
1

Sparse Signal Recovery Using
Iterative Proximal Projection

Fateme Ghayem, Mostafa Sadeghi, Student Member, IEEE, Massoud Babaie-Zadeh, Senior Member, IEEE,
Saikat Chatterjee, Member, IEEE, Mikael Skoglund, Senior Member, IEEE, and Christian Jutten, Fellow, IEEE

Abstract—This paper is concerned with designing efficient
algorithms for recovering sparse signals from noisy underdeter-
mined measurements. More precisely, we consider minimization
of a non-smooth and non-convex sparsity promoting function
subject to an error constraint. To solve this problem, we use
an alternating minimization penalty method, which ends up with
an iterative proximal-projection approach. Furthermore, inspired
by accelerated gradient schemes for solving convex problems, we
equip the obtained algorithm with a so-called extrapolation step
to boost its performance. Additionally, we prove its convergence
to a critical point. Our extensive simulations on synthetic as
well as real data verify that the proposed algorithm considerably
outperforms some well-known and recently proposed algorithms.

Index Terms—Sparse signal recovery, compressed sensing, SL0,
proximal splitting algorithms, iterative sparsification-projection

I. INTRODUCTION

Over the past decade, the area of signal processing has been
significantly affected by the notion of sparsity. The sparsity
assumption on signal and image representations has been
successfully utilized in a variety of applications, including
image enhancement [1], blind source separation (BSS) [2],
medical image reconstruction [3], and compressed sensing
(CS) [4]–[6]. Specifically, CS aims to recover an unknown
sparse signal, x∗ ∈ Rn, from a set of underdetermined
measurements y = Ax∗ ∈ Rm (m < n), where A ∈ Rm×n
is the measurement (sensing) matrix. To achieve this goal,
several sparse recovery problems have been formulated [7],
[8], including `0 (pseudo) norm1 minimization [9], and basis
pursuit denoising (BPDN) [10], which is based on minimizing
`1 norm.

In this paper, we focus on the following constrained problem
to retrieve sparse signals:

min
x

J(x) s.t. ‖y −Ax‖2≤ ε, (1)

F. Ghayem, M. Sadeghi and M. Babaie-Zadeh are with the Electrical
Engineering Department, Sharif University of Technology, Tehran,
Iran (e-mail: fateme.ghayem@gmail.com; m.saadeghii@gmail.com;
mbzadeh@yahoo.com).

S. Chatterjee and M. Skoglund are with the Communication Theory Lab,
KTH, Royal Institute of Technology, Stockholm, 10044, Sweden (e-mail:
sach@kth.se; skoglund@ee.kth.se)

C. Jutten is with the GIPSA-Lab, Department of Images and Signals,
University of Grenoble and Institut Universitaire de France, France (e-mail:
Christian.Jutten@inpg.fr).

This work has been supported by the Center for International Scientific
Studies and Collaboration (CISSC), the European project ERC- 2012AdG-
320684-CHESS, and Iran National Science Foundation (INSF).

1For a vector x, its `0 (pseudo) norm, denoted by ‖x‖0, is defined as the
number of non-zero entries of x.

where, J is a non-smooth sparsity promoting function like the
`0 norm, and ε is an error upper-bound. For J(x) = ‖x‖1,
problem (1) is convex and, as such, it can be efficiently
solved using algorithms with polynomial complexity [11].
Nevertheless, many studies have shown that using non-convex
penalties, e.g., `p (pseudo) norms for 0 ≤ p < 1, leads to
much better recovery performance than using convex functions
like the `1 norm. This has sparked significant research efforts
toward designing better problems, mainly using non-convex
sparsity promoting functions. Instances of such algorithms are
proposed in [9], [12]–[14].

In this paper, we first propose an efficient solver for (1),
when J is non-convex and non-smooth. The proposed algo-
rithm is based on penalty methods and proximal algorithms
[15]. Then, motivated by existing accelerating techniques for
gradient-based solvers of convex problems, we develop an
improved version of our proposed algorithm, and establish
its convergence. Finally, we discuss the connection of our
proposed solver with some previous works. In particular,
we show that our proposed algorithm is closely related to
a recently introduced family of sparse recovery algorithms,
called iterative sparsification-projection (ISP) [16], which also
shares similarity with the family of iterative method with
adaptive thresholding (IMAT) [17]–[20] algorithms. In fact,
the overall framework of our algorithm is the same as the ISP
algorithms, however, in contrast to [16], we directly derive the
algorithm for solving (1) and prove its convergence to a critical
point. Furthermore, we bring new insights into the smooth ISP
algorithms and improve their performance.

The rest of the paper is organized as follows. Section II
presents our main strategy for solving (1) and the resulting
algorithm. This section is accompanied with discussing the
connections of the proposed solver with some previous works.
Then, Section III is devoted to simulation results.

Throughout the paper, we denote vector and matrix quan-
tities by small and capital bold face characters, respectively.
Domain of a function f is represented as domf . For a set C,
we define the indicator function δC(x) as

δC(x) ,

{
0 x ∈ C
∞ x /∈ C

.

II. ITERATIVE PROXIMAL PROJECTION

In this section, we are going to directly solve (1) using an
alternating minimization penalty method. Before proceeding
into the details, we first provide a brief review of proximal

mbzadeh
Text Box
This is very close to final official version, available on IEEExplore.



2

splitting algorithms [15], [21], which play an important role
in developing our proposed algorithm.

A. Background on proximal algorithms

Proximal (splitting) algorithms [15], [21]–[23] are efficient
techniques for solving a broad class of convex, as well as
non-convex minimization problems. In particular, the forward-
backward splitting (FBS) [15] method targets minimization of
composite objective functions expressed as

min
x∈Rn

f(x) + g(x), (2)

in which, f : Rn 7→ R is a smooth (possibly non-convex)
gradient Lipschitz function, and g : Rn 7→ (−∞,+∞]
is a (usually) non-smooth (possibly non-convex) function. A
key operator used in these algorithms is known as proximal
mapping which is defined as follows:

Definition 1 [15]. The proximal mapping of a proper and
lower semicontinuous function g : domg −→ (−∞,+∞] at
x ∈ Rn is defined as

proxg(x) = argmin
u∈domg

{
1

2
‖x− u‖22+g(u)

}
· (3)

Some important functions in CS have closed-form proximal
mappings. For instance, the proximal mapping of g(x) =
λ‖x‖0 is the hard-thresholding operator [1], T hλ (x), which
returns x if |x|≥ λ, and 0 otherwise. Furthermore, for
g(x) = λ‖x‖1 we get the soft-thresholding operator [1]:
T sλ (x) , sign(x)(|x|−λ)+, in which, (x)+ , max(x, 0).

The beauty of the FBS method is that it handles f and
g separately in each iteration, by taking one-step gradient
descent of f (forward step) and then evaluating the proximal
mapping of g at the resulting point (backward step). The FBS
algorithm for solving (2) can be summarized as

xk+1 = proxµk·g
(
xk − µk∇f(xk)

)
, (4)

for a suitably chosen step-size µk > 0.
The FBS scheme has been extensively utilized in com-

pressed sensing for solving regularized sparse signal recovery
problems. In view of (2), let f(x) = 1/2‖y − Ax‖22 and
g(x) = λ‖x‖1, where λ > 0 is a regularization parameter.
Then, the FBS algorithm (4) leads to the well-known itera-
tive shrinkage-thresholding algorithm (ISTA) [1], [24]. Also,
g(x) = λ‖x‖0 ends up with another well-known family of CS
algorithms, called iterative hard-thresholding (IHT) [9].

FBS assumes that one of the involved functions is differen-
tiable with a Lipschitz continuous gradient. This requirement
is restrictive in some applications. Another splitting method,
known as backward-backward splitting [21], resolves this issue
by proposing the following solver for (2) when both f and g
are non-smooth:

xk+1 = proxg
(

proxµk·f (xk)
)
, (5)

for some sequence {µk}. While the above technique has
received little attention in compressed sensing, in this paper,
we make use of it for solving (1).

Proximal splitting algorithms are ideal choices for large-
scale problems [15]. However, they usually exhibit slow con-
vergence, needing many iterations to reach a desired solution.
To remedy this issue, some acceleration schemes have been
proposed that make these algorithms converge faster with vir-
tually no excessive computational load. One such acceleration
method is based on extrapolating the two most recent estimates
in order to update the next one [25]. In this scheme, the
forward step is computed at an extrapolated point between xk
and xk−1, instead of xk. More precisely, considering problem
(2), for a smooth f with a Lipschitz continuous gradient, this
accelerated scheme is described via{

x̂k = xk + w · (xk − xk−1)

xk+1 = proxµk·g
(
x̂k − µk∇f(x̂k)

) , (6)

where, w ≥ 0 is a weighting constant.
The above technique has been utilized in some sparse

recovery algorithms, the most well-known of which is the fast
ISTA (FISTA) algorithm [26]. For this algorithm, and with
a particular choice of w which is iteration dependent, it has
been proved that this simple acceleration scheme significantly
improves the convergence rate of the plain version, i.e., ISTA
[24], from O(1/k) to O(1/k2).

B. Proposed algorithm

Now, consider problem (1). We assume that J is proximable,
i.e., it has a known or easy-to-compute proximal mapping.
Then, consider the following reformulation of (1)

min
x

J(x) + δAε(x), (7)

where
Aε , {x ∈ Rn | ‖y −Ax‖2≤ ε} · (8)

The cost function of (7) is non-smooth and non-convex,
making it very challenging to solve. Nevertheless, it has the
special structure of being the sum of two proximable functions.
To make use of this structure, we consider the following
equivalent form of (7)

min
x,z

J(z) + δAε(x) s.t. z = x, (9)

where, we have introduced an auxiliary variable, namely z.
Then, we solve this new problem using penalty methods [27],
leading to

(Pα) : min
x,z

J(z) + δAε(x) +
1

2α
‖x− z‖22, (10)

in which, α > 0 is a penalty parameter. Decreasing the value
of α penalizes violation from the constraint z = x more and
more.

