be used. One is the ‘parametric’ approach, that is, a parametric model for

these functions is assumed, and then the gradients of I(y) with respect to these parameters

are calculated. In this approach, the final steepest descent gradient algorithm is applied on

each parameter of the model. For example, neural networks and polynomial models have

already been used for for modeling gi’s [98, 93].

Another approach is the ‘non-parametric’ approach. In this approach, no parametric

model is assumed for gi’s, and the ‘gradients’ of the criterion with respect to these functions,

which itself is a function, is directly calculated. To clarify the idea, suppose we would like

to minimize a cost function C which depends on a function g(x). Also, suppose that for any

‘small’ function ε(x) we have:

C(g + ε) − C(g) =
∫ +∞

−∞
ε(x) f(x) p(x) dx (6.26)

where p(x) is a non-negative function. Then, we say that the gradient of C with respect to

the function g(x) is the function f(x)p(x). Equivalently, we say that the gradient of C with

respect to g via the weighting function p(x) is f(x). The main point here is that a little

movement in the opposite direction of these gradients reduces the cost function. In other

words, the two algorithms g ← g − µfp or g ← g − µf , where µ stands for a small positive

constant, insure a reduction in the cost function.

6.3.1 Estimating equations

The first step for using the gradient approach, is to calculate the gradients of I(y) with

respect to the parameters of the separating system, which are B and gi’s for a PNL separating

92 Post Non-Linear Mixtures

system.

Calculating the gradient of I(y) with respect to the matrix B leads to calculations already

done in Section 4.8.2. Consequently, the desired gradient is:

∂

∂B
I(y) = E

{
βy(y)xT

}
(6.27)

and the natural gradient of I(y) with respect to B is (see (4.76)):

∇BI(y) = E
{
βy(y)yT

}
(6.28)

For calculating the gradients of I(y) with respect to the functions gi, suppose there is a

small perturbation in these functions of the form:

ĝi = gi + εi ◦ gi (6.29)

where εi denotes a ‘small’ function. This is equivalent to:

x̂i = xi + εi(xi) = xi + δi (6.30)

where δi � εi(xi). Consequently:

ŷ � Bx̂ = y + Bδ (6.31)

where δ � (δ1, . . . , δN)T . Therefore, from the theorem 4.1 we have:

I(ŷ) − I(y) = E
{
δTBT βy(y)

}
(6.32)

Now we define2:

α(y) � BT βy(y) (6.33)

Hence:

I(ŷ) − I(y) = E
{
δT α(y)

}
=
∑

i

E {εi(xi)αi(y)}

=
∑

i

E {εi(xi)E {αi(y) | xi}}

=
∑

i

∫ ∞

−∞
εi(x)E {αi(y) | xi = x} pxi(x)dx

(6.34)

Finally, from the above equation, we conclude that the (natural) gradient of I(y) with respect

to gi and via the weighting function pxi is:

(∇giI)(x) = E {αi(y) | xi = x} (6.35)

It must be noted that ∇giI is itself a function.
2Recall that the same quantity appeared in (6.33) in separating post-convolutive mixtures.

6.3 Gradient approach 93

6.3.2 Separating algorithm

From the gradients calculated in the previous section, we can apply the following algorithm

for separating the sources:




B ← (I − µ1∇BI)B

xi ← xi − µ2(∇giI)(xi)
(6.36)

where the matrix ∇BI and the functions (∇giI)(x) are calculated from (6.28) and (6.35),

respectively. For estimating the expectation operation in (6.28), the empirical average is

used, and for estimating the conditional expectation in (6.35), we have used smoothing

splines. In other words, (6.35) proposes that (∇giI)(x) is a regression from xi to αi, and for

a non-parametric estimation of this regression curve, we used smoothing splines3. However,

usually the points αi with respect to xi are too varying (their scatter plot fills a region

like two “almost” independent random variables), and hence the smoothing parameter λ (as

defined in Appendix A, equation (A.7)) must be small.

However, the simple algorithm (6.36) cannot separate the sources, and some other pre-

cautions are needed. First, the effects of the indeterminacies must be removed. There is

scale and DC indeterminacies on both yi’s and xi’s. To overcome these indeterminacies, we

remove their DC’s and normalize their energies, at each iteration.

One other thing which needs special attention is the smoothness of the functions gi. Since

gi must be the approximate inverse of fi, and fi is a relatively smooth function (it comes

from the physical phenomena), gi has to possess some degree of smoothness, too. Here, since

the value of gi at each data point ei(t) is estimated independently for different t’s, we have

no constraint on the smoothness of these functions. This can result in a fluctuating function

(which is non-invertible, and hence does not satisfy the separability property). Moreover,

if the values gi(ei(t)) for different t’s are estimated totally independently, each value can

be treated as a ‘parameter’ and hence for the two-dimensional case we must estimate 2T

parameters from only T observations (T is the signal length), which is not mathematically

well-defined. However, because of the smoothness of fi’s and hence gi’s, these values are

not completely independent, that is, if ei(t1) and ei(t2) are close to each other, the values

of gi(ei(t1)) and gi(ei(t2)) must be close, too. This problem does not exist in parametric

model for estimating gi’s, because the limited number of parameters produces a degree of

smoothness in these functions.

The above paragraph proposes that a smoothness must be forced in estimating gi’s. Our

approach for creating this smoothness is using smoothing splines. That is, at each iteration,
3Another approach which could be used, was fitting a parametric curve (e.g. a polynomial, or a 10 pieces

cubic spline) on the (xi, αi) data points.

94 Post Non-Linear Mixtures

• Initialization:

1. B=I

2. x= e

• Loop:

1. Compute outputs by y = Bx.

2. Estimate βy(y) (SFD of y).

3. Let αy(y) � BT βy(y).

4. For i = 1, . . . , N , estimate (∇gi
I)(xi), by fitting

a smoothing spline on (xi, αi).

5. For i = 1, . . . , N , modify xi by xi ← xi −
µ2(∇gi

I)(xi).

6. Let gi be the smoothing spline which fits on the
(ei, xi) points.

7. For i = 1, . . . , N , normalize xi by xi ← xi−µ̂xi

σ̂xi
.

8. Absorb the effect of the above normalization in
B:

B ← B




σ̂x1 0
. . .

0 σ̂xN




9. Estimate D � ∇BI, using (6.28).

10. Replace the main diagonal of D by diag(σ2
y1

−
1, . . . , σ2

yN
− 1).

11. Modify B by B ← (I − µ1D)B.

• Repeat until convergence

Figure 6.10: The gradient approach for separating PNL mixtures.

after modifying xi’s, we compute the smoothing spline which fits on the (ei, xi) points, and

then replace xi’s by the values of this smoothing spline at ei’s. However, since this smoothing

process is done at each iteration, the value of smoothing parameter λ (as defined in (A.7))

must be very close to 1. Consequently, in the convergence, there is a kind of equilibrium

between the new adjustment in xi (by the gradient algorithm), and the smoothing process

which follows it. Normally, we have used values such as 0.9999 or 0.99999 for the smoothing

parameter.

Figure 6.10 shows the final separating algorithm.

A note on choosing the parameters of the algorithm: The algorithm of Fig. 6.10

contains several parameters. If we use kernel estimators for estimating SFD, we have 3

smoothing parameters for the three smoothing splines in steps 2, 4 and 6; the kernel band-

6.3 Gradient approach 95

width (h), and the step sizes µ1 and µ2. In choosing these parameters, these guidelines may

be helpful:

• h, the bandwidth of the kernel: a value about the optimum bandwidth which is given

by the equation (D.6) of the Appendix D.

• λ1, the smoothing parameter for the spline in step 2: This spline is for estimating MSF

from JSF. The value must be close to 1 to let estimating rapid changes of MSF, but

not too close to 1 to do some smoothing. A value near 0.99 seems to be suitable.

• λ2, the smoothing parameter for the spline in step 4: This value must be rather small,

because the points (xi, αi) normally fill a region, and we would like to calculate a

conditional expectation E {αi | xi}. This means that we need a lot of smoothing and

we must think about the values such as 0.1.

• λ3, the smoothing parameter for the spline in step 6: This spline is for preventing the

estimated gi’s to become too varying. As this smoothing is done at each iteration,

the value of the smoothing parameter must be very very close to 1; usually the values

about 0.9999 or 0.99999.

6.3.3 Experimental results

✎ Experiment 6.2. In this experiment, we use two uniform random sources with zero means

and unit variances. The mixing system composed of:

A =

[
1 0.5

0.5 1

]
(6.37)

f1(x) = f2(x) = 0.1x + tanh(2x) (6.38)

Then we have used the separation algorithm of Fig. 6.10 with the parameters: 1000 points data

block, kernel estimation of SFD with Gaussian kernels and λ1 = 0.99 and h = hopt = 0.3047,

λ2 = 0.1, λ3 = 0.9999 and µ1 = µ2 = 0.2. This experiment has been done 100 times. For

evaluating the separation quality, output SNR’s has been measured which are defined by:

SNRi = 10 log10

s2
i

(yi − si)2
(6.39)

Figure 6.11 shows the averaged output SNR’s versus iteration, taken over these 100 experiments.

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is approximately 40 seconds.

96 Post Non-Linear Mixtures

0 500 1000 1500
6

8

10

12

14

16

18

20

22

24

dB

Figure 6.11: Averaged output SNR’s versus iterations in separating PNL mixtures of two

random sources by the gradient approach.

6.4 Projection approach

In this section, we deal with the projection approach for separating PNL mixtures. As it has

been stated in section 4.8.3, this method consists in modify y by y ← y − µβy(y) at each

iteration (which insures a reduction in I(y)), and then finding the system which optimally

maps the observations to this newly computed outputs, and finally replacing the outputs by

the actual outputs of the computed system.

6.4.1 Finding the optimal system

For using the gradient approach in a PNL separating system, the first problem which must

be solved is computing the PNL separating system which optimally maps the observations to

a set of known outputs. In other words, knowing the observations e and the outputs y, we

are searching the functions gi and the matrix B, which minimize E
{
‖y − Bg(e)‖2

}
. Here,

we present an iterative algorithm for solving this problem.

Suppose that we know x. Then, the B which optimally maps x to y is obtained from

(4.81). Knowing B, we can compute x again by x = B−1y. Then, a function gi which

map ei to xi can be any function, provided that it is monotonous (here we assume that

it is ascending). To be sure that a gi is ascending, we change the order of the values

xi(1), xi(2), . . . , xi(T) in such a way that for any ei(k1) > ei(k2) we have xi(k1) > xi(k2).

This may be better explained by its MATLAB code:

[temp, index_i] = sort(e_i); % Outside the main loop.

x_i(index_i) = sort(x_i); % Within the main loop, as the step 3.

6.4 Projection approach 97

• Initialization: x = e.

• Loop:

1. Let B = E
{
yxT
} (

E
{
xxT
})−1.

2. Let x = B−1y.

3. For i = 1, . . . , N , change the order of xi(k) such
that the function xi = gi(ei) become ascending
(see the text).

• Repeat until convergence

Figure 6.12: Finding the optimal PNL mapping.

This time permutation insures that the function gi : ei �→ xi is ascending. It must be

noted that we are using a steepest descent iterative algorithm and our initial value for gi is

ascending. Moreover, at each iteration, only a rather small modification is done in the values

of xi(t). Consequently, the above time permutation does not result in a huge modification

of the estimated gi; it must be seen as a manner for preventing the algorithm to produce a

non-ascending gi.

After this new estimation of x, we compute a new B and then the loop is repeated. This

results in the iterative algorithm of Fig. 6.12 for calculating gi’s and B.

✎ Experiment 6.3. To verify the efficacy of this algorithm, we mix two zero mean and

unit variance sources by the mixing system:

A =

[
1 0.5

0.5 1

]
(6.40)

f1(x) = f2(x) = 0.1x + tanh(2x) (6.41)

and we let y = s. Then we apply the algorithm of Fig. 6.12 for obtaining gi’s and B. We also

define the estimation error by E
{
‖y − Bg(e)‖2

}
. Evidently, the optimal error is zero and is

obtained for gi = f−1
i and B = A−1. Figure 6.13 shows the variations of this error term versus

iterations.

This experiment shows that the algorithm of Fig. 6.12 converges very fast, essentially after 2

or 3 iterations.

6.4.2 Separating algorithm

Now, the final separation algorithm is evident: first, modifying y by y ← y − µβy(y), then

finding gi’s and B by the algorithm of Fig. 6.12, and finally replacing y by Bg(e); and

98 Post Non-Linear Mixtures

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro

r

Figure 6.13: Estimation error in finding best PNL mapping which maps x to s.

repeating this procedure until convergence.

However, some precautions are required. As in section 6.3.2, we need to remove the DC

and normalize the energy of the outputs and of the xi’s at each iteration. We also must apply

a smoothing process on the estimated gi’s at each iteration. Moreover, two modifications

must be done in applying the algorithm of Fig. 6.12. First, instead of initializing by x = e, we

can use the value of x obtained in the previous iteration which is a better initial estimation

of x. Secondly, we do not wait for the projection algorithm to converge (even, it is possible

that it does not converge, when the outputs cannot expressed as Bg(e)). Instead, we simply

repeat the loop for some fixed number of iterations, say 5 or 10 (in fact, even 1 iteration

seems sufficient in many cases, because the whole algorithm is itself iterative, and we use the

value of x in the previous iteration for its initial value of this iteration).

The final separating algorithm is shown in Fig. 6.14. The value of K in this algorithm

(number of repetitions of the internal loop), is a small number, e.g. 1 to 10.

6.4.3 Experimental results

✎ Experiment 6.4. We repeat the experiment 6.2 using the projection approach. In this

experiment, we use two uniform random sources with zero means and unit variances. The mixing

system composed of:

A =

[
1 0.5

0.5 1

]
(6.42)

f1(x) = f2(x) = 0.1x + tanh(2x) (6.43)

The parameters of the separating system are: µ = 0.1, 1000 samples data block, Pham’s estima-

6.4 Projection approach 99

• Initialization: y = x = e.

• Loop:

1. Estimate βy(y), the SFD of y.

2. Modify the outputs by y ← y − µβy(y).

3. For k = 1, . . . ,K, do:

(a) Let B = E
{
yxT
} (

E
{
xxT
})−1.

(b) Let x = B−1y.
(c) For i = 1, . . . , N , change the order of xi(k)

such that the function xi = gi(ei) be as-
cending.

4. For i = 1, . . . , N , remove the DC of xi and nor-
malize its energy.

5. For i = 1, . . . , N , let gi be the smoothing spline
which fits on (ei, xi).

6. Let y = Bg(e).

7. For i = 1, . . . , N , remove the DC of yi and nor-
malize its energy.

• Repeat until convergence

Figure 6.14: Projection algorithm for separating PNL mixtures.

tion method for estimating the SFD, K = 5, and the smoothing parameter used for smoothing

gi’s is 0.999. Figure 6.15 shows the averaged output SNR’s (versus iteration) taken over 100

runs of the algorithm.

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is approximately 12.5 seconds.

Comment: It can be seen in both figures 6.11 and 6.15, that the output SNR’s reach to

a maximum value and then fall a little. In my opinion, one of the reasons of this phenomena

is due to the ‘finite’ data set. That is, after finding a solution, the algorithms continue

to modify the nonlinearities to decrease the criterion which is only an estimation of the

actual one (because of the limited number of samples). And finally, the algorithm converges

because of the the smoothing process done at each iteration (it cannot produce too fluctuating

nonlinearities). For example, Fig. 6.16 shows the distributions of w and e for one realization

of the above experiment. Figure 6.17 represents the output SNR’s for this realization after

50 and after 1200 iterations. Figures 6.18 and 6.19 show the distributions of x and y and

the compensated functions gi ◦ fi after 50 and 1200 iterations. It can be seen, that the bad

estimation of gi’s comes from the lack of data (ei) in the middle of the range (see Fig. 6.16-b).

Of course, one solution for this problem, is to use a larger data block. However, since our

100 Post Non-Linear Mixtures

0 10 20 30 40 50
6

8

10

12

14

16

18

20

22

24
dB

(a)

0 500 1000 1500 2000 2500 3000
6

8

10

12

14

16

18

20

22

24

dB

(b)

Figure 6.15: Averaged output SNR’s versus iterations in separating PNL mixture by using

the projection approach, a) After 50 iterations, b) After 2500 iterations.

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

w
1

w
2

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

e
1

e 2
(b)

Figure 6.16: Distribution of two mixed random sources: a) Before nonlinear distortion,

b) After nonlinear distortion.

estimation algorithms for estimating SFD are block oriented, this dramatically slows down

the algorithm. Another better approach, is using a semi-adaptive approach. That is, after

each iteration (or after a few iterations), we change the data block and work with another

(the next) frame of data. For example, in the projection algorithm of Fig. 6.14, before

doing the step 6, we take another block of observations. With this approach, the number of

observations are virtually infinite, without slowing down the algorithm.

✎ Experiment 6.5. In this experiment, we have used two zero mean and unit variance

random sources with uniform distributions and the same mixing system as that of experiment 6.2.

A block of data with 1000 samples and the kernel estimation of SFD have been used, but before

doing the step 6 of the algorithm of the Fig. 6.14, we change the data block. Figure 6.20 shows

the output SNR’s and compensated nonlinearities after 2500 iterations.

6.5 Conclusion 101

0 10 20 30 40 50
6

8

10

12

14

16

18

20

22

24

26

dB

(a)

0 200 400 600 800 1000 1200
6

8

10

12

14

16

18

20

22

24

26

dB

(b)

Figure 6.17: Output SNR’s versus iterations, a) After 50 iterations, b) After 1200 iterations.

The above experiment confirms the opinion that one reason for the SNR decreasing after

reaching a maximum is due to too small data blocks. However, if we repeat the above

experiment with the Pham’s SFD estimator (not presented here), the problem does not

disappear. Consequently, the phenomena is also related to the quality of the estimation of

the SFD.

6.5 Conclusion

In this chapter, we considered PNL mixtures, and presented three different approaches for

their separation. The first approach was a geometric approach, which proves that compen-

sating nonlinearities before separating the sources is possible. This approach is limited to

the two dimensional case, and with the bounded sources that allows a good estimation of

the borders of their joint scatter plot. The two other approaches was based on SFD, the

gradient of the mutual information. We have used SFD of the outputs for designing gradient

based algorithm for minimizing their mutual information.

As for the linear mixtures, using SFD for minimizing the mutual information of the

outputs, does not rely on the multiplicative relation between x and y. Consequently, it

is possible to extend the results to convolutive mixtures, which is the subject of the next

chapter.

102 Post Non-Linear Mixtures

−2 −1 0 1 2

−2

−1

0

1

2

x
1

x 2

(a)

−2 −1 0 1 2
−2

−1

0

1

2

y
1

y 2

(b)

−2 −1 0 1 2

−2

−1

0

1

2

w
1

x 1

(c)

−2 −1 0 1 2

−2

−1

0

1

2

w
2

x 2

(d)

Figure 6.18: Separation result after 50 iterations: a) Distribution of x, b) Output distribu-

tion, c) g1 ◦ f1, and d) g2 ◦ f2.

−2 −1 0 1 2

−2

−1

0

1

2

x
1

x 2

(a)

−2 −1 0 1 2
−2

−1

0

1

2

y
1

y 2

(b)

−2 −1 0 1 2

−2

−1

0

1

2

w
1

x 1

(c)

−2 −1 0 1 2

−2

−1

0

1

2

w
2

x 2

(d)

Figure 6.19: Separation result after 1200 iterations: a) Distribution of x, b) Output distri-

bution, c) g1 ◦ f1, and d) g2 ◦ f2.

6.5 Conclusion 103

0 500 1000 1500 2000 2500
5

10

15

20

25

30

35

dB

(a)

0 500 1000 1500 2000 2500
5

10

15

20

25

30

35

40

dB

(b)

−2 −1 0 1 2

−2

−1

0

1

2

w
1

x 1

(c)

−2 −1 0 1 2

−2

−1

0

1

2

w
2

x 2

(d)

Figure 6.20: Separation result after 2500 iterations using framing: a) SNR1, b) SNR1, c) g1 ◦
f1, and d) g2 ◦ f2.

104 Post Non-Linear Mixtures

Chapter 7

CPNL Mixtures

7.1 Introduction

In this chapter, the Convolutive Post Non-Linear (CPNL) mixtures are considered. In fact,

having prepared the basics of the method (criterion, estimation equations, . . .) in the pre-

vious chapters, we have simply to combine the results of the chapters 5 and 6 for separating

these mixtures.

In CPNL mixtures, the sources are mixed by a linear convolutive system followed by

componentwise nonlinearities, as shown in the Fig. 7.1. This mixing model corresponds to

the case where the mixing system is itself convolutive-linear, but the sensors have nonlinear

effects (such as saturation). Taking into account the mixing structure, we construct the

separating structure as its mirror structure. Hence, we first compensate for the nonlinearities

(using the functions gi) and then separate the resulting linear (but convolutive) mixture by

the FIR separating filter:

B(z) = B0 + B1z
−1 + · · · + Bpz

−p (7.1)

In Section 3.5, we justified the separability of CPNL mixtures (for iid sources) by ex-

tending the separability result of the instantaneous PNL mixtures. In this chapter, we use

A(z)
f1

fN

g1

gN

B(z)
�

�

�

�

�

�

�

�

�

�

wN

w1

eN

e1

xN

x1

sN

s1

yN

y1

...
......

...

Mixing System� � Separating System� �

Figure 7.1: The mixing-separating system for CPNL mixtures.

106 CPNL Mixtures

the gradient and projection approaches (chapter 4) for separating them.

As for the convolutive mixtures, we consider only the case of two sources and two sensors,

and we use the following independence criterion:

J =
M∑

m=−M

I(y1(n), y2(n − m)) (7.2)

where I denotes the mutual information. For minimizing this criterion, we choose randomly a

different m at each iteration, and then apply a gradient or projection approach for minimizing

I(y1(n), y2(n − m)).

Principally, it seems that the results of this chapter can be extended to more than two

sources, by using a criterion in the form
∑

m1,...,mN−1
I(y1(n), y2(n−m1), . . . , yN (n−mN−1)).

However, such a generalization results in a huge computational volume and requires a lot of

data. Hence, we had not any experience with higher than two sources, and in this chapter

we remain in the case of two sources and two sensors.

7.2 Gradient approach

In this approach, we must first calculate the gradients of I(y1(n), y2(n − m)) with respect

to the parameters of the separating system, that is, with respect to the functions gi and

to the matrices Bi, and then apply a steepest descent algorithm on each parameter. Here,

we first calculate these gradients, and after developing the separating algorithm we present

some experimental results.

The results of this section have been presented in [8].