A widely-used strategy to solve problems of the form
(10), where variables appear as disjoint blocks, is alternating
minimization (also called block-coordinate descent). Utilizing
this method, problem (10) is solved by iteratively optimizing
over one variable while fixing the other one at its most recent
value. This leads to the following iterations (∀k ≥ 0){

zk+1 = argminz αJ(z) + 1
2‖z− xk‖22

xk+1 = argminx δAε(x) + 1
2‖x− zk+1‖22

, (11)



3

which starts with some initial x0. Recalling the definition of
proximal mapping in (3), we can rewrite (11) as{

zk+1 = proxαJ(xk)

xk+1 = proxδAε (zk+1)
, (12)

or, in a more compact form, as

xk+1 = proxδAε

(
proxαJ(xk)

)
= PAε

(
proxα·J(xk)

)
(13)

in which, PAε stands for the projection onto Aε. As α
determines the threshold by which the estimates are shrunk,
choosing a very small value for it can lead to a quite slow
convergence. To avoid this problem, we follow the same warm-
starting approach used by penalty methods [27], and solve
the problem Pα (10) for a decreasing sequence α1, α2, · · ·,
started with a sufficiently large value. Each subproblem Pαj
(10) is solved by iteratively performing (13) until a stopping
criterion is met, and then, its final solution is passed to the
next subproblem, Pαj+1 , as a starting point.

To improve the performance of the algorithm, we utilize
acceleration ideas for solving convex minimization problems.
It should be noted that in the context of compressed sensing,
most accelerated techniques have been mainly applied to
convex sparsity regularized problems, like FISTA, as discussed
in the previous subsection. In fact, little efforts have been done
to accelerate non-convex sparse recovery solvers, especially
those targeting constrained problems. It should also be noted
that iterative algorithms for convex problems eventually con-
verge to the global minimizer, and the principal role of the
acceleration is to make this process faster. Nevertheless, for
general non-convex problems, due to the presence of many
local minima, the situation is complicated. Contrary to most
works that have focused on composite smooth plus non-
smooth objective functions, e.g., FISTA, here, we introduce
a similar acceleration technique for backward-backward algo-
rithms applied on objective functions where both components
are non-smooth, like (7). This new version is stated as follows{

x̃k = xk + w · (xk − xk−1)

xk+1 = PAε
(

proxα·J(x̃k)
) . (14)

There exist some results on convergence of block-coordinate
descent methods; see e.g., [28], [29]. However, they assume
some conditions, such as block quasiconvexity of cost function
[28], or convexity of non-smooth parts of the cost function
[29], which do not apply here. As an alternative, in Ap-
pendix A, we derive an approximation of (14), summarized
in Algorithm 1, and call it iterative proximal projection (IPP).
In Appendix A, it is also shown that when the relaxation
parameters µz and µx tend to 1, then the inner iterations of
Algorithm 1, i.e., lines 4-9, approach to (14). Theorem 1 below
establishes the convergence of IPP.

Theorem 1. In Algorithm 1, assume that 0 ≤ w <
1

max(µx,µz)
−1. The sequence

{
uk , (xk, zk)

}∞
k=0

generated
by IPP for each value of α (the inner-loop iterations) con-
verges to a critical point, u∗, of the cost function defined in

Algorithm 1 Iterative Proximal Projection (IPP) for solving (1)
1: Inputs: y, A, ε, αi, αf , τ , 0 < c < 1, w, 0 < µx, µz < 1
2: Initialization: k = 0, x0 = z0 = A†y, α = αi
3: while α > αf do
4: while ‖xk − xk−1‖2> τ do
5: x̃k = xk + w · (xk − xk−1)

6: zk+1 = proxµz·α·J(zk + µz(x̃k − zk))

7: xk+1 = PAε(xk + µx(zk+1 − xk))
8: k → k + 1
9: end while

10: α← c · α
11: end while
12: Output: xk

(10). Furthermore, if the cost function satisfies the Kurdyka-
Łojasiewicz (KL) property [22] with ψ(t) = c · t1−θ for some
t > 0 and θ ∈ [0, 1), then:
• If θ = 0 then the sequence {uk}k≥0 converges in a finite

number of steps.
• If θ ∈ (0, 1/2] then there exist d > 0 and τ ∈ [0, 1) such

that ‖uk − u∗‖2≤ d · τk.
• If θ ∈ (1/2, 1) then there exist d > 0 such that ‖uk −

u∗‖2≤ d · k
θ−1
2θ−1 .

Proof: See Appendix A.

Remark 1. The above theorem proves the convergence of IPP
for each particular value of α. That is, the inner-loop (lines
4-9) of Algorithm 1. Nevertheless, this translates into proving
the convergence of the whole algorithm. To elaborate, note
that each inner-loop actually serves as an initializer for the
next one. Therefore, we need to only focus on the last inner-
loop which corresponds to the final value of the threshold,
and treat the previous ones as only tools for producing a good
initial point to begin the last inner-loop.

Remark 2. The above theorem (as well as Theorem 2 in
Subsection II-C) requires the cost function to have the KL
property. As mentioned in [22], [30], the KL property is
satisfied by a broad class of functions, including `p (pseudo)
norms for p ≥ 0, real polynomial functions, and indicator
function of a polyhedral set. It can be shown that the cost
functions considered in this paper possess the KL property, as
well.

Remark 3. Although proximal-based block coordinate descent
algorithms with extrapolation have already been introduced
and analyzed in previous works [23], [29], our proposed solver
outlined in Algorithm 1 differs from them. The main difference
lies in the fact that, here, we update z based on an extrapolation
on x, whereas the methods proposed in [23], [29] update each
block using an extrapolation of its own block, but not of other
blocks. In other words, based on the approaches in [23], [29],
the line 5 of Algorithm 1 should be z̃k = zk+w ·(zk−zk−1).
Furthermore, as will be shown in Appendix B, Algorithm 1
guarantees that the objective values in (10) are non-increasing,
whereas this is not the case for the algorithms in [23], [29].
Moreover, if we apply the algorithms proposed in [23], [29]



4

to our problem stated in (10), then it can easily be shown that
by letting µx, µz → 1 we would recover the plain alternating
minimization in (12); not the accelerated version (14). This
is the main reason why we decided to update z using an
extrapolation of the other block, i.e., x. In fact, as derived in
Appendix A, the proposed accelerated proximal scheme would
reduce to (14) when µx, µz → 1.

C. Relation to prior art

1) ISP algorithms: The ISP algorithms are inspired by the
smoothed `0 (SL0) algorithm proposed in [13]. Let fσ(x) ,
1−exp(−x2/σ2). Then, it can be easily verified that as σ → 0,
the function Jσ(x) ,

∑n
i=1 fσ(xi) approaches ‖x‖0. In SL0,

the `0 norm is replaced with Jσ . The corresponding problem
is

(Pσ) : min
x

Jσ(x) s.t. ‖y −Ax‖2≤ ε. (15)

To avoid undesired local minima which are present when σ is
very small, SL0 uses the graduated non-convexity technique
[31] by solving Pσ for a decreasing sequence of σ1, σ2, · · ·, in
which, the final solution of Pσj is passed to Pσj+1

as a starting
point. Thanks to this warm-starting scheme, a good estimate
of the optimal solution of each Pσj can easily be found.
SL0 achieves this by performing a few gradient projection
iterations. The gradient step can be decoupled over the entries
of x as

x← T 0
σ (x) , x− µσ∇fσ(x), (16)

in which, µσ = µ0 · σ2 and µ0 > 0 is a constant that when
µ0 ∈ (0, 1/2] guarantees the convergence of the iterations [16].
It was shown in [16] that T 0

σ is actually a kind of shrinkage,
and based on this fact, the general family of ISP algorithms
was introduced. The ISP algorithms generalize the approach
used in SL0 by replacing the gradient step with a thresholding
(shrinkage) operation.

The ISP algorithms are much like the IPP algorithm out-
lined in Algorithm 1. The differences are as follows. First,
the penalty parameter α in Algorithm 1 corresponds to the
threshold of the ISP algorithms. Second, as opposed to IPP, the
original ISP is not equipped with the extrapolation scheme, as
used in line 5 of Algorithm 1. The most important difference,
however, is concerning the derivation of the algorithms for
non-smooth sparsity promoting functions. Whereas IPP has
been derived as a direct solver of problem (1) with a non-
smooth J , ISP has been developed in an indirect way. More
precisely, the non-smooth variant of ISP is inspired by its
smooth counterpart, e.g., ISP-SL0 (which uses the SL0 shrink-
age), and gradient descent interpretation of proximal mapping
for smooth functions [15]. Therefore, no convergence analysis
has been established in [16] for non-smooth ISP. By contrast,
here we prove the convergence of IPP.

Note that similar to IPP, the smooth ISP algorithm can also
be equipped with an extrapolation step [23] to improve its
performance. This improved version, which we call ImpISP,
is summarized in Algorithm 2. In this algorithm, it is assumed
that J in (1) is smooth, with a smoothing parameter σ, like
the one in the SL0 cost function (15), which when σ → 0
yields a better approximation to the `0 norm.

Algorithm 2 Improved ISP (ImpISP) for solving (1)
1: Inputs: y, A, µ, ε, σi, σf , τ , 0 < c < 1, w
2: Initialization: k = 0, x−1 = 0, x0 = A†y, σ = σi
3: while σ > σf do
4: while ‖xk − xk−1‖2> τ do
5: x̃k = xk + w · (xk − xk−1)
6: xk+1 = PAε(x̃k − µ · ∇J(x̃k))
7: k ← k + 1
8: end while
9: σ ← c · σ

10: end while
11: Output: xk

Convergence of the ImpISP algorithm can be proved using
[23]. We have restated it in the following proposition.

Proposition 1. Let J in (7) be a smooth function, and let L
denote the Lipschitz constant of ∇J . Furthermore, let µ > 0
denote the gradient-descent step size, and define γ , µ·L < 1.
Then, if

w ≤ δ

2
(
1− γ
1 + γ

), (17)

for some δ < 1, the sequence {xk}∞k=0 generated by ImpISP,
outlined in Algorithm 2, for each value of σ (the inner-
loop iterations) converges to a critical point, x∗, of the cost
function in (7). Furthermore, if the cost function satisfies the
KL property [22] with ψ(t) = c · t1−θ for some t > 0
and θ ∈ [0, 1), then similar convergence rate results as in
Theorem 1 hold here, too.