7.2.1 Estimating equations

Using the calculations of the section 5.3.1, we have the gradients of I(y1(n), y2(n−m)) with

respect to the matrices Bk:

∂

∂Bk
I
(
y1(n), y2(n − m)

)
= E
{
βm(n)x(n − k)T

}
, k = 0, . . . , p (7.3)

where:

βm(n) � β
(−m)

y(m) (n) =

[
βy(m),1(n)

βy(m),2(n + m)

]
(7.4)

and βy(m)(·) denotes the SFD of y(m) (see the notation introduced in equation (5.10),

page 62). In other words:(
y1(n)

y2(n)

)
Shift−−−→
(

y1(n)

y2(n − m)

)
SFD−−−→

(
β�

1(n)

β�
2(n)

)
Shift back−−−−−−−→

(
β�

1(n)

β�
2(n + m)

)
� βm(n)

7.2 Gradient approach 107

Now, we must calculate the gradients of I(y1(n), y2(n−m)) with respect to the functions

g1 and g2. As in section 6.3.1, we assume that each gi is modified by the composition with

a ‘small’ function εi:

ĝi = gi + εi ◦ gi (7.5)

This is equivalent to:

x̂i = xi + εi(xi) = xi + δi (7.6)

where δi � εi(xi). Consequently:

ŷ(n) � [B(z)] x̂(n) = y(n) + [B(z)] δ(n) (7.7)

where δ(n) � (δ1(n), . . . , δN (n))T . Defining ∆(n) � [B(z)] δ(n) we have:

ŷ(n) = y(n) + ∆(n) (7.8)

and hence:

ŷ(m)(n) = y(m)(n) + ∆(m)(n) (7.9)

Now, from Theorem 4.1 we can write:

I
(
ŷ(m)(n)

)
− I
(
y(m)(n)

)
= E
{
∆(m)(n)T βy(m)(n)

}
(7.10)

where βy(m)(n) stands for βy(m)

(
y(m)(n)

)
. Assuming that all the sources are stationary, the

above relation can be simplified as follows:

I
(
ŷ(m)(n)

)
− I
(
y(m)(n)

)
= E
{
∆(m)(n)T βy(m)(n)

}
= E
{

∆1(n)βy(m),1(n)
}

+ E
{

∆2(n − m)βy(m),1(n)
}

= E
{

∆1(n)βy(m),1(n)
}

+ E
{

∆2(n)βy(m),1(n + m)
}

= E
{
∆T (n)βm(n)

}
(7.11)

where βm(n) is defined in (7.4). Now, from:

∆(n) � [B(z)] δ(n) =
p∑

k=0

Bkδ(n − k) (7.12)

we have:

I
(
ŷ(m)(n)

)
− I
(
y(m)(n)

)
=

p∑
k=0

E
{
δT (n − k)BT

k βm(n)
}

=
p∑

k=0

E
{
δT (n)BT

k βm(n + k)
}

= E
{
δT (n)α(n)

}
(7.13)

108 CPNL Mixtures

where (compare this definition with (6.33)):

α(n) �
p∑

k=0

BT
k βm(n + k) =

[
BT

(
1
z

)]
βm(n) (7.14)

Now, the simplification (6.34) can be repeated here, from where we obtain:

(∇giI)(x) = E {αi | xi = x} i = 1, 2 (7.15)

This relation, proposes that ∇giI can be obtained by a regression from xi to αi.

�
Note: Since the nonlinearities are instantaneous, they cannot result in time delay of the

outputs. Hence, we can use the results of section 6.3.1, that is, equations (6.33) and (6.35) for the

gradient with respect to gi’s. With this method, we would use two different independence criterion,∑
m I(y1(n), y2(n − m)) for the convolutive part, and I(y(n)) for the nonlinear part.

7.2.2 Separating algorithm

Having the gradients (7.3) and (7.15), we can apply a steepest descent gradient algorithm

on each parameter for separating the sources. However, the indeterminacies require some

attention.

Since there are a DC and scale indeterminacies on each xi and each yi, we have to remove

the DC and normalize the energies at each iteration. Moreover, to prevent the algorithm from

generating too varying functions, we apply a smoothing process on them at each iteration

(using smoothing splines). We also change the data set at each iteration. Finally, as for the

convolutive mixtures, at each iteration we use a randomly chosen m between −M and M .

We set M = 2p, where p denotes the maximum degree of the separating filters.

Figure 7.2 shows the final separating algorithm.

7.2.3 Experimental results

✎ Experiment 7.1. In this experiment, we use zero-mean unit-variance random sources

with uniform distributions. The sources are mixed by the convolutive mixing matrix:

A(z) =

[
1 + 0.2z−1 + 0.1z−2 0.5 + 0.3z−1 + 0.1z−2

0.5 + 0.3z−1 + 0.1z−2 1 + 0.2z−1 + 0.1z−2

]
(7.16)

followed by nonlinearities:

f1(x) = f2(x) = tanh(2x) + 0.1 x (7.17)

7.2 Gradient approach 109

• Initialization:

1. B(z) = I, that is: B0 = I and for k = 1 . . . p, Bk = 0.

2. x(n) = e(n).

3. y(n) = x(n).

• Loop:

1. Choose a random m from the set {−M, . . . ,+M}.
2. Compute β�(n), the SFD of

(
y1(n), y2(n − m)

)T .

3. Let βm(n) = (β�
1(n), β�

2(n + m))T .

4. Estimate (∇gi
I)(xi), by fitting a smoothing spline on

(xi, αi).

5. Modify xi: xi ← xi − µ1(∇̂gi
I)(xi).

6. Let gi be the smoothing spline which fits on the (ei, xi)
points.

7. Normalize xi: xi ← (xi − µ̂xi
) /σ̂xi

.

8. Absorb the effect of the above normalization in B(z):

B(z) ← B(z)




σ̂x1 0
. . .

0 σ̂xN




9. For k = 0 . . . p :

Bk ← Bk − µ2Ê
{
βm(n)x(n − k)T

}
10. Calculate y(n) = [B(z)]x(n).

11. Normalization:

– Let yi = yi/σi, where σ2
i is the energy of yi.

– Divide the i-th raw of B(z) by σi.

• Repeat until convergence.

Figure 7.2: Gradient algorithm for separating CPNL mixtures.

110 CPNL Mixtures

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

5

10

15

20

25

30

35
(a)

dB

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

5

10

15

20

25

30

35
(b)

dB

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3
(c)

x 1

w
1

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3
(d)

x 2

w
2

Figure 7.3: Result of CPNL mixture separation by gradient approach (experiment 7.1):

a) SNR1 versus iterations, b) SNR2 versus iterations, c) g1 ◦ f1, and d) g2 ◦ f2.

For separating this mixture, we use the algorithm of Fig. 7.2, with the parameters: µ1 = µ2 = 0.2,

p = 2 (second order separating filters), M = 4, Pham’s estimator for estimating SFD, λ = 0.1 for

the smoothing splines of step 4 of the algorithm, λ = 0.99999 for the smoothing splines applied

for estimating gi’s (step 6 of the algorithm). At each iteration a different data block of length

2000 is used. In the program, the data block is changed before the step 10 of the Fig. 7.2.

The quality of separation is estimated by the output Signal to Noise Ratios (SNR’s), defined

by (assuming there is no permutation):

SNRi = 10 log10

E
{
y2

i

}
E
{(

yi|si=0

)2} (7.18)

where yi|si=0 stands for the signal on the i-th output, when the i-th input is zero (resulting from

the leakage of the other sources).

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is approximately 36 seconds.

✎ Experiment 7.2. The experiment 7.2 is repeated, but with blocks of length 1000

7.2 Gradient approach 111

0 1 2 3 4 5 6 7 8 9

x 10
4

0

5

10

15

20

25

30

35
(a)

dB

0 1 2 3 4 5 6 7 8 9

x 10
4

0

5

10

15

20

25

30

35
(b)

dB

−4 −3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(c)

x 1

w
1

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(d)

x 2

w
2

Figure 7.4: Separation result of separating a CPNL mixture by gradient approach (experi-

ment 7.2): a) SNR1 versus iterations, b) SNR2 versus iterations, c) g1 ◦ f1, and d) g2 ◦ f2.

samples, instead of 2000 samples. The separation result can be seen in Fig. 7.4.

This experiment shows that although we change the data block at each iteration, to prevent

the phenomena of falling SNR’s after reaching a maximum (which is discussed in the page 99),

but still the length of the data block is an important factor. It can be seen that the phenomena is

repeated here. Another reason is using the Pham’s SFD estimator for the nonlinear part (which

has the same effect in PNL mixtures, too).

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is approximately 17 seconds.

✎ Experiment 7.3. In previous chapters, we saw that Pham’s estimator acts better for

convolutive mixture while kernel estimator works better for PNL mixtures. In this experiment,

we repeat the previous experiment, but with two different SFD estimation: kernel estimation for

the nonlinear part, and Pham’s method for the convolutive part. Moreover, as the nonlinear part

cannot result in a time delay in signals, we used m = 0 for the nonlinear part. All the other

parameters are left unchanged. Figure 7.5 shows the final separation result.

112 CPNL Mixtures

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

30

35
(a)

dB

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

30

35
(b)

dB

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3
(c)

x 1

w
1

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(d)

x 2

w
2

Figure 7.5: Separation result of separating a CPNL mixture by gradient approach (experi-

ment 7.3): a) SNR1 versus iterations, b) SNR2 versus iterations, c) g1 ◦ f1, and d) g2 ◦ f2.

Comparison of the results of this experiment with the previous one (Fig. 7.5) shows the

efficiency of using two different SFD estimation for convolutive and nonlinear parts.

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is approximately 54 seconds.

7.3 Projection approach

In this section, we use the projection approach for separating CPNL mixtures. As it has

been explained in the section 4.8.3, the basic steps of this approach are: i) modifying the

outputs by y ← y − µβy(y) which decreases their mutual information, ii) finding the best

system which maps the observations onto these new outputs, iii) replacing the outputs by

the actual outputs of this computed system, and repeating this procedure.

7.3 Projection approach 113

• Initialization: x(n) = e(n).

• Loop:

1. Using (5.29), find the best B(z) which maps
x(n) to y(n).

2. Compute x(n) = [inv(B(z))]y(n) using the re-
cursive equation (7.20).

3. For i = 1, . . . , N , change the order of xi(k) such
that the function xi = gi(ei) become ascending.

• Repeat until convergence

Figure 7.6: Finding the optimal CPNL mapping.

7.3.1 Finding the optimal system

The first problem which must be solved for using the projection approach, is finding the best

system which maps the known observations to the known outputs. In other words, knowing

e(n) and y(n), we are looking for the nonlinearities gi’s and the filter B(z) which minimize

E
{∥∥y(n) − [B(z)]g

(
e(n)
)∥∥2}.

For finding this optimal system, we use an iterative approach similar to the one presented

in the previous chapter (see Fig. 6.12). However, as the linear part is convolutive, this

approach needs two modifications.

A modification is done in the step 1 of the algorithm of Fig. 6.12. In this step, the

best instantaneous linear system which maps x to y was estimated by the simple relation

B = E
{
yxT
} (

E
{
xxT
})−1. Now, the system to be estimated is a convolutive system B(z),

and one has to use the method presented in the section 5.4.1 for convolutive mixtures and

mainly the equation (5.29).

The second modification occurs in the second step of Fig. 6.12. In this step, knowing the

linear system and its output, the input of the system must be estimated. Previously, the

linear system being instantaneous, this was simply achieved by x = B−1y. Now, the system

is a filter, and:

y(n) = B0x(n) + B1x(n − 1) + · · · + Bpx(n − p) (7.19)

Then, we compute x(n) from the recursive relation:

x(n) = B−1
0

[
y(n) − B1x(n − 1) − · · · −Bpx(n − p)

]
(7.20)

The final algorithm for computing the optimal mapping is sketched in Figure 7.6.

114 CPNL Mixtures

• Initialization: y = x = e.

• Loop:

1. Choose a random m from the set {−M, . . . ,M}.
2. Estimate βy(m)(y), the SFD of y(m).

3. Modify the outputs by y(m) ← y(m) −
µβy(m)(y(m)).

4. For k = 1, . . . ,K, do:

(a) Find the best B(z) which maps x(n) to
y(n), using (5.29).

(b) Compute x(n) = [inv(B(z))]y(n) using
the recursive equation (7.20).

(c) For i = 1, 2, change the order of xi(k) such
that the function xi = gi(ei) be ascending.

5. For i = 1, 2, remove the DC of xi and normalize
its energy.

6. For i = 1, 2, let gi be the smoothing spline
which fits on (ei, xi).

7. Let y(n) = [B(z)]g
(
e(n)
)
.

8. For i = 1, 2, remove the DC of yi and normalize
its energy.

• Repeat until convergence

Figure 7.7: Projection algorithm for separating CPNL mixtures.

7.3.2 Separation algorithm

The separation algorithm is then evident: first, modify y(m) by y(m) ← y(m)−µβy(m)

(
y(m)
)
,

then find gi’s and B(z) by the algorithm of Fig. 7.6, and finally replace y(n) by [B(z)]g
(
e(n)
)
;

and repeat this procedure until convergence.

As in the previous chapters, the indeterminacies require a special attention. First, we

remove the DC’s and normalize the energies of both x and y at each iteration. Secondly,

at each iteration, we replace gi’s by the smoothing spline which maps ei to xi. Finally, like

with PNL mixtures, we repeat the algorithm loop of the Fig. 7.6 only a few times (5 to 10

times) and for its initialization we use the previous value of x (that is, the value of x which

has been obtained in the previous iteration of the global algorithm).

The complete algorithm is shown in Fig. 7.7.

7.3.3 Experimental results

✎ Experiment 7.4. This is the repetition of the experiment 7.2 with the projection approach.

7.3 Projection approach 115

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30
(a)

dB

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30
(b)

dB

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3
(c)

x 1

w
1

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3
(d)

x 2

w
2

Figure 7.8: Separation result of separating a CPNL mixture by the projection approach

(experiment 7.3): a) SNR1 versus iterations, b) SNR2 versus iterations, c) g1 ◦ f1, and

d) g2 ◦ f2.

In this experiment, we use zero-mean unit-variance random sources with uniform distributions.

The sources are mixed by the convolutive mixing matrix:

A(z) =

[
1 + 0.2z−1 + 0.1z−2 0.5 + 0.3z−1 + 0.1z−2

0.5 + 0.3z−1 + 0.1z−2 1 + 0.2z−1 + 0.1z−2

]
(7.21)

followed by nonlinearities:

f1(x) = f2(x) = tanh(2x) + 0.1 x (7.22)

The separation algorithm of Fig. 7.7 has been used with the following parameters: Pham’s

estimation method for estimating SFD, µ = 0.1, p = 2, M = 4, and λ = 0.99999 for the

smoothing spline used for estimating (and smoothing) gi’s. The length of data block is 1000 (as

in the experiment 7.2), but a new data block is taken at each iteration (in programming, this is

done just before the step 7 of the algorithm of Fig. 7.7).

Signal to Noise Ratio (SNR), as defined in (7.18), is used for measuring the separation

performance. The final separation result can be seen in Fig. 7.8.

Compare the results of this experiment with 7.2 (the figures 7.4 and 7.8). In both experiments

116 CPNL Mixtures

the same data block length and the same SFD estimator has been used. It can be seen that the

results of the projection approach is better.

Run time: The time required for running 100 iterations of the experiment for each realization

of the sources is approximately 40 seconds. Here, most of the time is consumed in computing

the inputs of B(z) from its outputs (the recursive equation (7.20)).

7.4 Conclusion

In this chapter, we combined the methods of the chapters 5 and 6 for separating CPNL

mixtures. The criterion was based on the mutual information of the outputs, and for its

minimization, we have used SFD (as the gradient of the mutual information) through the

gradient and projection approaches presented in the chapter 4.

Some experimental results have been presented. These experiments show that the pro-

jection approach results in better separation in CPNL mixtures (when the Pham’s etimation

of SFD is used).

Chapter 8

Conclusion and Perspectives

In this thesis, we have presented source separation algorithms for separating linear instan-

taneous, convolutive, PNL and CPNL mixtures. The principle of all the algorithms is to

minimize the mutual information of the outputs, by using an iterative manner based on

the steepest descent gradient algorithm. In fact, knowing the differential of the mutual

information (Theorem 4.1), we have proposed two general approach for minimizing the mu-

tual information of the outputs of a separating system: gradient and projection approaches.

Then, we used these approaches in separating linear instantaneous, convolutive, PNL and

CPNL mixtures, for them, a separability result is available.

Moreover, by mentioning an example (page 24), we show that even smooth mappings

may mix the sources and preserve their independence. This fact shows that one cannot rely

on the smoothness of the nonlinear separating system for separating the sources. In other

words, in nonlinear source separation, it is essential1 to have a structural constraint along

with a separability result for that structure.

For PNL mixtures, we have presented a geometrical algorithm (for the case of two sources

and two sensors). This algorithm has two interesting points. Firstly, it provides a proof for

the separability of PNL mixtures where the sources are assumed to be bounded. Secondly, it

shows that the nonlinearity in PNL mixtures can be compensated, before and independently

from separating the sources.

The most interesting results of the thesis are the followings:

1In this example (as well as the example of page 3), the outputs are only instantaneously independent.

Recently, S. Hosseini and C. Jutten [47] have proposed that the independence in the sense of stochastic

processes (i.e. the independence of y1(n) and y2(n − m) for all n and all m) is much more stronger than the

instantaneous independence. Consequently, one may still hope to solve a nonlinear source separation problem

by taking into account the time correlation of the signals and the independence of their shifted versions. The

possibility of such an approach is still an open question.

118 Conclusion and Perspectives

• We derived a general expression for the differential of the mutual information (The-

orem 4.1). This result can be used for its minimization. Two general approaches,

gradient and projection approaches, have been proposed for its minimization. More-

over, we proved that the mutual information has no “local minimum” (Theorem 4.2).

• We introduced the concept of SFD, as the stochastic gradient of the mutual information.

Using this concept, even with its simple estimations (e.g. histogram estimation) we can

obtain good separation results.

• We provided another proof for separability of PNL mixtures of bounded sources (sec-

tion 3.4).

• We designed algorithms for separating CPNL mixtures and new methods for separating

linear instantaneous, convolutive and PNL mixtures.

As main perspectives of this work, we can give the following list:

• Considering more realistic mixtures. In the thesis, we have always used very simple

convolutive mixtures, and simple signals. However, the case of real signals, and real

filters (which may have large lengths) needs more investigation. By now, one great

difficulty is the computational load of the algorithms.

• The CPNL mixing model corresponds to instantaneous nonlinear sensors after a linear

convolutive mixture. The case where the sensors have nonlinear effects which varies

in different frequencies needs more consideration. If one can model such a sensor by

a linear filter followed by a nonlinear memoryless system, then the CPNL mixture is

still a good model for the mixing system. Otherwise, some different models may need

to be introduced.

• The performance of the algorithms, and a theoretical convergence analysis may be

considered.

• The separation of the cascade of the PNL blocks can be considered. Our first experi-

ments (with the gradient approach) have been somewhat successful in separating the

sources. However, a separability result for such a system is not yet available. Conse-

quently, even after using gradient or projection approaches for generating independent

outputs, one cannot be sure that the sources have been separated.

• Searching for other SFD (or conditional score function) estimation methods, to achieve

better separation quality. Especially, finding an optimal estimation (in MMSE sense)

needs some investigation.

119

• As we saw, in separating PNL and CPNL mixtures, the output SNR’s reaches a maxi-

mum, and then falls and converges to a smaller value. Although our experiments show

that two reasons of this phenomena are the signal lengths and the SFD estimation

method, the reason is not yet completely clear, and requires more investigation.

• The generalization of our method for separating convolutive and CPNL mixtures for

the case of more than two sources, may be considered.

120 Conclusion and Perspectives

Appendix A

Spline Functions

The goal of this appendix is a brief review on the major aspects of the spline theory which

have been used in this thesis.

A.1 Definitions

Definition A.1 A polynomial of “ order” n is a function of the form:

p(x) = a1 + a2x + · · · + anxn−1 (A.1)

Note that the degree of a polynomial of order n is not necessarily n − 1 (because it is

possible that an = 0). However, it can be said that the degree of a polynomial of order n is

strictly smaller than n.

Definition A.2 Let ξ = {ξi}l+1
1 be a strictly increasing sequence, and let k be a positive

integer. A “ piecewise polynomial” (or pp) function of order k with “ breakpoint sequence”

ξ is a function which is a k-th order polynomial between each two successive breakpoints.

In other words, if pi(x) (i = 1, . . . , l) stand for a k-th order polynomials, then a pp function

with the breakpoints {ξi, i = 1, . . . , l + 1} is:

f(x) � pi(x), ξi < x < ξi+1 (A.2)

Usually the function is extended beyond the first and last breakpoints, by the continuation

of the first and last polynomial pieces.

A piecewise polynomial may be discontinuous at its breakpoints. If we add some smooth-

ness constraints at the breakpoints of a pp-function, we obtain a spline:

Definition A.3 A “ spline” of order k is a k-th order pp-function with smoothness con-

straints at its breakpoints.

122 Spline Functions

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure A.1: An example of a cubic spline with different smoothness constraints at the knots

2, 4 and 5.

By a smoothness constraint, we mean a constraint on the continuity of the function itself, or

on its derivatives.

Example. Figure A.1 shows an example of a 4-th order (also called cubic) spline. In other

words, each piece of the function is 4-th order polynomial (i.e. a polynomial with degree 3 or less).

The breakpoints of this spline are 2, 4 and 5. At 4, the spline, its derivative and its second derivative

are all continuous. At 2, the spline is continuous, but its derivatives are not. At 5, even the spline

itself is not continuous.

In the spline terminology, one often encounters the term “knot sequence”. The knot

sequence is an increasing sequence (not necessarily strictly increasing) which contains the

information about both of the breakpoints and the smoothness constraints at each break

point (provided that the order of spline is known). The convention is:

Number of smoothness conditions at a knot + multiplicity of the knot = order

In other words, for a knot ξi with multiplicity 1 (i.e. a breakpoint which is occurred only

1 time in the knot sequence) we have k − 1 continuity constraints, that is, the spline itself,

and all of its derivatives until the (k−2)-th derivative must be continuous at this knot. Such

a knot is also called a simple knot. In the same way, a k-th order spline may be discontinuous

at a knot with multiplicity k.

Example. The knot sequence of the fourth order (cubic) spline of the previous example is

{2, 2, 2, 4, 5, 5, 5, 5}.

A.2 Some interesting properties of splines 123

A.2 Some interesting properties of splines

The splines have some properties which make them an interesting tool in many domains,

including approximation theory, computer graphics, engineering and approximation theory.