Proof: The proof follows from [23].
2) Successive Concave Sparsity Approximation: A recent

algorithm, called successive concave sparsity approxima-
tion (SCSA) [32], considers the following sparsity-inducing
penalty:

f scsa
σ (x) = λ

{
1− exp(−|x|

σ
)

}
. (18)

Similar to the SL0 function, the SCSA penalty has a smoothing
parameter, i.e., σ. Moreover, as shown in [32], f scsa

σ provides
a tighter approximation to the `0 norm than the SL0 func-
tion. SCSA solves the following problem by employing the
proximal algorithms:

min
x

{
1

2
‖y −Ax‖22+f scsa

σ (x)

}
. (19)

A closed-form solution has been derived in [32] for the
proximal mapping of f scsa

σ . The overall procedure for solving
(19) is based on the FBS framework stated in (4). Additionally,
similar to the ISP and IPP algorithms, a decreasing sequence
of σ is considered, and for each value of this sequence a few
iterations of (4) are performed. As shown in [32], starting with
a sufficiently large value for σ, the shrinkage, i.e., the forward
step of the FBS scheme, would be soft-thresholding, and as σ
decreases along the outer-loop iterations, the shrinkage moves
toward hard-thresholding. This behavior is shown in Fig. 1.
With this illustration in mind, it seems that for each particular
value of σ, the SCSA penalty f scsa

σ approximates the `p norms



5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1−1 2−2

0

1

−1

x

σ = 100
σ = 1.0
σ = 0.1

Fig. 1: Plots of the SCSA shrinkage for λ = 1 and different
values of σ [32].

for 0 ≤ p ≤ 1 [32]. For instance, σ = 100 and σ = 0.1
correspond to p = 1 and p = 0, respectively, while σ = 1
corresponds to some 0 < p < 1.

There is a major difference between the SCSA algorithm
and the ISP and IPP algorithms. The latter algorithms target an
error-constrained sparse recovery problem. In contrast, SCSA
solves a regularized problem, i.e., (19). Another noticeable
difference is that whereas the overall shape of the shrinkage
is fixed over the outer-loop iterations of ISP and IPP (lines 3-
10 in Algorithm 2 and lines 3-11 in Algorithm 1), in SCSA the
shrinkage gradually modifies its shape, from soft-thresholding
to hard-thresholding, as σ decreases.

D. An effective non-smooth function

There are several types of functions which can be used as
J in (1), including `q (pseudo) norms for 0 < q < 1 [33],
smoothly clipped absolute deviation (SCAD) penalty [34],
capped `1 [35], and logarithmic penalty [36]. Among them,
we empirically found that SCAD results in a much better
performance. In this subsection, we discuss this penalty, and
reveal some interesting facts about the SL0 shrinkage and its
relation with SCAD.

1) SL0 shrinkage versus hard/soft-thresholding: In what
follows, we show that T 0

σ (16) with µ0 = 1/2 is, in fact, an
interpolation between hard and soft thresholdings and, as such,
the SL0 shrinkage enjoys the properties of both. To illustrate
this fact, the three thresholding functions are plotted in Fig. 2.
The relation between λ and σ can be determined as follows.
Computing the derivative of (16), the point on the positive
orthant at which T 0

σ has a slope of 1 and is tangent point to
T sλ can be easily found to be x̃ = σ/

√
2. For this point, with

µ0 = 1/2, we have

T 0
σ (x̃) = x̃− λ,

yielding
λ =

σ√
2e
. (20)

Now, it follows from Fig. 2 that for |x|≤ 2λ or, equivalently,
|x|≤ σ

√
2/e, the shrinkage function T 0

σ smoothly approxi-
mates soft-thresholding, while it gradually moves toward hard-

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5
−2
−1.5
−1
−0.5

0

0.5

1

1.5

2

2.5

0 λ−λ

0

λ

−λ

x

T 0
σ (x)

T hλ (x)
T sλ (x)

Fig. 2: Plots of the SL0 shrinkage (16) along with hard and soft
thresholding functions (see Subsection II-A) with σ = λ

√
2e.

thresholding as |x| increases. Eventually, it coincides with
hard-thresholding for |x|≥ 5λ or |x|≥ 5σ

√
2e.

Remark 4. The justification presented in [16] for proving that
SL0 behaves like hard thresholding is based on a property of
proximal mappings that is only valid for a small enough σ.
On the contrary, the above-mentioned hard-soft thresholding
interpretation of the SL0 shrinkage is valid for any σ > 0.

Another interesting point about SL0 is that, whereas the
set of objective values within each subproblem Pσj (15) is
decreasing with respect to the steepest descent iterations [16],
we have non-decreasing objective values along j, provided
that the subproblems are solved exactly. This is stated more
precisely in the following lemma:

Lemma 1. Let xσj be the global minimizer of Pσj (15).
Then, the sequence of objective values

{
Jσj (xσj )

}∞
j=1

is non-
decreasing.

Proof: First, since xσj is the minimizer of Pσj , we have

Jσj (xσj ) ≤ Jσj (xσj+1)· (21)

Then, since {σj}∞j=1 is a decreasing series (σj+1 < σj), from
the relation exp(−x2/σ2

j ) ≥ exp(−x2/σ2
j+1) it follows that

∀x : Jσj (x) ≤ Jσj+1
(x), which in combination with (21)

results in
Jσj (xσj ) ≤ Jσj+1

(xσj+1
).

2) Smoothly clipped absolute deviation penalty (SCAD):
The SCAD penalty is a concave function whose proximal
mapping is given by [34]

T scadλ,a (x) ,


sign(x)(|x|−λ)+ |x|≤ 2λ
(a−1)x−sign(x)aλ

a−2 2λ < |x|≤ aλ
x |x|> aλ

. (22)

As the above expression shows, the SCAD shrinkage cor-
responds to the soft-thresholding operator for small enough
inputs, whereas for large enough ones it behaves like hard-
thresholding and leaves the input intact. For moderate input
values, SCAD corresponds to a linear function. The additional
parameter “a” determines the slope of the transition from



6

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5
−2
−1.5
−1
−0.5

0

0.5

1

1.5

2

2.5

0 2λ−2λ aλ−aλ

0

λ

−λ

x

a ' 2
a = 4
a� 2

Fig. 3: Plots of the SCAD shrinkage, defined in (22), for three
different values of a.

soft-thresholding to hard-thresholding: a value very close to
2 is equivalent to an abrupt transition, whereas as a deviates
from 2, the transition becomes smoother and smoother. When
a→∞, SCAD becomes equivalent to soft-thresholding. This
behavior is best illustrated in Fig. 3.

In the application of regression and variable selection, it
has been shown [34] that, in contrast to hard and soft-
thresholdings, the SCAD shrinkage simultaneously satisfies
the three important properties of unbiasedness, sparsity, and
continuity mentioned in [34]. The advantages of this shrinkage
over hard and soft thresholdings have also been experimentally
demonstrated in [34].

The behavior of SCAD resembles the SL0 shrinkage func-
tion. Actually, comparing Figs. 2 and 3 suggests that the
SL0 shrinkage can be considered as a smooth approximation
of SCAD for moderate values of a (not very close to 2).
Nevertheless, one important difference between these two
shrinkage functions is the presence of the additional tuning
parameter in SCAD, namely a. As will be demonstrated by
our simulations, appropriate selection of this parameter may
considerably boost the performance of IPP with SCAD penalty
compared to ISP with the SL0 shrinkage.

III. SIMULATIONS

A. Simulation setup

In this section, the performance of the IPP and Imp-
ISP algorithms in recovery of synthetically generated sparse
and compressible signals, as well as real data is evaluated
and compared with those of some well-known and recently
proposed methods, including `q pseudo-norm minimization
[12], [37], SCAD penalty-regularized minimization (simply re-
ferred to as SCAD) [38], expectation-maximization Gaussian-
mixture approximate message passing (EM-GM-AMP) [39],
generalized OMP (GOMP) [40], and SCSA-FIT, which is an
accelerated version of SCSA [32]. We have used the MATLAB
implementations of these algorithms provided by their authors.

The underlying signal was generated synthetically according
to the model y = Ax + e. In this regard, we utilized a
Bernoulli-Gaussian distribution to generate the sparse signal
x of the length n = 1000, with different sparsity levels s, as

the number of non-zero entries. Therefore, a larger s indicates
a lower sparsity condition, i.e., the signal is less sparse. In
our experiments, we consider s ≤ 50 as a highly sparse
condition, 50 < s ≤ 160 as a moderate sparse situation,
and s > 160 as a low sparse case. Moreover, the non-zero
entries of x were produced from N (0, 1), with their locations
being sampled uniformly at random. Furthermore, the entries
of the measurement matrix A (of dimension 400 × 1000)
were generated from the normal distribution N (0, 1). In our
experiments, we considered both noiseless and noisy recovery,
where for the noisy case a Gaussian noise vector generated
from N (0, 0.01) was added to the measurements. A number
of 300 Monte-Carlo simulations have been performed and the
average results are reported.

Remark 5. We noticed in our simulations that some algo-
rithms, especially SCSA-FIT, are sensitive to the normalization
of the measurement matrix. Actually, as will be shown in Sub-
section III-D, the performance of this algorithm deteriorates in
the case of non-normalized2 A, which is more severe when the
measurements are noisy. However, in some applications, the
matrix A does not have normalized columns. For example, in
CS this matrix is in fact the multiplication of a measurement
matrix Φ by a sparsifying transform Ψ, i.e., A = ΦΨ. Thus,
the normalization of A cannot be guaranteed in this case. To
address this issue and see the behaviors of the algorithms,
we have considered three cases in our simulations. In the
first case, the entries of A have been independently produced
from N (0, 1), without normalizing the generated columns.
In the second one, the columns of the generated sensing
matrix A have been normalized before multiplication by x
to produce the measurements. In the final case, a scaling is
applied on the measurement matrix to normalize its columns,
and the recovered sparse signal by each algorithm is scaled
accordingly. More precisely, first note that

y = Ax + e = ADD−1x + e = Āx̄ + e (23)

in which, D is a diagonal matrix with dii = ‖ai‖−12 ,
Ā , AD, and x̄ , D−1x. Then, Ā, which has normalized
columns, is given to the algorithms. To evaluate the perfor-
mance, let x̂ be an estimation of x returned by any of the
algorithms. To take into account the normalization effect, we
consider Dx̂ as the final estimate.