For example, the font shapes of the letters you are reading have been designed using the

splines. Here we list some of these interesting points:

Property 1. For modeling or interpolating a function, we can use polynomial

models. However, if the order of the polynomial is too small, it will not result in a good

approximation for the rapid varying parts of the function. Conversely, if the order is chosen

too large, the estimated function may be too varying in the other points. In other words,

as shown in [33], with a polynomial approximation, “if the function to be approximated is

badly behaved anywhere in the interval of approximation, then the approximation is poor

everywhere”. However, by using low order splines (2nd degree or 3rd degree pp functions)

we can well approximate rapid varying parts of a function (provided that there is enough

knot points in that region), without affecting the other parts of the function.

Property 2. Another nice property of the splines, is the minimum curvature property

of the cubic splines [4, 46]:

Theorem A.1 (Holladay) Let the mesh a = x0 < x1 < · · · < xN = b and a set of real

numbers {yi}N
i=0 are given. Among all the functions f(x) with a continuous second order

derivative on [a, b] and f(xi) = yi (i = 0, . . . , N), the cubic spline sp(x) with the knot

sequence {xi} and the end conditions sp′′(a) = sp′′(b) = 0 is the function which minimizes

the integral: ∫ b

a

∣∣f ′′(x)
∣∣2 dx

Property 3. One of the properties of the splines, which leads to design fast algo-

rithms for their computations, and hence a lot of applications in computer graphics, is the

property that any k-th order spline with the knot sequence ξ = {ξi}l+1
1 can be represented

as the sum:

sp(x) = a1B1(x) + a2B2(x) + · · · + aNBN (x) (A.3)

where Bi(x) are some predetermined and fixed splines which are determined only by knowing

the knot sequence. In other words, {Bi(x)} are the basis functions of the linear space of the

splines with a known knot sequence. Because of this property, the splines Bi(x) are usually

called B-splines.

There is a simple recursive algorithm for calculating the B-splines which correspond to a

knot sequence {ξi}. Let us denote the k-th order B-splines of this knot sequence by B
(k)
i (x).

124 Spline Functions

Then we have:

B
(1)
i (x) =

{
1 ; if ξi ≤ x < ξi+1

0 ; Otherwise
(A.4)

In particular, ξi = ξi+1 implies that B
(1)
i (x) ≡ 0. Now, the k-th order B-spline can be

obtained from the (k − 1)-th order B-spline by the following recursive formula:

B
(k)
i (x) = ωik(x)B

(k−1)
i (x) +

(
1 − ωi+1,k(x)

)
B

(k−1)
i+1 (x) (A.5)

where:

ωik(x) �
{

x−ξi

ξi+k−1−ξi
; if ξi �= ξi+k−1

0 ; Otherwise
(A.6)

From these relations, it can be seen that the B-spline B
(k)
i (x) is zero outside the interval

[ξi, ξi+k), and is completely specified by the knots ξi, . . . , ξi+k. The function bspline of

MATLAB’s spline toolbox, plots the B-spline B
(k)
i (x) and its polynomial pieces, knowing

the knots ξi, . . . , ξi+k.

The property 3 also shows that if we model a function on an interval (with some prede-

termined knot sequence), the model is a linear model with respect to the parameters of the

model (i.e. the coefficients ai).

On the other hand, this property provides two methods for representing a spline: pp-

form and B-form. In the pp-form, the spline is represented by its breakpoint sequence, and

the coefficients of each polynomial piece. In the B-form, the spline is represented by its

knot sequence and the coefficients of the above sum (we emphasize on the difference between

the breakpoint sequence and the knot sequence: the former is strictly increasing, but in the

latter the multiplicity of elements contains some information about the smoothness at that

knot). MATLAB’s spline toolbox uses both of these representation and have some tools for

converting one form to the other one.

Property 4 (Smoothing Splines). Another problem, which, at the first glance,

may seem unrelated to the splines, is the problem of non-parametric regression. To state the

problem more clearly, suppose that we have a set of N points (xi, yi), and we are looking

for a ‘smooth’ function which maps xi’s to yi’s, that is, a smooth non-parametric regression

curve from x to y. In fact, we can find many functions f which give an exact mapping from

x to y, that is, yi = f(xi), for i = 1, . . . , N . Among them, the cubic spline is the smoothest.

However, here we drop the requirement that yi = f(xi) for all points and instead we are

searching for a function f which minimizes the criterion:

λ
∑

i

(
yi − f(xi)

)2 + (1 − λ)
∫ ∞

−∞

(
f ′′(x)
)2

dx (A.7)

A.3 End-conditions in approximation with cubic splines 125

The parameter 0 ≤ λ ≤ 1 determines the smoothness of the function: the smaller λ the

smoother function, the greater λ the better fidelity to data.

Surprisingly, the answer of this problem, too, is a cubic spline with the knot sequence xi.

This property has been first presented by Reinsch [84, 85]. A simple proof using Dirac delta

function can be found in [72]. A good reference on this subject is [39]. The extreme cases

λ = 0 and λ = 1 corresponds to the linear regression function and the interpolating cubic

spline, respectively [72].

In MATLAB spline toolbox, the smoothing spline can be computed by the “csaps”

function.

A.3 End-conditions in approximation with cubic splines

A practically important subject in using the cubic splines, is their end-conditions. Suppose

that we are looking for a cubic spline with the breakpoint sequence t1, t2, . . . , tN and its known

values at these points. The problem is that knowing the breakpoint sequence and the values of

the function at these points does not uniquely determine a cubic spline which passes through

these points. In fact, we have N − 1 polynomial piece, each with 4 coefficients, resulting in

4(N −1) unknown coefficients. Moreover, for each of the interior points t2, . . . , tN−1, we have

4 equations (2 equations for the equality of the left and right polynomial pieces to f(ti) and

2 equations for the continuity of the first and second derivatives at these points), resulting

to 4(N − 2) = 4N − 8 equations for the interior points. However, for the end-points t1 and

tN , we have only 2 equations. In summary, we must determine 4N − 4 unknown coefficients

from 4N − 6 linear equations, and hence we need two other equations.

Depending on how we choose the two other necessary equations, we obtain different

splines. Some of the most usual methods (also supported by the “csape” function of the

MATLAB’s spline toolbox) are [33]:

• Complete: We use the known values for the slopes of the spline at the end points,

that is, we use the equations sp′(t1) = s1 and sp′(tN) = sN .

• Using known values for the second derivatives of the spline at the end-points. A special

case is taking sp′′(t1) = sp′′(tN) = 0 which is called free-end conditions, or natural

spline interpolation. Generally, this method is not considered [33], unless there is good

reasons for using it.

• Periodic: In this method, which is suited for periodic functions, it is assumed that

sp′(t1) = sp′(tN) and sp′′(t1) = sp′′(tN).

126 Spline Functions

• not-a-knot end conditions: This is the most frequently used method. In this

method, it is assumed that the third derivatives, too, are continuous at the points t2 and

tN−1. This assumption results in identical two first and two last polynomial pieces. In

other words, this method is like that we have the knot sequence {t1, t3, . . . , tN−2, tN}
and we compute the cubic spline with two additional known values for sp(t2) and

sp(tN−1). In other words, in this method the knot points t2 and tN−1 are not active,

hence the name “not-a-knot” end conditions.

A.4 Multi-dimensional smoothing splines

The concept of the smoothing splines can be extended to multi-variate functions [39]. In the

multi-variate non-parametric regression, we are searching for a smooth function y = f(x),

where x � (x1, . . . , xp), from data points {(xi, yi), i = 1, . . . , N}. For taking into account

the smoothness of the function, we minimize the criterion:

1
N

∑
i

(
yi − f(xi)

)2 + λJm,p (A.8)

where:

Jm,p �
∑

α1+···+αp=m

{
m!

α1! · · ·αp!

∫ +∞

−∞
· · ·
∫ +∞

−∞

(
∂mf

∂xα1
1 · · ·xαp

p
(x)
)2

dx

}
(A.9)

The answer of this problem is usually called a “Laplacian smoothing spline” [39]. For

the case m = p = 2, (A.8) can be interpreted as a measure of the amount of energy required

to bend a thin plate of infinite extent that is connected to the yi by springs. In that case, λ

represents a constant related to the flexibility of the plate [39]. Consequently, these splines

are also called “thin-plate splines”.

A closed form expression for the Laplacian smoothing spline has been found by Wahaba

and Wendelberger [39]. Because of the complexity of the solution, we do not repeat it here.

But we cite the web page “http://www.wisc.edu/mathsoft/msgdls.html”, from it, a set

of FORTRAN routines are available for computing the multi-dimensional smoothing splines.

We have written the programs of the section 4.8.1 by using these routines.

Appendix B

Proofs

B.1 Theorem 4.1

To prove the theorem, we first have to prove two lemmas. The scalar versions of these lemmas

have been already proposed [2].

Lemma B.1 Let x = (x1, . . . , xN)T be a bounded random vector and ∆ = (∆1, . . . ,∆N)T

be a ‘small’ random vector, then

px+∆(t) − px(t) = −
N∑

i=1

∂

∂ti
{E [∆i | x = t] px(t)} + o(∆) (B.1)

Proof. For any differentiable functions h(t), we have:

h(x + ∆) − h(x) =
∑

i

∆i
∂h

∂ti
(x) + o(∆) (B.2)

Thus:

E {h(x + ∆) − h(x)} =
∑

i

E

{
∆i

∂h

∂ti
(x)
}

+ o(∆) (B.3)

As a result:∫
t
h(t)
(
px+∆(t) − px(t)

)
dt =
∑

i

E

{
∂h

∂ti
(x)E [∆i | x = t]

}
+ o(∆) (B.4)

Using integration by parts, the i-th right term of (B.4) can be written:

E

{
∂h

∂ti
(x)E [∆i | x = t]

}
=
∫
t

∂h

∂ti
(t)E [∆i | x = t] px(t)dt

= −
∫
t
h(t)

∂

∂ti
{E [∆i | x = t] px(t)} dt

(B.5)

128 Proofs

Combining (B.4) and (B.5), we obtain:

∫
t
h(t)
(
px+∆(t) − px(t)

)
dt = −

∫
t
h(t)

N∑
i=1

∂

∂ti
{E [∆i | x = t] px(t)} dt + o(∆) (B.6)

Equation (B.1) can be obtained since the above equality holds for any functions h.

�

Lemma B.2 Let x and ∆ be as defined in Lemma B.1, then:

H(x + ∆) − H(x) = −E
{
∆T ϕx(x)

}
+ o(∆) (B.7)

where H denotes the Shannon’s entropy, and px(·) and ϕx(·) are the PDF and the JSF of x,

respectively.

Proof. We write:

H(x + ∆) − H(x) = −E
{

ln px+∆(x + ∆)
}

+ E {ln px(x)}

= E

{
ln

px(x + ∆)
px+∆(x + ∆)

}
− E

{
ln

px(x + ∆)
px(x)

} (B.8)

In the neighborhood of 1, lnx = (x − 1) − 1
2(x − 1)2 + · · · , thus by defining T = x + ∆,

we can simplify the first term of (B.8) as:

E

{
ln

px(T)
pT(T)

}
= E

{
px(T)
pT(T)

− 1
}

+ o(∆)

=
∫
t

(
px(t)
pT(t)

− 1
)

pT(t)dt + o(∆)

= o(∆)

(B.9)

Now, the second right term of (B.8) becomes:

−E

{
ln

px(x + ∆)
px(x)

}
= E {ln px(x)} − E {ln px(x + ∆)}

=
∫
t
ln px(t)px(t)dt −

∫
t
ln px(t)px+∆(t)dt

=
∫
t
ln px(t)

(
px(t) − px+∆(t)

)
dt

(B.10)

Using Lemma B.1, this term will be:

−E

{
ln

px(x + ∆)
px(x)

}
=
∑

i

∫
t
ln px(t)

∂

∂ti
{E [∆i | x = t] px(t)} dt + o(∆) (B.11)

B.2 Theorem 5.1 129

And after integrating by parts, we will have:

−E

{
ln

px(x + ∆)
px(x)

}
= −
∑

i

∫
t
E [∆i | x = t] ϕi(t)px(t)dt + o(∆)

= −
∑

i

E {E [∆i | x] ϕi(x)} + o(∆)

= −
∑

i

E {∆iϕi(x)} + o(∆)

= −E
{
∆T ϕx(x)

}
+ o(∆)

(B.12)

The proof of the lemma is achieved by combining the equations (B.8), (B.9) and (B.12).

�

Corollary 1 For scalar random variables xi and ∆i, we have:

H(xi + ∆i) − H(xi) = −E {∆i · ψxi(xi)} + o(∆i) (B.13)

Proof of Theorem 4.1. Combining the usual expression I(x) =
∑

i H(xi) − H(x) with

equations (B.7) and (B.13) proves the theorem. �

B.2 Theorem 5.1

Proof. By using the separating matrix B =

[
1 b1

b2 1

]
, we will have:

y1(n) =
∞∑

k=−∞
{h1(k) + a2b1h2(k)} s1(n − k)

+
∞∑

k=−∞
{a1h1(k) + b1h2(k)} s2(n − k)

(B.14)

y2(n) =
∞∑

k=−∞
{b2h1(k) + a2h2(k)} s1(n − k)

+
∞∑

k=−∞
{a1b2h1(k) + h2(k)} s2(n − k)

(B.15)

Suppose that y1(n) and y2(n) are independent. Applying Darmois-Skitovich theorem page 2

for the random variables s1(n − k) and s2(n − k), we will have:{
b2h1(k) + a2h2(k) = 0
a1h1(k) + b1h2(k) = 0

(B.16)

130 Proofs

or: {
h1(k) + a2b1h2(k) = 0
a1b2h1(k) + h2(k) = 0

(B.17)

By the assumptions: ∃m such that h1(m)h2(m) �= 0. Now suppose that for k = m,

equation (B.16) holds. Hence:

b1 = −a1
h1(m)
h2(m)

(B.18)

b2 = −a2
h2(m)
h1(m)

(B.19)

Let c = h1(m)
h2(m) and suppose that at least one of the values of a1 or a2 is nonzero. Inserting

the above values in (B.16), we have h1(k) = ch2(k), and inserting them in (B.17) we obtain:[
h2(m) −a1a2h1(m)

−a1a2h2(m) h1(m)

] [
h1(k)
h2(k)

]
=
[
0
0

]
(B.20)

The determinant of the coefficient matrix of this equation is
(
1 − a2

1a
2
2

)
h1(m)h2(m) and

cannot vanish by the assumptions. Hence, its unique solution is h1(k) = h2(k) = 0, which

is the solution of (B.16), too. Therefore, (B.16) is satisfied for all k, and we have always

h1(k) = ch2(k). Also, we have:

y1(n) =
∞∑

k=−∞
{h1(k) + a2b1h2(k)} s1(n − k) (B.21)

y2(n) =
∞∑

k=−∞
{a1b2h1(k) + h2(k)} s2(n − k) (B.22)

Hence, it is clear that y1(n) and y2(n − m) are independent for all m. The same result can

be obtained from the assumption that equation (B.17) holds for k = m. �

Appendix C

Scalar Score Functions

Definition C.1 Let x be a random variable with the probability density function (PDF)

px(x). The score function of x is:

ψx(x) � − d

dx
ln px(x) = −p′x(x)

px(x)
(C.1)

The following property has been used by Cox [28] for designing an estimator for score

functions. It has been applied in source separation by Taleb and Jutten [96, 98].

Property C.1 Let x be a random variable with the PDF px(x) and the score function ψx(x).

Moreover, let f be a continuously differentiable function and:

lim
x→±∞ f(x)px(x) = 0 (C.2)

Then:

E {f(x)ψx(x)} = E
{
f ′(x)
}

(C.3)

Note that the condition (C.2) is not so restrictive, because it holds for most “usual”

random variables which one encounters in the physical phenomena. For example, it is satisfied

for all bounded random variables.

Proof. We have:

E {f(x)ψx(x)} =
∫ +∞

−∞
f(x)ψx(x)px(x)dx

= −
∫ +∞

−∞
f(x)

p′x(x)
px(x)

px(x)dx

= −
∫ +∞

−∞
f(x)p′x(x)dx

=
∫ +∞

−∞
f ′(x)px(x)dx (Integration by parts and (C.2))

= E
{
f ′(x)
}

132 Scalar Score Functions

which proves the property. �

Corollary 1 For a bounded random variable x, we have:

E {ψx(x)x} = 1 (C.4)

Corollary 2 Let x be a bounded random variable. For the parametric function f(w, x),

where w = (w1, . . . , wM)T denotes the parameter vector, we have:

argmin
w

E
{(

ψx(x) − f(w, x)
)2} = argmin

w

{
E
{
f2(w, x)

}− 2E
{
f ′(w, x)

}}
(C.5)

This corollary shows that one can easily design a Minimum Mean Square Error (MMSE)

estimator for the score function of a random variable.

For example, suppose that we would like to estimate the score function as a linear sum

of the functions k1(x), k2(x), . . . , kM (x), that is:

ψ̂x(x) = w1k1(x) + w2k2(x) + · · · + wMkM (x) = k(x)Tw (C.6)

where k(x) � (k1(x), . . . , kM (x))T . The coefficient w1, . . . , wM must be determined such

that the error term E
{(

ψx(x) − ψ̂x(x)
)2} is minimized.

From the orthogonality principle [77] we can write:

E
{
k(x)
(
ψx(x) − ψ̂x(x)

)}
= 0 (C.7)

which results in:

E
{
k(x)k(x)T

}
w = E {k(x)ψx(x)} (C.8)

From the property C.1, we can rewrite this equation as:

E
{
k(x)k(x)T

}
w = E

{
k′(x)
}

(C.9)

which determines w.

Appendix D

Kernel Estimators

Kernel estimation is a widely used method for estimating the Probability Density Function

(PDF) of a random variable, from its observed samples [66, 90]. Its original idea belongs to

Rosenblat [88].

D.1 Scalar density kernel estimation

A “kernel” is a function that satisfies the conditions:

1. ∀x, k(x) ≥ 0.

2.
∫ +∞
−∞ k(x) dx = 1.

3.
∫ +∞
−∞ x k(x) dx = 0.

In other words, k(x) is a kernel if it is the PDF of a zero mean random variable. The standard

deviation of this random variable is called the “bandwidth” or the “smoothing parameter” of

the kernel.

Definition D.1 Let kh(x) be any kernel function with bandwidth h. Then the kernel esti-

mation of the PDF of the random variable x from the observations {x1, . . . , xN} is:

p̂x(x) � 1
N

N∑
i=1

kh(x − xi) (D.1)

Figure D.1 illustrates the idea of the kernel estimation. With this method, a kernel is

placed around each sample, and then they are summed up to form an estimation of the PDF

of the random variable. The more samples occurred in a region, the higher PDF in that

region. This is heuristically what one expects from the meaning of a PDF.

134 Kernel Estimators

−2 −1 0 1 2

0

2

4

6

8

10

12

14

16

18

x
−2 −1 0 1 2

0

2

4

6

8

10

12

14

16

18

x

Figure D.1: The idea of the kernel estimators. Left) small bandwidth, Right) Large band-

width

The bandwidth of the kernel (h) determines the smoothness of the estimator (see Fig. D.1).

The larger h, the smoother estimation of the PDF.

Theoretically [66], the kernel estimator is a biased estimation of the PDF. The bias of

the estimation tends to zero, when h → 0, and the variance of the estimation tends to zero,

when Nh → ∞. Hence, in practice, when a limited number of observations is available, the

choice of h is important. If h chosen too large, the estimated PDF will be the rough estimate

of the shape of the kernel. On the contrary, if h is chosen too small, the estimated PDF will

be too varying. A rule of thumb for choosing h, when Gaussian kernels are used, is [66]:

h = σ̂x

(
4

3N

) 1
5

≈ 1.06 σ̂x N−1/5 (D.2)

where σ̂x denotes the standard deviation (this formula is optimal when the PDF’s are Gaus-

sian).

D.2 Multivariate density kernel estimation

The kernel estimation can also be used in estimating the PDF of random vectors. A d-variate

kernel function k(x) = k(x1, . . . , xd), is the PDF of a d-dimensional zero mean random vector.

Usually, the symmetrical kernels are used, for example the d-dimensional Gaussian kernel:

k(x) = (2hπ)−d/2 exp(− 1
2h2

xTx) (D.3)

In multivariate kernels, the bandwidth in different directions (that is, hi �
∫

x2
i k(x) dx)

can be different. A kernel with equal bandwidth in all directions is called an isotropic kernel.

If kh(x) denotes an isotropic kernel with bandwidth h, then the kernel estimation of the PDF

D.2 Multivariate density kernel estimation 135

Figure D.2: Shape of kernel and shape of distribution, if Fukunaga method is used.

of the random vector x, from the observations {x1, . . . ,xN} is:

p̂x(x) � 1
N

N∑
i=1

kh(x − xi) (D.4)

With isotropic kernels, the kernel placed on each data point is scaled equally in all

directions. In certain circumstances, it may be more appropriate to use different smoothing

parameters in different directions. This will be the case, for example, if the spread of the

data points is very much greater in one of the coordinate directions than the others. For

doing this, an attractive approach, suggested by Fukunaga [40, 90], is the following: (1) “pre-

whiten” the data, (2) PDF estimation by isotropic kernels, and (3) transform back again.

This is equivalent to use non-isotropic kernels. Figure D.2 shows this idea graphically.

To state this method more precisely, let Rx denote the covariance matrix of x, and T

be its Cholesky decomposition, i.e. an upper triangular matrix which satisfies Rx = TTT .

Now, with the transformation y = T−1x, we have Ry = I, that is, the variance of y is the

same in all directions, and the variables yi are uncorrelated. Hence, it is natural to use the

isotropic kernels for estimating the PDF of y, and then we use:

p̂x(x) =
p̂y(y)
|detT| (D.5)

for estimating the PDF of x.

After prewhitening the data, we must choose a value for the bandwidth h. In [90], the

following rule of thumb has been proposed for choosing h, provided that the prewhitening

has been done:

hopt = c N−1/(d+4) (D.6)

136 Kernel Estimators

where d is the dimension of the random vector, and c is a constant which depends on the

type of the kernel. For the d-dimensional Gaussian kernels:

c =
(

4
2d + 1

) 1
d+4

(D.7)

For example, for scalar Gaussian kernels we have c = 1.06 (and (D.6) is converted to (D.2)),

and for 2-dimensional Gaussian kernels c = 0.96.

Appendix E

Some simple lemmas

This appendix contains some simple mathematical definitions and lemmas which have been

used in the thesis.

Definition E.1 Let A = [aij] and B = [bij] be two M × N matrices. Then, their scalar

(Euclidean) product is:

〈A,B〉 �
M∑
i=1

N∑
j=1

aijbij = trace
(
ABT
)

(E.1)

where trace is the sum of the diagonal elements of a square matrix.