The parameters of each algorithm have been set as fol-
lows. For the IPP and ImpISP algorithms, we chose all the
parameters the same as [16] except for the initial value of
the penalty parameter (α in IPP and σ in ImpISP) for which
we experimentally found 3 × max(|A†y|) to be a good
choice. Moreover, the number of outer-loop iterations has been
considered 300 for these algorithms. We run the iteratively
reweighted `q pseudo-norm minimization for q = 0.5. The
parameters of SCSA-FIT and SCAD have been set the same
as recommended in [32]. Finally, to choose the EMGMAMP
and GOMP parameters, we utilized the values suggested in
[39] and [40], respectively.

2Such behavior occurs for `1 minimization, e.g., the LASSO algorithm
[41], as well, because the algorithm tends to select those columns of A with
larger `2 norms.



7

To evaluate and compare the performance of the algorithms,
mean-squared error (MSE) and success rate (SR) have been
used. MSE is computed as 20 log(‖xo − x̂‖2/‖xo‖2), where
xo and x̂ denote the original and the recovered sparse signals,
respectively. SR is defined as the number of successful Monte-
Carlo simulations divided by the total number of trials. A
recovery was considered to be successful if MSE ≤ −60 dB.
Additionally, to roughly compare the computational com-
plexities of the algorithms, we report their runtimes. Our
simulations were performed on a macOS with a 3.2 GHz Intel
core i5 CPU and 8 GB RAM.

The rest of this section consists of four parts. In Subsec-
tion III-B, appropriate values of “a” in the SCAD shrinkage
(22) and “w” in Algorithms 1 and 2 are discussed through a
set of simulations. Subsection III-C studies the performance
of different shrinkages used in IPP and ImpISP, including
SL0 shrinkage and hard and SCAD thresholdings. In addition,
the effect of the extrapolation technique on the performance
of these algorithms will be investigated in this subsection.
Next, Subsection III-D compares the performance of IPP-
SCAD (IPP with the SCAD penalty) with those of the previous
algorithms mentioned in the beginning of this section. More-
over, the effect of normalization of the measurement matrix
is studied in this subsection. Finally, in Subsection III-E and
Subsection III-F, different algorithms are compared in recov-
ery of compressible signals and in block-based compressed
image recovery, respectively.

B. Effects of IPP-SCAD parameters

In this subsection, the effects of the two parameters a and
w in IPP-SCAD are experimentally studied. Figures 4 and 5
depict the results in the noiseless and noisy cases, and for
different values of a and w. In what follows, these results are
discussed in details.

In Fig. 4 the MSE values versus sparsity are plotted, where
each curve corresponds to a particular value of a, with its
associated best experimentally found extrapolation weight, i.e.,
w∗. In this figure, it is seen that, increasing a up to around 25
remarkably improves the performance. Moreover, increasing
a beyond 25 does not improve the performance. For instance,
in the noiseless case, IPP-SCAD had the best performance for
a = 25, and increasing this parameter to a = 30 deteriorates
the MSE. It is also noticeable that, appropriate values for a
differ in the noiseless and noisy cases. In fact, according to
Fig. 4 part (a), a = 25 is the appropriate SCAD parameter in
the noiseless case, whereas part (b) concludes that a = 30 is
a better choice in the noisy case.

The effect of w on the performance of IPP-SCAD is studied
in Fig. 5. In this figure, the MSE curves versus sparsity
for different extrapolation weights and their corresponding a∗

parameters that have been experimentally found, are plotted.
As demonstrated by this figure, increasing the extrapolation
weight significantly improves the performance. For instance,
in the noiseless case, increasing the weight for s = 200 leads
to a considerable improvement of about 250 dB in the MSE.

According to the descriptions in this subsection and consid-
ering the simulation results in Figs. 4 and 5, the best values of

150 160 170 180 190 200 210 220 230

0

−50

−100

−150

−200

−250

−300

s

M
S
E
(d
B
)

a = 2 (w∗ = 0.85)

a = 5 (w∗ = 0.95)

a = 10 (w∗ = 0.90)

a = 25 (w∗ = 0.95)

a = 30 (w∗ = 0.95)

(a) Noise-free case

150 160 170 180 190 200 210 220 230

0
−5
−10
−15
−20
−25
−30
−35
−40
−45
−50
−55
−60
−65

s

M
S
E
(d
B
)

a = 2 (w∗ = 0.70)

a = 5 (w∗ = 0.90)

a = 10 (w∗ = 0.90)

a = 15 (w∗ = 0.90)

a = 30 (w∗ = 0.95)

a = 65 (w∗ = 0.95)

a = 100 (w∗ = 0.95)

(b) Noisy case

Fig. 4: Effect of the transition parameter “a” in IPP-SCAD
with its associated extrapolation weight “w∗” on the final MSE
for different sparsity levels, denoted by s.

150 160 170 180 190 200 210 220 230

0

−50

−100

−150

−200

−250

−300

s

M
S
E
(d
B
)

w = 0.00 (a∗ = 10)

w = 0.20 (a∗ = 10)

w = 0.50 (a∗ = 10)

w = 0.80 (a∗ = 20)

w = 0.95 (a∗ = 25)

(a) Noise-free case

150 160 170 180 190 200 210 220 230

0
−5
−10
−15
−20
−25
−30
−35
−40
−45
−50
−55
−60
−65

s

M
S
E
(d
B
)

w = 0.00 (a∗ = 10)

w = 0.20 (a∗ = 15)

w = 0.50 (a∗ = 15)

w = 0.80 (a∗ = 15)

w = 0.95 (a∗ = 30)

(b) Noisy case

Fig. 5: Effect of the extrapolation weight “w” in IPP-SCAD
with its associated “a∗” parameter on the final MSE for
different sparsity levels, denoted by s.

150 160 170 180 190 200 210 220 230

0

−50

−100

−150

−200

−250

−300

s

M
S
E
(d
B
)

IPP-Hard (w = 0) ISP-SL0 IPP-SCAD (w = 0)

IPP-Hard (w 6= 0) ImpISP-SL0 IPP-SCAD (w 6= 0)

(a) Noise-free case

150 160 170 180 190 200 210 220 230

0

−10

−20

−30

−40

−50

−60

−70

s

M
S
E
(d
B
)

IPP-Hard (w = 0) ISP-SL0 IPP-SCAD (w = 0)

IPP-Hard (w 6= 0) ImpISP-SL0 IPP-SCAD (w 6= 0)

(b) Noisy case

Fig. 6: Comparing the IPP and ISP algorithms with different
shrinkages in tow modes: with extrapolation (w = 0.95,
dashed curves) and without extrapolation (w = 0, solid
curves).

a for the noiseless and noisy cases were found to be 25 and
30, respectively. Moreover, the corresponding best w∗ was set
to 0.95 for both noiseless and noisy cases. Therefore, in the
rest parts of our simulations we have chosen these values of
a and w in the IPP-SCAD method.

C. Different shrinkage functions and convergence rate

In this subsection, the impact of the non-smooth sparsity
promoting function used in the IPP algorithm on its per-
formance is investigated. In this regard, we have tested the
IPP algorithm with the SCAD penalty (IPP-SCAD) and the



8

↓
IP

P-
H

ar
d

0 50 100 150 200 250 300

0

−50

−100

−150

−200

−250

−300

−350

Iteration number

M
S
E
(d
B
)

w = 0.00 (a∗ = 10)
w = 0.25 (a∗ = 10)
w = 0.50 (a∗ = 10)
w = 0.75 (a∗ = 20)
w = 0.95 (a∗ = 25)

(a)

↓ s = 150

0 50 100 150 200 250 300

0

−10

−20

−30

−40

−50

−60

−70

Iteration number

M
S
E
(d
B
)

(b)

↓ s = 200

0 50 100 150 200 250 300

−2

−2.5

−3

−3.5

−4

−4.5

−5

−5.5

Iteration number

M
S
E
(d
B
)

(c)

↓ s = 220
↓

Im
pI

SP
-S

L
0

0 50 100 150 200 250 300

0

−50

−100

−150

−200

−250

−300

−350

Iteration number

M
S
E
(d
B
)

w = 0.00 (a∗ = 10)
w = 0.25 (a∗ = 10)
w = 0.50 (a∗ = 10)
w = 0.75 (a∗ = 20)
w = 0.95 (a∗ = 25)

(d)

0 50 100 150 200 250 300

0

−25

−50

−75

−100

−125

−150

Iteration number

M
S
E
(d
B
)

(e)

0 50 100 150 200 250 300

−2

−2.5

−3

−3.5

−4

−4.5

−5

−5.5

−6

−6.5

−7

Iteration number

M
S
E
(d
B
)

(f)

↓
IP

P-
SC

A
D

0 50 100 150 200 250 300

0

−50

−100

−150

−200

−250

−300

−350

Iteration number

M
S
E
(d
B
)

w = 0.00 (a∗ = 10)
w = 0.25 (a∗ = 10)
w = 0.50 (a∗ = 10)
w = 0.75 (a∗ = 20)
w = 0.95 (a∗ = 25)

(g)

0 50 100 150 200 250 300

0

−50

−100

−150

−200

−250

−300

Iteration number

M
S
E
(d
B
)

(h)

0 50 100 150 200 250 300

0

−20

−40

−60

−80

−100

−120

Iteration number

M
S
E
(d
B
)

(i)

Fig. 7: Investigating the effect of different shrinkages and extrapolation weights in the convergence rate of IPP and ISP for
different sparsity levels. Iteration number corresponds to the outer-loop iterations of Algorithms 1 and 2. Note also that the
scales of the vertical axes are different.

`0 norm (IPP-Hard). For comparison, the results of ISP-SL0
and its improved version are also included. The corresponding
MSE curves of IPP-Hard, IPP-SCAD and ISP-SL0 are plotted
in Fig. 6 (solid lines), for the two noiseless and noisy cases.
Furthermore, to see the effect of the extrapolation scheme,
the improved versions are also depicted in these figures
(dashed lines). As illustrated in Fig. 6, IPP-SCAD significantly
outperforms the IPP-Hard and ISP-SL0 methods. Moreover,
comparing the dashed and solid curves, the outstanding effect
of the extrapolation is clearly evident for both noiseless and
noisy cases, which is more remarkable on the performance
of IPP-SCAD. For instance, let us consider the low sparsity
level of s = 200 in the noiseless case. It is observed in Fig.
6 (a) that for the extrapolation mode where w 6= 0, IPP-SCAD
outperforms IPP-Hard and ImpISP-SL0 about 250 dB and 150

dB, respectively. Additionally, the SCAD shrinkage along with
the extrapolation scheme signifies the very good performance
of IPP in low sparsity ranges. For instance, comparing the
results in part (a) for the extrapolation case, the IPP-SCAD
method could recover the underlying signals with an MSE of
−200 dB for the sparsity level of 200, whereas those of the
plain versions (solid curves) are worse than −50 dB in the
same sparsity level. Similar improvements in the performance
of the algorithms are also observed in the noisy cases as
depicted in part (b) of Fig. 6.

Now, we explore the effect of extrapolation on the con-
vergence speed of the algorithms. To achieve this goal, we
have run IPP-Hard, IPP-SCAD, and ISP-SL0 for recovery
of sparse signals with different sparsity levels. We have also
varied the extrapolation weight, w. Figure 7 shows the progress



9

50 70 90 110 130 150 170 190 210 230

0

−50

−100

−150

−200

−250

−300

s

M
S
E
(d
B
)

`q
GOMP

SCSA-FIT

EMGMAMP

IPP-SCAD

(a)

50 70 90 110 130 150 170 190 210 230

0

−50

−100

−150

−200

−250

−300

s

M
S
E
(d
B
)

(b)

50 70 90 110 130 150 170 190 210 230

0

−50

−100

−150

−200

−250

−300

s

M
S
E
(d
B
)

(c)

50 70 90 110 130 150 170 190 210 230

0

−10

−20

−30

−40

−50

−60

−70

s

M
S
E
(d
B
)

SCAD

GOMP

SCSA-FIT

EMGMAMP

IPP-SCAD

(d)

50 70 90 110 130 150 170 190 210 230

0

−10

−20

−30

−40

−50

−60

−70

s

M
S
E
(d
B
)

(e)

50 70 90 110 130 150 170 190 210 230

0

−10

−20

−30

−40

−50

−60

−70

s

M
S
E
(d
B
)

(f)

Fig. 8: Comparing the performance of IPP-SCAD with those of some state-of-the-art and recently proposed algorithms
for different normalization modes of the measurement matrix. First column: without normalization, second column: with
normalization, and the last column: the scaling scheme discussed in Subsection III-A. Moreover, two noiseless (top) and noisy
(bottom) cases have been considered.

of the MSE values with respect to the iteration number of the
algorithms for different extrapolation weights. As follows from
this figure, using the extrapolation scheme with an appropriate
weight leads to a considerable improvement in the convergence
speed of all the algorithms. It is also noticeable that the
best extrapolation weight for s = 150 was found to be 0.5,
whereas w = 0.95 works much better for s = 200. This
suggests that for harder problems, that is, when recovering less
sparse signals, a larger extrapolation weight should be used.
This figure also demonstrates the superiority of IPP-SCAD,
especially for s = 220, over IPP-Hard and ImpISP-SL0 (note
the different MSE scales in these figures).

As another observation, inspecting the results depicted in
Fig. 7 for s = 200 and s = 220, especially those of IPP-
SCAD, reveals an important advantage of using extrapolation.
As clearly demonstrated by this figure, utilizing the extrapola-
tion technique not only improves the convergence speed, but
it also significantly boosts the performance. For instance, let
us focus on the plots corresponding to s = 200. Inspecting the
final MSEs of w = 0 and w = 0.95 indicates that whereas the
plain versions of the algorithms have converged to a point far
away from the underlying sparse signal, the improved versions
(w = 0.95) have successfully recovered the unknown signal.

D. IPP-SCAD versus other algorithms

This subsection compares the performance of IPP-SCAD
with some state-of-the-art and recent algorithms mentioned in
Section III, for both noiseless and noisy cases. To this aim,
we considered the final MSEs reached by the algorithms, their
success rates, and their corresponding runtimes. The results are
illustrated in Figs. 8, 9, and Tables I and II.

From the aspect of the final MSEs, as Fig. 8 shows, in the
noiseless case (top), and for all the three normalization cases,
IPP-SCAD significantly outperforms the other algorithms,
specifically `q minimization and SCSA-FIT. This is more
noticeable when recovering less sparse signals. For instance,
considering the very low sparsity level of s = 210 non-
zero entries, IPP-SCAD is to recover the signal with an
MSE of s = −200 dB, whereas the other methods have
performed worse than s = −50 dB in this case. In Fig. 8,
it is also noticeable that in the noiseless case, IPP-SCAD is
robust against the normalization constraint. In contrast, the
SCSA-FIT and the `q minimization methods are considerably
sensitive to the normalization constraint. In addition, the same
as the IPP-SCAD method, the GOMP and the EMGMAMP
algorithms show a robust behavior against the normalization
constraint. The most destructive influence of the normalization
constraint appears when a noisy case is considered. As can be
seen in Fig. 8 (bottom), comparing part (e) with (d) and (f)
reveals that normalizing the columns of A deteriorates their



10

50 80 110 140 170 200 230 260
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

S
u
cc
es
s
R
at
e

`q
GOMP

SCSA-FIT

EMGMAMP

IPP-SCAD

(a)

50 80 110 140 170 200 230 260
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

S
u
cc
es
s
R
at
e

(b)

50 80 110 140 170 200 230 260
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

S
u
cc
es
s
R
at
e

(c)

Fig. 9: Comparing the success rate of IPP-SCAD with those of some state-of-the-art and recently proposed algorithms for
different normalization modes of the measurement matrix. (a): without normalization, (b): with normalization, and (c): using
the scaling scheme discussed in Subsection III-A.

TABLE I: Averaged runtime (in second) of different algorithms, for some sparsity levels (s), and in the noiseless case. Each
cell shows the averaged time (over 100 trials) that each algorithm takes to reach a specified MSE (dB). A dash sign indicates
that the corresponding algorithm has not been able to reach that particular MSE. Blue color denotes the best result, whereas
the red one denotes the second good result.

Sparsity Level s = 50 s = 100 s = 150 s = 200

Algorithm \ MSE∗(dB) -200 -150 -100 -50 -200 -150 -100 -50 -200 -150 -100 -50 -200 -150 -100 -50
IPP-SCAD(w = 0) 0.19 0.17 0.15 0.10 0.20 0.18 0.16 0.11 0.24 0.21 0.17 0.11 - - - -
IPP-SCAD(w = 0.95) 0.21 0.18 0.15 0.10 0.22 0.18 0.15 0.10 0.25 0.20 0.16 0.11 0.81 0.76 0.71 0.65
GOMP 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.27 0.27 0.27 0.27 - - - -
EMGMAMP - 0.47 0.39 0.34 3.06 0.47 0.34 0.29 3.88 0.66 0.61 0.55 - - - -
SCSA-FIT - - - 0.24 - - - 0.25 - - - 1.12 - - - -

TABLE II: The same as Table I but for the noisy case.
Sparsity Level s = 50 s = 140 s = 160 s = 200

Algorithm \ MSE∗(dB) -60 -50 -40 -30 -60 -50 -40 -30 -60 -50 -40 -30 -60 -50 -40 -30
IPP-SCAD(w = 0) 1.60 0.50 0.42 0.35 6.39 0.53 0.45 0.39 8.61 1.02 0.95 0.81 - - - -
IPP-SCAD(w = 0.95) 0.72 0.49 0.40 0.34 3.42 0.53 0.45 0.38 4.33 0.53 0.45 0.38 - 1.22 1.15 1.09
GOMP 0.02 0.02 0.02 0.01 0.14 0.13 0.13 0.11 1.67 1.66 1.66 1.64 - - - -
EMGMAMP 3.85 3.06 3.04 2.60 0.69 0.38 0.33 0.27 0.86 0.83 0.79 0.73 - - - -
SCSA-FIT - 0.03 0.01 0.01 - 0.54 0.04 0.04 - 3.39 0.08 0.07 - - 2.29 2.29
SCAD 0.34 0.33 0.33 0.33 7.48 7.47 7.47 7.37 - - - - - - - -

performance about 20 dB.

Now, let us compare the performance of different algorithms
for the noiseless setting and in the sense of success rate (SR).
As stated previously, we consider an algorithm to be successful
in recovering a signal whenever MSE ≤ −60 dB. According to
Fig. 9, the proposed IPP-SCAD method demonstrates a better
recovery performance than the other algorithms. Moreover, in
parts (a) and (b) of this figure, it can be seen that in the
two cases of with and without the normalization constraint
on A, the SCSA-FIT method has a similar performance.
Nonetheless, according to part (c) of Fig. 9, when using the
scaling strategy described in Subsection III-A, the SR of this
algorithm significantly degrades. This behavior can also be
observed in the `q minimization algorithm. By contrast, in the
all parts of Fig. 9, the IPP-SCAD and EMGMAMP methods
are robust against the normalization constraint on A.

Finally, Table I and Table II roughly compare the computa-
tional complexities of the algorithms and their convergence
speeds in noiseless and noisy cases, respectively. In these

tables, each cell shows the averaged CPU time that the corre-
sponding algorithm takes to achieve a particular MSE between
the sparse estimate and the true signal. Also, different sparsity
and MSE levels have been considered. A dash sign in these ta-
bles means that the respective algorithm has failed in reaching
the specified MSE. According to part c in Figure 8, since the
`q algorithm does not have a good performance in compared
with the other algorithms, we have not reported its runtimes.
Examining these results, we arrive at several conclusions. First,
whereas other algorithms often fail in less sparse regimes,
our algorithm is successful in satisfying the MSE criteria.
Second, GOMP demonstrates a very good performance in
highly sparse scenarios. However, it performs worse than the
proposed algorithm for less sparse signals. For the noiseless
case, it is seen that GOMP is much faster than IPP-SCAD.
Nevertheless, in moderate sparsity conditions, e.g., s = 150,
IPP-SCAD outperforms GOMP. Also, for s = 200 as a low
sparse condition, Table II shows that GOMP cannot converge,
whereas IPP-SCAD still performs well. Moreover, this table



11

highlights the importance of the extrapolation weight, i.e., w.
In the case of extrapolation (w = 0.95), IPP-SCAD performs
quite well for the low sparsity conditions, whereas this is not
the case for w = 0. Next, according to Table II, it is seen that
SCSA-FIT has a very low runtime, outperforming IPP-SCAD.
However, in contrast to IPP-SCAD, SCSA-FIT cannot reach a
good MSE, i.e.,−60 dB even in the case of very sparse signals.
Comparing the proposed algorithm with EMGMAMP, in some
cases of the moderate level of sparsity, i.e., s = 140, it is seen
that EMGMAMP is faster than IPP-SCAD. But, for s = 160,
IPP-SCAD is faster than EMGMAMP, and then for s = 200,
EMGMAMP cannot converge anymore, whereas IPP-SCAD
can still recover up to −50 dB. To sum up, it can be inferred
from Table II that for the highly sparse condition (s = 50)
and a moderate sparsity situation (s = 140), GOMP is faster
than IPP-SCAD. Also, SCSA-FIT and SCAD are faster than
IPP-SCAD, but cannot perform as well as IPP-SCAD in terms
of MSE. However, for low sparsity conditions (s = 200), IPP-
SCAD is, in general, the best algorithm.