Lemma E.1 Suppose that the product xTAy is defined, where A is a matrix and x and y

are column vectors. Then:

xTAy =
〈
A,xyT

〉
(E.2)

Proof. Recall that if for the matrices M and N the products MN and NM are both

defined, then trace(MN) = trace(NM). From this property we can write:

xTAy = trace
(
xTAy

)
= trace

(
AyxT

)
= trace

(
A(xyT)T

)
=
〈
A,xyT

〉
(E.3)

�

Lemma E.2 Let f be a differentiable function with respect to the matrix A. Then:

f(A + E) = f(A) +
〈
E ,

∂f

∂A
(A)
〉

+ o(E) (E.4)

where E is a “small” matrix and o(E) denotes higher order terms in E.

138 Some simple lemmas

Lemma E.3 Suppose that the product xTAy is defined, where A is a matrix and x and y

are column vectors. Then:
∂

∂A

(
xTAy

)
= xyT (E.5)

Proof. Is evident from the lemma E.1. �

Lemma E.4 Suppose for the matrix A and the vector x the product Ax is defined. Then:

∂

∂A

(
xTATAx

)
=

∂

∂A

(
‖Ax‖2

)
= 2AxxT (E.6)

Proof. Defining y � Ax, we have:

∂

∂aij

(
‖Ax‖2

)
=

∂

∂aij
‖y‖2

=
∂

∂aij

∑
k

y2
k

= 2yixj

(E.7)

where the last equation has been written from yk =
∑

j akjxj . From the above equation we

have ∂
∂A

(
‖Ax‖2

)
= 2yxT , which proves the lemma. �

Bibliography

[1] K. Abed-Meraim, Ph. Loubaton, and E. Moulines, “A subspace algorithm for certain

blind identification problem,” IEEE Transaction on Information Theory, pp. 499–511,

March 1997.

[2] S. Achard, Initiation a la Séparation aveugle de sources dans des mélanges post non

linéaires, DEA de l’INP de Grenoble, June 2000, (in French).

[3] S. Achard and D.-T. Pham, “Blind source separation in post nonlinear mixtures,” in

ICA2001, San Diego, California, December 2001, pp. 295–300.

[4] J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The theory of splines and their applica-

tions, Academic Press, 1967.

[5] L. B. Almeida, “ICA of linear and nonlinear mixtures based on mutual information,”

in International Joint Conference on Neural Networks, Washington, DC, USA, July

2001.

[6] S. I. Amari, “Natural gradient works efficiently in learning,” Neural Computation, vol.

10, pp. 251–276, 1998.

[7] B. Ans, J. Hérault, and C. Jutten, “Adaptive neural architectures: Detection of

primitives,” in Proceedings of COGNITIVA’85, Paris, France, 4-7 June 1985, pp.

593–597.

[8] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “Blind separating Convolutive Post-

Nonlinear mixtures,” in ICA2001, San Diego, California, December 2001, pp. 138–143.

[9] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “Compensating frequency response of the

sensors in blind separation of the sources,” in International Symposium on Telecom-

munications (IST2001), Tehran, Iran, September 2001.

140 BIBLIOGRAPHY

[10] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “Compensation des réponse en fréquence

des capteurs en séparation aveugle de sources,” in GRETSI’2001, Toulouse, France,

September 2001, pp. 399–402, (in French).

[11] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “Separating convolutive mixtures by

mutual information minimization,” in Proceedings of IWANN’2001, Granada, Spain,

Juin 2001, pp. 834–842.

[12] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “A geometric approach for separating

Post Non-Linear mixtures,” in EUSIPCO, Toulouse, France, September 2002, vol. II,

pp. 11–14.

[13] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “Using joint score functions in separating

post non-linear mixtures,” Scientia-Iranica, 2002, accepted.

[14] T. Bell and T. Sejnowski, “An information-maximization approach to blind separation

and blind deconvolution,” Neural Comutation, vol. 7, no. 6, pp. 1004–1034, 1995.

[15] G. Burel, “Blind separation of sources: a nonlinear neural algorithm,” Neural Net-

works, vol. 5, no. 6, pp. 937–947, 1992.

[16] V. Capdevielle, Ch. Servière, and Lacoume J.-L., “Blind separation of wide-band

sources in the frequency domain,” in ICASSP, 1995, pp. 2080–2083.

[17] V. Capdevielle, Ch. Servière, and Lacoume J.-L., “Separation of wide band sources,”

in HOS95, June 1995, pp. 66–70.

[18] J.-F. Cardoso, “Blind signal separation: statistical principles,” Proceedings IEEE, vol.

9, pp. 2009–2025, 1998.

[19] J.-F. Cardoso, “High order contrasts for for independent component analysis,” Neural

Computation, vol. 11, pp. 157–192, 1999.

[20] J.-F. Cardoso, “The three easy routes to independent component analysis; contrasts

and geometry,” in ICA2001, San Diego, California, December 2001, pp. 1–6.

[21] J.-F. Cardoso and B. Laheld, “Equivariant adaptive source separation,” IEEE Trans.

on SP, vol. 44, no. 12, pp. 3017–3030, December 1996.

[22] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for non Gaussian signals,” IEE

Proceedings-F, vol. 140, pp. 362–370, December 1993.

BIBLIOGRAPHY 141

[23] N. Charkani, Séparation auto-adaptative de sources pour des mélanges convolutifs.

Application à la téléphonie mains-libres dans les voitures, Thèse de l’INP Grenoble,

1996, (in French).

[24] N. Charkani and Y. Deville, “A convolutive source separation method with self-

optimizing nonlinearities,” in ICASSP, April 1999, pp. 2909–2912.

[25] P. Comon, “Analyse en composantes indépendantes et identification aveugle,” Traite-

ment du signal, vol. 7, no. 5, pp. 435–450, 1990, (in French).

[26] P. Comon, “Independent component analysis, a new concept?,” Signal Processing, vol.

36, no. 3, pp. 287–314, 1994.

[27] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiely Series in

Telecommunications, 1991.

[28] D. D. Cox, “A penalty method for nonparametric estimation of the logarithmic deriva-

tive of a density function,” Ann. Instit. Statist. Math., vol. 37, pp. 271–288, 1985.

[29] S. Dapena and C. Servière, “A simplified frequency domain approach for blind sepa-

ration of convolutive mixtures,” in ICA2001, San Diego, California, December 2001,

pp. 295–300.

[30] G. A. Darbellay and P. Tichavský, “Independent component analysis through direct

estimation of the mutual information,” in ICA2000, Helsinki, Finland, June 2000, pp.

69–74.

[31] G. Darmois, “Analyse des liaisons de probabilité,” in Proceeding Intern. Stat. confer-

ence 1947, Washington (D.C.), 1951, vol. III A, p. 231, (in French).

[32] G. Darmois, “Analyse générale des liaisons stochastiques,” Rev. Inst. Intern. Stat.,

vol. 21, pp. 2–8, 1953, (in French).

[33] Carl Deboor, A practical guide to splines, Springer-Verlag, 1978.

[34] G. Deco and W. Brauer, “Nonlinear higher-order statistical decorrelation by volume-

conserving architectures,” Neural Networks, vol. 8, pp. 525–535, 1995.

[35] N. Delfosse and Ph. Loubaton, “Adaptive blind separation of independent sources: A

deflation approach,” Signal Processing, vol. 45, pp. 59–83, 1995.

[36] N. Delfosse and Ph. Loubaton, “Adaptive blind separation of independent sources: A

second order stale algorithm for the general case,” IEEE transactions on Circuits and

Systems, vol. 47, no. 7, pp. 1056–1071, July 2000.

142 BIBLIOGRAPHY

[37] D. L. Donoho, “On minimum entropy deconvolution,” in Proc. 2nd Applied Time

Series Symp., Tulsa, 1980, reprinted in Applied Time Series Analysis II, Academic

Press, New York, 1981, pp. 565-609.

[38] J. Eriksson and V. Koivunen, “Blind identifiability of a class of nonlinear instantaneous

ICA models,” in EUSIPCO, Toulouse (France), September 2002.

[39] R. L. Eubank, Spline smoothing and nonparanetric regression, Dekker, 1988.

[40] K. Fukunaga, Introduction to statistical pattern recognition, New York: Academic

Press, 1972.

[41] S.V. Gerven and D.V. Compernolle, “Signal separation by symmetric adaptive decorre-

lation: stability, convergence and uniquness,” IEEE transactions on Signal Processing,

vol. 43, no. 7, pp. 1602–1612, July 1995.

[42] A. Gorokhov and Ph. Loubaton, “Second-order blind identification of convolutive

mixtures with temporally correlated sources: a subspace based approach,” in Proc.

European Signal Processing Conf. EUSIPCO 96, Trieste, Italia, September 1996, pp.

2093–2096.

[43] S. Haykin, Neural Networks - A Comprehensive Foundation, Prentice Hall, 1998,

Second edition.

[44] J. Hérault and C. Jutten, “Space or time adaptive signal processing by neural networks

models,” in Intern. Conf. on Neural Networks for Computing, Snowbird (Utah, USA),

1986, pp. 206–211.

[45] J. Hérault, C. Jutten, and B. Ans, “Détection de grandeurs primitives dans un mes-

sage composite par une architecture de calcul neuromimétique en apprentissage non

supervisé,” in Actes du Xeme colloque GRETSI, Nice, France, 20-24 Mai 1985, pp.

1017–1022, (in French).

[46] J. C. Holladay, “Smoothest curve approximation,” Math. Tables Aids Computation,

vol. 11, pp. 233–243, 1957.

[47] S. Hosseini and C. Jutten, “On the separability of nonlinear mixtures of temporally

correlated sources,” IEEE signal processing letters, 2002, accepted.

[48] D. J. Hudson, “Fitting segmented curves whose joint points have to be estimated,”

Journal of the American Statistical Association, vol. 61, no. 316, pp. 1097–1129, De-

cember 1966.

BIBLIOGRAPHY 143

[49] C. Jutten, Calcul neuromimétique et traitement du signal : analyse en composantes

indépendantes, Thèse d’état ès sciences physiques, UJF-INP Grenoble, 1987, (in

French).

[50] C. Jutten, L. Nguyen Thi, E. Dijkstra, E. Vittoz, and J. Caelen, “Blind separation of

sources : an algorithm for separation of convolutive mixtures,” in International Signal

Processing Workshop on Higher Order Statistics, Chamrousse, France, July 1991, pp.

273–276.

[51] C. Jutten and A. Taleb, “Source separation: From dusk till dawn,” in ICA2000,

Helsinki, Finland, June 2000, pp. 15–26.

[52] A. M. Kagan, Y. V. Linnik, and C. R. Rao, Characterization Problems in Mathematics

Statistics, John Wiley & Sons, 1973.

[53] A. M. Kagan, Y. V. Linnik, and C. R. Rao, “Extension of darmois-skitovich theorem

to functions of random variables satisfying an addition theorem,” communications in

statistics, vol. 1, no. 5, pp. 471–474, 1973.

[54] J. Karhunen, “Neural approaches to independent component analysis and source sep-

aration,” in ESANN’96, European Symposium on Artificial Neural Networks, Bruges,

Belgium, April 1996, pp. 249–266.

[55] M. Kendall and A. Stuart, The Advanced Theory of Statistics, Distribution Theory,

vol. 1, Griffin, 1977.

[56] J.-L. Lacoume and P. Ruiz, “Sources identification: a solution based on cumulants,”

in IEEE ASSP Workshop, Mineapolis, USA, August 1988.

[57] T.W. Lee, M.S. Lewicki, M. Girolami, and T.J. Sejnowski, “Blind source separation

of more sources than mixtures using overcomplete representations,” IEEE Signal Pro-

cessing Letters, vol. 4, no. 4, pp. 87–90, April 1999.