E. Compressible signals

In this subsection, we consider recovery of “compressible
signals” from underdetermined measurements. A compressible
signal is not necessarily s-sparse in the sense that it has s
exactly zero entries, but the sorted magnitudes of its coeffi-
cients exhibit an exponential decay [42]. We have followed the
experiment of [16] and compared the performance of the algo-
rithms in recovery of compressible signals of length n = 1000
from their m = 400 linear measurements. The compressible
signals were generated from the generalized Pareto distribution
(GPD) [42]. The probability density function (pdf) of GPD is
as follows

P (x; q, λ) =
q

2λ
(1 +

|x|
λ

)−(q+1)· (24)

As shown in [42], for a signal x ∈ Rn generated from GPD, its
sorted coefficients denoted by {x̄i} obey |x̄i|. λ · (n/i)−1/q .

In addition, as a robust measure of sparsity of the generated
compressible signals, similar to [16], we have used the Gini
index [43]. Gini index yields values between 0 and 1, with
0 corresponding to the least sparse signal comprising equal
energy entries, and 1 for the most sparse signal with all of its
energy concentrated in only one entry.

The final MSEs of the recovered signals versus the com-
pressibility parameter are illustrated in Fig. 10. According to
this figure, for higher values of the compressibility parameter,
for which the signals are more sparse, IPP-SCAD and GOMP
perform significantly better than the other methods. Further-
more, as the compressibility parameter decreases, which is
equivalent to decreasing the sparsity, the performance of the
all algorithms deteriorate and converge to the same value.

F. Block-based compressed image recovery

Here, we investigate and compare the performance of
the algorithms in a block-based compressed image recovery
problem (see, e.g., [44]). The setup for this simulation is as
follows. Let X denote the matrix of pixel intensities of a

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0

−50

−100

−150

−200

−250

−300

Compressibility parameter

M
S
E
(d
B
)

`q
GOMP

SCSA-FIT

EMGMAMP

IPP-SCAD

0.85

0.9

0.95

1

G
in
i
in
d
ex

Gini Index

Fig. 10: Final MSEs (dB) of different algorithms in recovery
of compressible signals from their underdetermined measure-
ments for various degrees of compressibility, 1−q. The signal
length and the total number of measurements are n = 1000
and m = 400, respectively.

target image. We extracted all 8 × 8 blocks of X with 50%
overlap. Let us arrange the ith block in a 64 dimensional vector
denoted by xi. Then, we took m random measurements of
each xi via a Gaussian matrix Φ ∈ Rm×64 whose entries
are drawn from N (0, 1). Denoting the measurement vector as
yi, we thus have yi = Φxi. Then, the task is to reconstruct
the original image X using only the yi vectors. This can
be done by first recovering the original blocks xi’s from
yi’s, and then computing an estimate of X by averaging the
reconstructed blocks. Using compressed sensing, the sparsity
of image blocks in a sparsifying basis, here, the 64×64 discrete
cosine transform (DCT) denoted as Ψ, is utilized to estimate
each xi. More precisely, if si denotes the sparsest solution of
yi = ΦΨsi, then x̂i = Ψsi would be an estimate of xi.

To evaluate the competing sparse recovery algorithms, we
applied them on this task. We used three benchmark test
images: House, Barbara, and Monarch, which are shown in
Fig 11. Furthermore, as a measure of performance, we used
peak signal to noise ratio (PSNR) between the original images
and their reconstructed ones. The averaged PSNRs (over 10
trials) for different undersampling ratios, δ = m/64 (rounded
to the nearest integer), are reported in Table III. To see the
effect of the extrapolation in IPP, we have included the results
of IPP with w = 0 as well as w = 0.85, denoted respectively,
by IPP(w = 0) and IPP(w = 0.85). Moreover, Fig. 11 provides
a visual comparison of the reconstructed images for δ = 0.4
using IPP (with w = 0 and w = 0.85) and SCSA (which
is the best algorithm among the others). Inspecting Table III
and Fig. 11 reveals that IPP with w = 0.85 achieves the best
performance. Furthermore, it performs much better than its
plain version, i.e., IPP with w = 0.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we considered recovery of sparse signals
from underdetermined measurements through minimizing a
non-smooth and non-convex sparsity promoting function. We
developed an efficient solver for this problem, called IPP,



12

TABLE III: Comparison of different algorithms for block-based compressed image recovery, and for different undersamling
ratios, denoted by δ. The values are PSNRs in dB. Blue color denotes the best result, whereas the red one denotes the second
good result.

δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4

House Barbara Monarch House Barbara Monarch House Barbara Monarch House Barbara Monarch

`q 25.13 22.99 19.87 28.56 25.30 22.71 31.17 27.38 24.97 34.15 30.17 27.65

GOMP 25.00 22.38 19.03 26.68 23.94 21.23 30.85 27.14 24.43 33.59 29.69 27.10

SCSA 25.11 22.96 19.88 28.62 25.26 22.64 31.35 27.37 24.99 34.49 30.23 27.79

EMGMAMP 25.02 22.94 19.69 27.96 25.06 22.22 30.91 27.15 24.65 33.64 29.72 27.06

IPP (w = 0) 25.31 23.08 20.46 27.72 25.36 22.95 31.11 27.61 24.73 33.56 30.41 27.70

IPP (w = 0.85) 25.57 23.38 20.67 28.65 25.63 23.45 32.50 28.17 25.55 35.01 30.92 28.47

Fig. 11: Visual comparison of reconstructed images from their compressed blocks with undersampling ratio δ = 0.4. From left
to right, each column corresponds to: original image, and reconstructed images using SCSA, IPP(w = 0), and IPP(w = 0.85),
respectively.

which uses penalty method along with proximal ideas. The
resulting algorithm was then shown to be closely related to a
recently proposed family of algorithms, called ISP. Although
the two algorithms share similar structures, ISP has only been
analyzed for smooth sparsity inducing functions. IPP uses a

simple extrapolation technique which can greatly improve its
performance, as demonstrated by our simulations. In addition,
the particular non-smooth sparsity promoting function has
a determining impact on the ability of IPP in successful
recovery of sparse signals. We experimentally showed that



13

using the SCAD penalty leads to a much better performance
compared with other non-smooth functions like the `0 pseudo
norm. We also equipped the smooth ISP algorithms with
the extrapolation technique and illustrated its profound effect
through different simulations. The convergence of IPP to a
critical point was also established. Overall, our simulations
confirmed that IPP has a better performance compared with
some well-known or recent methods.

There are some future research directions concerning our
algorithm. One direction is to theoretically examine why the
proposed algorithm leads to a better recovery performance in
terms of MSE. This could be done by, e.g., deriving an explicit
convergence rate for our algorithm. As another interesting
future work, one could examine the local minima properties
of the proposed problem, and understand why the particular
extrapolation scheme leads to a considerable performance
improvement.

APPENDIX A
DERIVATION OF ALGORITHM 1

Here, we are going to derive the update formulas of x and z
outlined in Algorithm 1. As mentioned in Subsection II-B, this
algorithm is an approximate solver of (7) based on proximal
gradient method [15]. To this end, consider the following
reformulation of (10):

min
z,x

r1(z) + r2(x) +Q(x, z), (25)

in which Q(x, z) , 1
2‖x− z‖22, r1(z) , αJ(z) and r2(x) ,

δAε(x). As described in (11), the alternating minimization for
solving this problem would be as follows{

zk+1 = argminz r1(z) +Q(xk, z)

xk+1 = argminx r2(x) +Q(x, zk+1)
. (26)

Instead of performing the above iterations, we follow the
proximal gradient approach, and propose to update z and x
by replacing Q(x, z) with its quadratic approximation. Doing
so, we would have

zk+1 = argmin
z

r1(z) + 〈∇zQ(x̃k, zk), z− zk〉

+
1

2µz
‖z− zk‖22 (27)

and

xk+1 = argmin
x

r2(x) + 〈∇xQ(xk, zk+1),x− xk〉

+
1

2µx
‖x− xk‖22, (28)

where, x̃k = xk + w · (xk − xk−1), and 0 < µx, µz < 1 are
some step-sizes.

In the remaining of this section, we will prove that if
µx, µz → 1, then the above update formula approach those
in Algorithm 1 or (14). To proceed, note that (27) and (28)
can be equivalently written as{

zk+1 = argminz µzr1(z) + 1
2‖z− ẑk‖22= Proxµzr1(ẑk)

xk+1 = argminx µxr2(x) + 1
2‖x− x̂k‖22= Proxµxr2(x̂k)

(29)

where ẑk , zk − µz∇zQ(x̃k, zk) and x̂k , xk −
µx∇xQ(xk, zk+1). Replacing∇zQ(x̃k, zk) = −(x̃k−zk) and
∇xQ(xk, zk+1) = (xk−zk+1), we end up with the following
equations for ẑk and x̂k:{

ẑk = (1− µz)zk + µzx̃k

x̂k = (1− µx)xk + µxzk+1

. (30)

Now, it is clear that if µx, µz → 1, then ẑk → x̃k and x̂k →
zk+1. Consequently, we would have

x̃k = xk + w · (xk − xk−1)

zk+1 = Proxr1(x̃k)

xk+1 = Proxr2(zk+1)

, (31)

which is actually equivalent to (14). In our simulations, we
observed that by setting µz and µx to a value close to 1, say
0.99, we can obtain a very good approximation to (14).