[58] U.A. Lindgren and H. Broman, “Source separation using a criterion based on second-

order statistics,” IEEE Trans. Signal Processing, pp. 1837–1850, July 1998.

[59] O. Macchi and O. Moreau, “Self-adaptive source separation, Part I: Convergence analy-

sis of a direct linear network controed by Hérault-Jutten algorithm,” IEEE transaction

on Signal Processing, vol. 45, no. 4, April 1997.

[60] Z. Malouche and O. Macchi, “Adaptive unsupervised extraction of one component of

a linear mixtre with a single neuron,” IEEE Transactions on Neural Networks, vol. 9,

no. 1, pp. 123–138, 1998.

144 BIBLIOGRAPHY

[61] A. Mansour and C. Jutten, “A direct solution for blind separation of sources,” IEEE

Trans. on Signal Processing, vol. 44, pp. 746–748, 1996.

[62] A. Mansour, C. Jutten, and Ph. Loubaton, “Subspace method for blind separation of

sources in convolutive mixtures,” in Proc. European Signal Processing Conf. EUSIPCO

96, Trieste, Italia, September 1996, pp. 2081–2084.

[63] A. Mansour, C. Jutten, and Ph. Loubaton, “Adaptive subspace algorithm for blind

separation of independent sources in convolutive mixture,” IEEE Trans. on Signal

Processing, vol. 48, pp. 583–586, 2000.

[64] A. Mansour, C.G. Puntonet, and N. Ohnishi, “A simple ICA algorithm based on

geometrical approach,” in International symposium on signal processing and its appli-

cations (ISSPA), Kuala Lumpur, Malaysia, August 2001.

[65] K. Matsuoka, M. Ohya, and M. Kawamoto, “A neural net for blind separation of

nonstationary signals,” Neural Networks, vol. 8, no. 3, pp. 411–419, 1995.

[66] W. Härdle, Smoothing techniques with implementation in S, Springer-Verlag, 1991.

[67] Hyvärinen, “Fast and robust fixed-point algorithms for independent component anal-

ysis,” IEEE Trannsactions on Neural Networks, vol. 10, no. 3, pp. 626–634, 1999.

[68] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, John Wiely

& Sons, 2001.

[69] A. Hyvärinen and E. Oja, “A fast fixed point algorithm for independent component

analysis,” Neural computation, vol. 9, pp. 1483–1492, 1997.

[70] A. Hyvärinen and P. Pajunen, “Nonlinear independent component analysis: Existence

and uniqueness results,” Neural Networks, vol. 12, pp. 429–439, 1999.

[71] E. Moreau, Apprentissage et adaptativité, séparation auto-adaptative de sources

indépendantes, Ph.D. thesis, Université de Paris-Sud, 1995.

[72] Pin T. NG, “Smoothing spline score estimation,” SIAM journal sci. comput., vol. 15,

no. 5, pp. 1003–1025, September 1994.

[73] C. L. Nikias and A. P. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal

Processing Framework, Prentice-Hall, 1993.

[74] E. Oja, “The nonlinear PCA learning rule in independent component analysis,” Neu-

rocomputing, vol. 17, pp. 25–45, 1997.

BIBLIOGRAPHY 145

[75] P. Pajunen, A. Hyvärinen, and J. Karhunen, “Non linear source separation by self-

organizing maps,” in ICONIP 96, Hong-Kong, September 1996.

[76] P. Pajunen and J. Karhunen, “A maximum likelihood approach to nonlinear blind

source separation,” in ICANN97, Lausanne (Switzerland), October 1997, pp. 541–546.

[77] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill,

1991.

[78] D. T. Pham, “Mutual information approach to blind separation of stationary sources,”

in Proceedings of ICA’99, Aussois, France, January 1999, pp. 215–220.

[79] D. T. Pham, “Blind separation of instantaneous mixture of sources based on order

statistics,” IEEE Trans. on SP, vol. 48, pp. 363–375, 2000.

[80] D. T. Pham, “Contrast functions for blind separation and deconvolution of the

sources,” in ICA2001, San Diego, California, December 2001, pp. 37–42.

[81] D. T. Pham, “Estimation de la fonction score conditionnelle et l’entropie condition-

nelle,” Tech. Rep., 2002, (in French).

[82] D. T. Pham and J.-F. Cardoso, “Blind separation of instantaneous mixtures of non

stationary sources,” IEEE Transaction on Signal Processing, vol. 49, no. 9, pp. 1837–

1848, 2001.

[83] C. Puntonet, A. Mansour, and C. Jutten, “A geometrical algorithm for blind sepa-

ration of sources,” in Actes du XVème Colloque GRETSI 95, Juan-Les-Pins, France,

Septembre 1995, pp. 273–276.

[84] C. H. Reinsch, “Smoothing by spline functions,” Numer. Math., vol. 10, pp. 177–183,

1967.

[85] C. H. Reinsch, “Smoothing by spline functions, ii,” Numer. Math., vol. 16, pp. 451–454,

1971.

[86] S. Rickard, R. Balan, and Rosca, “Real-time time-frequency based blind source sepa-

ration,” in ICA2001, San Diego, USA, December 2001, pp. 651–657.

[87] J. Rosca, N. Fan, and R. Balan, “Real-time audio source separation by delay and at-

tenuation compensation in the time domain,” in ICA2001, San Diego, USA, December

2001, pp. 406–411.

146 BIBLIOGRAPHY

[88] M. Rosenblat, “Remarks on some non-parametric estimates of a density function,”

Annals of Mathematical Statistics, vol. 27, pp. 642–669, 1956.

[89] G. A. F. Seber and C. J. Wild, Nonlinear regression, John Wiley and Sons, 1989.

[90] B. W. Silverman, Density estimation for statistics and data analysis, Chapman and

Hamm, 1986.

[91] C. Simon, Séparation aveugle des sources en mélange convolutif, Ph.D. thesis,

l’université de Marne la Vallée, Novembre 1999, (in French).

[92] V. P. Skitovich, “Linear forms of independent random variables and the normal dis-

tribution law,” Izvestiya Akademii Nauk SSSR. Seriya Matematiceskaya, vol. 18, pp.

185–200, 1954, (in Russian).

[93] J. Solé, C. Jutten, and A. Taleb, “Parametric approach to blind deconvolution of

nonlinear channels,” Neuro Computing, 2002, accepted.

[94] E. Sorouchyari, “Blind separation of sources, Part III: Stability analysis,” Signal

Processing, vol. 24, no. 1, pp. 21–29, 1991.

[95] A. Taleb, Séparation de sources dans des mélanges post non-linéaires, Thèse de l’INP

de Gronoble, 1999, (in French).

[96] A. Taleb and C. Jutten, “Entropy optimization, application to blind source separation,”

in ICANN, Lausanne, Switzeland, October 1997, pp. 529–534.

[97] A. Taleb and C. Jutten, “Batch algorithm for source separation in postnonlinear

mixtures,” in ICA’99, Aussois, France, January 1999, pp. 155–160.

[98] A. Taleb and C. Jutten, “Source separation in post nonlinear mixtures,” IEEE Trans-

actions on Signal Processing, vol. 47, no. 10, pp. 2807–2820, 1999.

[99] F. J. Theis and E. W. Lang, “Maximum entropy and minimal mutual information in

a nonlinear model,” in ICA2001, San Diego, California, December 2001, pp. 669–674.

[100] H.L. Nguyen Thi and C. Jutten, “Blind sources separation for convolutive mixtures,”

Signal Processing, vol. 45, pp. 209–229, 1995.

[101] L. Tong, V. Soon, R. Liu, and Y. Huang, “AMUSE: a new blind identification algo-

rithm,” in Proc. ISCAS, New Orleans, USA, 1990.

[102] H. Valpola, “Nonlinear independent component analysis using ensemble learning: The-

ory,” in ICA2000, Helsinki, Finland, 2000, pp. 251–256.

BIBLIOGRAPHY 147

[103] H. Valpola, X. Giannakopoulos, A. Honkela, and J. Karhunen, “Nonlinear indepen-

dent component analysis using ensemble learning: Experiments and discussion,” in

ICA2000, Helsinki, Finland, 2000, pp. 351–356.

[104] E. Weinstein, M. Feder, and A.V. Oppenheim, “Multi-channel signal separation by

decorrelation,” IEEE Transaction on Speech and Audio Processing, vol. 1, no. 4, pp.

405–413, October 1993.

[105] B. Widrow, J. R. Glover, J. M. MacCool, J. Kaunitz, C. S. Williams, R. H. Hearn,

J. R. Zeidler, E. Dong, and R. Goodlin, “Adaptive noise cancelation: principle and

applications,” IEEE Proceedings, vol. 63, no. 12, pp. 1692–1716, Decembre 1975.

[106] J.-C. Wu and J. C. Principe, “Simultaneous diagonalization in the frequency domain

(SDIF) for source separation,” in ICA99, January 1999, pp. 245–250.

[107] H.-H. Yang, S.I. Amari, and A. Cichocki, “Information-theoretic approach to blind

separation of sources in non-linear mixtures,” Signal Processing, pp. 291–300, February

1998.

[108] D. Yellin and E. Weinstein, “Criteria for multichannel signal separation,” IEEE Trans.

Signal Processing, pp. 2158–2168, August 1994.

[109] A. Ziehe, M. Kawanabe, S. Harmeling, and K.-R. Müler, “Separation of post-nonlinear

mixtures using ACE and temporal decorrelation,” in ICA2001, San Diego, California,

December 2001, pp. 433–438.

ABSTRACT
In this thesis, Blind Source Separation (BSS) of Convolutive Post Non-

Linear (CPNL) mixtures is addressed. For separating these mixtures, we
have first developed new methods for separating convolutive and Post Non-
Linear (PNL) mixtures. These methods are all based on the minimization
of the mutual information of the outputs. For minimizing the mutual infor-
mation, we first compute its “differential”, that is, its variation with respect
to a small variation in its argument. This differential is then used for de-
signing gradient based approaches for minimizing the mutual information of
the outputs. These approaches can be applied for blindly separating linear
instantaneous, convolutive, PNL and CPNL mixtures.

Keywords
Blind Source Separation (BSS), Independent Component Analysis (ICA),

Convolutive mixtures, Post Non-Linear (PNL) mixtures, Convolutive Post
Non-Linear (CPNL) mixtures, Mutual Information.

RÉSUMÉ
Dans cette thèse, la séparation aveugle de sources dans des mélanges

Convolutif Post Non-Linéaire (CPNL) est étudiée. Pour séparer ce type
de mélanges, nous avons d’abord développé des nouvelles méthodes pour
séparer les mélanges convolutifs et les mélanges Post Non-Linéaires (PNL).
Ces méthodes sont toutes basées sur la minimisation de l’information mutuelle
des sorties. Pour minimiser l’information mutuelle, nous calculons d’abord
sa “différentielle”, c’est-à-dire, sa variation en fonction d’une petite varia-
tion de son argument. Cette différentielle est alors utilisée pour concevoir
des approches de type gradient pour minimiser l’information mutuelle des
sorties. Ces approches peuvent être appliquées pour séparation aveugle des
mélanges linéaires instantanés, convolutifs, PNL et CPNL.

MOTS-CLÉS
Séparation aveugle de sources, Analyse à Composantes Indépendantes

(ACI), mélanges convolutifs, mélanges Post Non-Linéaires (PNL), mélanges
Convolutifs Post Non-Linéaires (CPNL), information mutuelle.