APPENDIX B
PROOF OF THEOREM 1

The proof of Theorem 1 follows similar steps as in [22].
However, due to the fact that unlike [22], here, we use an
extrapolation step on x, there are some differences with the
proof in [22]. Furthermore, the proof uses some definitions of
classical optimization theory, including the definitions of do-
main of a function, proper and lower-semicontinuous function,
subdifferential, and Lipchitz continuity, which can be found in
[45].

To start, first note that since zk+1 is the minimizer of (27),
we can write:

r1(zk+1) + 〈∇zQ(x̃k, zk), zk+1 − zk〉

+
1

2µz
‖zk+1 − zk‖22 ≤ r1(zk). (32)

On the other hand, according to the descent lemma (see, e.g.,
[22, Lemma 1]), we have the following inequality:

Q(xk, zk+1) ≤ Q(xk, zk) + 〈∇zQ(xk, zk), zk+1 − zk〉

+
1

2
‖zk+1 − zk‖22. (33)

Adding both sides of (32) and (33), results in

r1(zk+1) +Q(xk, zk+1) ≤ r1(zk) +Q(xk, zk)+

〈∇zQ(xk, zk)−∇zQ(x̃k, zk), zk+1 − zk〉+

(
1

2
− 1

2µz
)‖zk+1 − zk‖22. (34)

Now, we apply the Cauchy–Schwarz inequality to (34) as
follows:

r1(zk+1) +Q(xk, zk+1) ≤ r1(zk) +Q(xk, zk)

+ ‖∇zQ(xk, zk)−∇zQ(x̃k, zk)‖2·‖zk+1 − zk‖2

+ (
1

2
− 1

2µz
)‖zk+1 − zk‖22. (35)



14

Simplifying the above inequality by replacing
∇zQ(xk, zk)−∇zQ(x̃k, zk) with w · (xk − xk−1), and then
using Young’s inequality [46]

a · b ≤ a2

2ε
+
εb2

2
, ∀a, b ≥ 0, ε > 0 (36)

with ε = 1, we obtain

r1(zk+1) +Q(xk, zk+1) ≤ r1(zk) +Q(xk, zk)

+w · ‖xk − xk−1‖2·‖zk+1 − zk‖2+(
1

2
− 1

2µz
)‖zk+1 − zk‖22

≤ r1(zk) +Q(xk, zk) +
w

2
· ‖xk − xk−1‖22

+
w

2
· ‖zk+1 − zk‖22+(

1

2
− 1

2µz
)‖zk+1 − zk‖22, (37)

which is simplified to

r1(zk+1) +Q(xk, zk+1) ≤ r1(zk) +Q(xk, zk)+

w

2
· ‖xk − xk−1‖22+(

w

2
+

1

2
− 1

2µz
) · ‖zk+1 − zk‖22. (38)

Following a similar procedure for x, we have

r2(xk+1) + 〈∇xQ(xk, zk+1),xk+1 − xk〉

+
1

2µx
‖xk+1 − xk‖22≤ r2(xk). (39)

Afterwards, using the descent lemma we obtain

Q(xk+1, zk+1) ≤ Q(xk, zk+1)+

〈∇xQ(xk, zk+1),xk+1 − xk〉+
1

2
‖xk+1 − xk‖22. (40)

Adding both sides of (39) and (40) results in

r2(xk+1) +Q(xk+1, zk+1) ≤ (
1

2
− 1

2µx
)‖xk+1 − xk‖22

+ r2(xk) +Q(xk, zk+1). (41)

Finally, defining F (x, z) , r1(z) + r2(x) + Q(x, z), and
adding both sides of (38) and (41), we end up with

γx · ‖xk+1 − xk‖22+ γz · ‖zk+1 − zk‖22≤
F (xk, zk)− F (xk+1, zk+1), (42)

where

γx = (
1

2µx
− w

2
− 1

2
), γz = (

1

2µz
− w

2
− 1

2
). (43)

Due to the assumption on w, i.e., w ≤ 1
max(µx,µz)

− 1, we
have γx ≥ 0 and γz ≥ 0. Then, writing (42) for all k ≥ 0 and
adding them up leads to

∞∑
k=0

γx · ‖xk+1 − xk‖22+ γz · ‖zk+1 − zk‖22≤

F (x0, z0)− F (x∞, z∞). (44)

On the other hand, (42) implies that the set of objective
values {F (xk, zk)}∞k=0 is non-increasing. Furthermore, since
F (x, z) ≥ 0, the sequence {F (xk, zk)}∞k=0 converges to a

finite value, i.e., F (x∞, z∞). So, the right-hand side of (44)
is bounded and non-negative. Therefore, we have

xk+1 → xk, zk+1 → zk, (45)

as k →∞. In the following lemma, we prove that the sequence
{(xk, zk)}∞k=0 is bounded, and thus it contains a converging
subsequence.

Lemma 2. The sequence {(xk, zk)}∞k=0 generated by (29) is
bounded.

Proof: Since xk+1 = Proxµxr2(x̂k) = PAε(x̂k) and Aε is
a bounded set, we conclude that xk remains bounded. There-
fore, there exists a constant R > 0 such that ∀k, i: |xik|≤ R
with xik denoting the ith entry of xk. On the other hand, from
zk+1 = Proxµzr1(ẑk), we can write

∀i, k : |zik+1|≤ |ẑik|. (46)

This inequality is due to the fact that for the non-smooth r1
functions considered in this paper, i.e., `0 function and SCAD
penalty, we have ∀x : |Proxµzr1(x)|≤ |x|. Moreover, from
(30), we have ẑik = (1 − µz)zik + µzx̃

i
k, where x̃ik = xik +

w(xik − xik−1). So, (46) results in

|zik+1| ≤ (1− µz)|zik|+µz|x̃ik|
≤ (1− µz)|zik|+µz · (2w + 1) ·R.

(47)

By successive application of the above inequality, we obtain

|zik+1|≤ (1− µz)k+1|zi0|+µz(2w + 1)R

k∑
t=0

(1− µz)t. (48)

Then, considering the initialization of Algorithm 1, we have
zi0 = xi0 = A†y = PAε(0). So, |zi0|≤ R. Using this and after
some simplifications, (48) leads to

|zik+1|≤ R+ 2wR− 2wR(1− µz)k+1 ≤ R+ 2wR, (49)

where we have used the fact that 0 < µz < 1. This concludes
the proof.

The next step is to show that the sequence {(xk, zk)}∞k=0

approaches the set of critical points [22]. To this aim, we first
note that from (27), we have the following optimality condition
for zk+1:

0 ∈ ∂r1(zk+1) +∇zQ(x̃k, zk) +
1

µz
(zk+1 − zk), (50)

where, ∂r1 denotes the subdifferential of r1. From (50), we
can write:

Akz ∈ ∂zF (xk+1, zk+1), (51)

where

Akz , (xk − xk+1) +w(xk − xk−1) + (1− 1

µz
)(zk+1 − zk).

(52)
Similarly, we can obtain the following result:

Akx ∈ ∂xF (xk+1, zk+1) (53)

where,

Akx , (1− 1

µz
)(xk+1 − xk). (54)



15

We then have (Akz , A
k
x) ∈ ∂F (xk+1, zk+1) [22]. Now, because

of (45), we have
Akz , A

k
x → 0 (55)

as k → ∞. Let (x∗, z∗) be a limit point of {(xk, zk)}∞k=0.
Then, noting the continuity of ∇zQ and ∇xQ, and lower
semi-continuity of r1 and r2, and by following similar line
of arguments as in [22, Lemma 5 and Theorem 1], we reach
to the conclusion that (x∗, z∗) is a critical point of F , i.e.,
0 ∈ ∂F (x∗, z∗) [45], and the sequence {(xk, zk)}∞k=0 globally
converges to (x∗, z∗).

The proof of the convergence rate analysis remains the same
as in [47, Theorem 5].

REFERENCES

[1] M. Elad, Sparse and Redundant Representations, Springer, 2010.
[2] P. Comon and C. Jutten, Eds., Handbook of Blind Source Separation,

Elsevier, 2010.
[3] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed

sensing MRI,” IEEE Signal Proc. Magazine, vol. 25, no. 2, pp. 72–82,
2008.

[4] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Proc. Magazine, vol. 25, no. 2, pp. 21–30,
2008.

[5] Y. Eldar and G. Kutyniok, Eds., Compressed Sensing: Theory and
Applications, Cambridge University Press, 2012.

[6] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive
Sensing, Applied and Numerical Harmonic Analysis. Birkhäuser Basel,
2013.

[7] J. A. Tropp and S. J. Wright, “Computational methods for sparse
solution of linear inverse problems,” Proceedings of the IEEE, vol.
98, no. 6, pp. 948–958, 2010.

[8] M. F. Duarte and Y.C. Eldar, “Structured compressed sensing: From
theory to applications,” IEEE Trans. on Signal Proc., vol. 59, no. 9, pp.
4053–4085, 2011.

[9] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Applied and Computational Harmonic Analysis,
vol. 27, no. 3, pp. 265–274, 2009.

[10] S. S. Chen, D. D. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Rev., vol. 43, pp. 129–159, 2001.

[11] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004.

[12] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for
compressive sensing,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2008.

[13] H. Mohimani, M. Babaie-Zadeh, and Ch. Jutten, “A fast approach for
overcomplete sparse decomposition based on smoothed `0 norm,” IEEE
Trans. on Signal Processing, vol. 57, pp. 289–301, 2009.

[14] H. S. Mousavi, V. Monga, and T. D. Tran, “Iterative convex refinement
for sparse recovery,” IEEE Signal Proc. Letters, vol. 22, no. 11, pp.
1903–1907, 2015.

[15] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 123–231, 2014.

[16] M. Sadeghi and M. Babaie-Zadeh, “Iterative sparsification-projection:
Fast and robust sparse signal approximation,” IEEE Trans. on Signal
Proc., vol. 64, no. 21, pp. 5536–5548, 2016.

[17] R. Eghbali, A. Kazerooni, A. Rashidinejad, and F. Marvasti, “Iter-
ative method with adaptive thresholding for sparse signal reconstruc-
tion,” in International Workshop on Sampling Theory and Applications
(SAMPTA), 2011.

[18] M. Azghani and F. Marvasti, “Iterative methods for random sampling
and compressed sensing recovery,” Proceedings of the 10th International
Conference on Sampling Theory and Applications (SAMPTA), 2013.

[19] M. Azghani, P. Kosmas, and F. Marvasti, “Microwave medical imaging
based on sparsity and an iterative method with adaptive thresholding,”
IEEE Trans. on Medical Imaging, vol. 34, no. 2, pp. 357–365, 2015.

[20] F. Marvasti and M. Boloursaz, “Wideband analog to digital conversion
by random or level crossing sampling,” US patent, no. 9729160, Aug.
2017.

[21] P. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal
processing,” Fixed-Point Algorithms for Inverse Problems in Science
and Engineering, pp. 185–212, 2011.

[22] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized
minimization for nonconvex and nonsmooth problems,” Mathematical
Programming, vol. 146, no. 1-2, pp. 459–494, 2014.

[23] Y. Xu and W. Yin, “A globally convergent algorithm for nonconvex
optimization based on block coordinate update,” Journal of Scientific
Computing, pp. 1–35, 2017.

[24] I. Daubechies, M. Defrise, and C. De-Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Comm.
Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, 2004.

[25] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, vol. 87 of Applied Optimization, Kluwer Academic Publishers,
Boston, MA, 2004.

[26] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no.
1, pp. 183–202, 2009.

[27] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 1999.
[28] P. Tseng, “Convergence of a block coordinate descent method for

nondifferentiable minimization,” Journal of Optimization Theory and
Applications, vol. 109, no. 3, pp. 475–494, 2001.

[29] Y. Xu and W. Yin, “A block coordinate descent method for regular-
ized multiconvex optimization with applications to nonnegative tensor
factorization and completion,” SIAM J. Imag. Sci., vol. 6, no. 3, pp.
1758–1789, 2013.

[30] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods
for semi-algebraic and tame problems: proximal algorithms, forward-
backward splitting, and regularized gaussseidel methods,” Mathematical
Programming, vol. 137, no. 1, pp. 91–129, 2013.

[31] A. Blake and A. Zisserman, Visual Reconstruction, MIT Press,
Cambridge, 1987.

[32] M. Malek-Mohammadi, A. Koochakzadeh, M. Babaie-Zadeh, M. Jans-
son, and C. R. Rojas, “Successive concave sparsity approximation for
compressed sensing,” IEEE Trans. on Signal Proc., vol. 64, no. 21, pp.
5657–5671, 2016.

[33] L. Zheng, A. Maleki, X. Wang, and T. Long, “Does `p-minimization
outperform `1-minimization?,” 2015, http://arxiv.org/abs/1501.03704.

[34] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood
and its oracle properties,” Journal of American Statistical Association,
vol. 96, pp. 1348–1360, 2001.

[35] T. Zhang, “Analysis of multi-stage convex relaxation for sparse regular-
ization,” Journal of Machine Learning Research, vol. 11, pp. 1081–1107,
2010.

[36] J. Friedman, “Fast sparse regression and classification,” International
Journal of Forecasting, vol. 28, no. 3, pp. 722–738, 2012.

[37] S. Foucart and M. Lai, “Sparsest solutions of underdetermined linear
systems via `q-minimization for 0 < q ≤ 1,” Appl. Comput. Harmon.
Anal., vol. 26, no. 3, pp. 395–407, 2009.

[38] G. Gasso, A. Rakotomamonjy, and S. Canu, “Recovering sparse signals
with a certain family of nonconvex penalties and dc programming,”
IEEE Trans. on Signal Process., vol. 57, no. 12, pp. 4686–4698, 2009.

[39] J. P. Vila and P. Schniter, “Expectation-maximization gaussian-mixture
approximate message passing,” IEEE Trans. on Signal Proc., vol. 61,
no. 19, pp. 4658–4672, 2013.

[40] J. Wang, S. Kwon, and B. Shim, “Generalized orthogonal matching
pursuit,” IEEE Trans. on Signal Proc., vol. 60, no. 12, pp. 6202–6216,
2012.

[41] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
Royal. Statist. Soc B., vol. 58, no. 1, pp. 267–288, 1996.

[42] V. Cevher, “Learning with compressible priors,” in Advances in Neural
Information Processing Systems 22 (NIPS 2009), 2009.

[43] N. Hurley and S. Rickard, “Comparing measures of sparsity,” IEEE
Transactions on Information Theory, vol. 55, no. 10, pp. 4723–4741,
2009.

[44] J. Zhang, C. Zhao, D. Zhao, and W. Gao, “Image compressive sensing
recovery using adaptively learned sparsifying basis via l0 minimization,”
Signal Processing, vol. 103, pp. 114–126, 2014.

[45] R. Tyrrell Rockafellar and R. J-B Wets, Variational Analysis, Springer,
1998.

[46] W. H. Young, “On classes of summable functions and their fourier
series,” Proceedings of the Royal Society A, vol. 87, no. 594, pp. 225–
229, 1912.

[47] H. Attouch and J. Bolte, “On the convergence of the proximal algorithm
for nonsmooth functions involving analytic features,” Math. Program.,
vol. 116, pp. 5–16, 2009.



16

Fateme Ghayem received her B.Sc. degree in
electrical engineering (communications), from EE
department, Shiraz University, Shiraz, Iran (2013).
She also received her M.Sc. degree in biomedical
engineering from EE department, Sharif University
of Technology, Tehran, Iran (2015). After finishing
her M.Sc. study, she spent two years (2015-17) as
an internship student at DSP-lab, Sharif University
of Technology, which was in collaboration with
GIPSA-lab, Grenoble, France. Currently, Fateme is
a Ph.D. student at GIPSA-lab, University Grenoble

Alpes, Grenoble, France. Her research is mainly focused on optimization,
machine learning, sparse representation, dictionary learning, multi-modality
and blind source separation.

Mostafa Sadeghi received the B.Sc. degree from
Ferdowsi University of Mashhad, Mashhad, Iran, in
2010, and the M.Sc. degree from Sharif University
of Technology, Tehran, Iran, in 2012, both in elec-
trical engineering (communication systems). He is
currently working toward the Ph.D. degree in the
electrical engineering department, Sharif University
of Technology. His main research areas are sparse
signal processing, dictionary learning for sparse
representation, machine learning, and deep neural
networks.

Masoud Babaie-Zadeh (M04-SM09) received the
B.S. degree in electrical engineering from Isfahan
University of Technology, Isfahan, Iran in 1994,
and the M.S degree in electrical engineering from
Sharif University of Technology, Tehran, Iran, in
1996, and the Ph.D degree in Signal Processing
from Institute National Polytechnique of Grenoble
(INPG), Grenoble, France, in 2002. He received the
best Ph.D. thesis award of INPG for his Ph.D. dis-
sertation. Since 2003, he has been a faculty member
of the Electrical Engineering Department of Sharif

University of Technology, Tehran, IRAN, in which, he is currently a full
professor. His main research areas are Blind Source Separation (BSS) and
Sparsity-aware Signal Processing.

Saikat Chatterjee is an assistant professor and
docent in the Dept of Information Science and
Engineering, KTH-Royal Institute of Technology,
Sweden. He received Ph.D. degree from Indian In-
stitute of Science, India. He has published more than
90 papers in international journals and conferences.
He was a co-author of the paper that won the best
student paper award at ICASSP 2010. His current
research interests are signal processing, machine
learning, speech and audio processing, and compu-
tational biology.

Mikael Skoglund (S’93-M’97-SM’04) received the
Ph.D. degree in 1997 from Chalmers University
of Technology, Sweden. In 1997, he joined the
Royal Institute of Technology (KTH), Stockholm,
Sweden, where he was appointed to the Chair in
Communication Theory in 2003. At KTH, he heads
the Department of Information Science and Engi-
neering.

Dr. Skoglund has worked on problems in source-
channel coding, coding and transmission for wireless
communications, Shannon theory, information and

control, and statistical signal processing. He has authored and co-authored
more than 138 journal and some 330 conference papers.

Dr. Skoglund has served on numerous technical program committees for
IEEE sponsored conferences. During 2003–08 he was an associate editor with
the IEEE Transactions on Communications and during 2008–12 he was on
the editorial board for the IEEE Transactions on Information Theory.

Christian Jutten (AM 92-M 03-SM 06-F 08) re-
ceived Ph.D. and Doctor es Sciences degrees in
signal processing from Grenoble Institute of Tech-
nology (GIT), France, in 1981 and 1987, respec-
tively. From 1982, he was an Associate Professor
at GIT, before being Full Professor at University
Joseph Fourier of Grenoble, in 1989. Since 80s,
his research interests have been machine learning
and source separation, including theory (separability,
source separation in nonlinear mixtures, sparsity,
multimodality) and applications (brain and hyper-

spectral imaging, chemical sensor array, speech). He is author or coauthor of
more than 100 papers in international journals, 4 books, 27 keynote plenary
talks and about 225 communications in international conferences.

He has been visiting professor at Swiss Federal Polytechnic Institute
(Lausanne, Switzerland, 1989), at Riken labs (Japan, 1996) and at Campinas
University (Brazil, 2010). He was director or deputy director of his lab
from 1993 to 2010, especially head of the signal processing department (120
people) and deputy director of GIPSA-lab (300 people) from 2007 to 2010.
He was a scientific advisor for signal and images processing at the French
Ministry of Research (19961998) and for the French National Research Center
(20032006). From May 2012 to September 2014, he was deputy director at
the Institute for Information Sciences (INS2I) at French National Center of
Research (CNRS) in charge of signal and image processing.

Christian Jutten was organizer or program chair of many international
conferences, especially of the 1st International Conference on Blind Signal
Separation and Independent Component Analysis in 1999 (ICA99). He has
been a member of a few IEEE Technical Committees, and currently in SP
Theory and Methods of the IEEE Signal Processing society. He received
best paper awards of EURASIP (1992) and of IEEE GRSS (2012), and
Medal Blondel (1997) from the French Electrical Engineering society for his
contributions in source separation and independent component analysis. He
was elevated as IEEE fellow (2008), EURASIP fellow (2013) and as a Senior
Member of Institut Universitaire de France since 2008. He is the recipient
of a 2012 ERC Advanced Grant for the project Challenges in Extraction and
Separation of Sources (CHESS). In 2016, he was awarded one Grand Prix of
the French Acadmie des Sciences.




