
1

Invariancy of Sparse Recovery Algorithms
Milad Kharratzadeh, Arsalan Sharifnassab, and Massoud Babaie-Zadeh

Abstract—In this paper, a property for sparse recovery al-
gorithms, called ‘invariancy’, is introduced. The significance of
invariancy is that the performance of the algorithms with this
property is less affected when the sensing (i.e., the dictionary) is
ill-conditioned. This is because for this kind of algorithms, there
exists implicitly an equivalent well-conditioned problem which is
being solved. Some examples of sparse recovery algorithms will
also be considered and it will be shown that some of them, such as
SL0, Basis Pursuit (using interior point LP solver), FOCUSS, and
hard thresholding algorithms are invariant and some others, like
Matching Pursuit and SPGL1, are not. Then, as an application
example of invariancy property, a sparse-decomposition-based
method for Direction of Arrival (DOA) estimation is reviewed,
and it is shown that if an invariant algorithm is utilized for
solving the corresponding sparse recovery problem, the spatial
characteristics of the sensors will have essentially no effect on
the final estimation, provided that the number of sensors is large
enough.

Index Terms—Invariancy, sparse decomposition, compressed
sensing, Invariance of optimization algorithms, Direction of
Arrival (DOA) estimation.

I. INTRODUCTION

A. Underdetermined system of linear equations

Let A = [a1, . . . ,aM] be an N ×M matrix with M > N ,
where ai’s, i = 1, . . . ,M denote its columns, and consider
the Underdetermined System of Linear Equations (USLE)

As = x. (1)

Being underdetermined, this system has generally infinitely
many solutions. By the sparsest solution of the above system
one means a solution, s, which has as small as possible number
of non-zero elements. In other words, it is the solution of

P0 : Minimize
s

‖s‖0 subject to x = As, (2)

where ‖ · ‖0 denotes the so called `0 norm of a vector,
that is, the number of its non-zero elements. In signal (or
atomic) decomposition viewpoint, x is a signal which is to
be decomposed as a linear combination of ai’s (columns of
A), i = 1, . . . ,M , hence, ai’s are usually called ‘atoms’ [1],
and A is called the ‘dictionary’ over which the signal is to be
decomposed.

This sparse solution of (1), which is unique under certain
conditions [2], [3], [4], [5], has attracted the attention of
many researchers from different viewpoints during the last
decade, because of its numerous applications. It is used, for

Authors are with the Electrical Engineering Department, Sharif Uni-
versity of Technology, Tehran, Iran, P. O. Box 11155-8639 (e-
mail: milad.kharratzadeh@gmail.com, sharifnassab@ee.sharif.edu, and
mbzadeh@yahoo.com).

Copyright c© 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

example, in Compressed Sensing (CS) [6], [7], [8], [9], un-
derdetermined Sparse Component Analysis (SCA) and source
separation [10], [11], [12], [13], [14], atomic decomposition
on overcomplete dictionaries [15], [16], [17], Blind Source
Separation (BSS) [18] of sparse sources, decoding real field
codes [19], [20], image deconvolution [21], [22], [23], image
denoising [24], [25], electromagnetic imaging, Direction of
Arrival (DOA) estimation [26], etc.

Finding the sparsest solution of a USLE by directly solving
(2) requires a combinatorial search and is generally NP-hard.
Thus, many different algorithms, called sparse recovery algo-
rithms, have been proposed for estimating the sparse solution.
Examples include Basis Pursuit (BP) [15], Matching Pursuit
(MP) [1], Smoothed L0 (SL0) [27], [28], [29], SPGL1 [30],
[31], and FOCUSS [26]. Basis Pursuit, as one of the most
successful ideas, minimizes `1 norm instead of `0 norm; that
is, it solves the problem

P1 : Minimize
s

M∑
i=1

|si| subject to x = As,

where si’s are elements of vector s.

B. Conditioning of a dictionary

In this paper, we use the term ‘conditioning’ to refer to
how ‘different’ the atoms of the dictionary are. There are
many different ways to quantitatively measure conditioning.
One of the most prevalent measures is the condition number
of a matrix [32], which arises in studying the sensitivity of the
solution of a system of linear equations to noise. Mutual co-
herence [2], [3] defined as the maximum correlation coefficient
between the columns of the dictionary and Restricted Isometry
Property (RIP) constant [33] can also be seen as measures of
conditioning of the dictionary (arisen in the context of finding
the sparse solution of a USLE). The s-th order restricted
isometry constant δs of matrix A, also called RIP constant
or Restricted Isometry Constant (RIC) of A, is defined [33]
as the smallest number satisfying:

1− δs ≤
‖As‖22
‖s‖22

≤ 1 + δs, ∀s ∈ Rm : ‖s‖0 = s.

where ‖.‖2 represents Euclidean norm.
The performance of a sparse recovery algorithm is generally

affected by ‘conditioning’ of the dictionary. For example,
a large mutual coherence means having two very similar
atoms (i.e., a bad conditioning in the dictionary) which can
cause difficulties for sparse recovery algorithms to find the
sparse solution. In general, conditioning of the dictionary can
affect sparse recovery algorithms in different ways, such as
convergence rate, accuracy of the final estimation, theoretical

Massoud
Text Box
This is very close of the final official version, available on IEEExplore.

2

performance guarantees (e.g., Theorems 1 and 2 below), and
solution sensitivity.

As an example, for Basis Pursuit algorithm, there are
different conditions under which the equivalence of P1 and
P0 problems is guaranteed. Let M(A) denote the mutual
coherence of A. It is shown in [2] and [3] that:

Theorem 1. If (1) has a solution s0, for which ‖s0‖0 < 1
2 (1+

M(A)−1), then, it is the unique solution of both `1 and `0

minimization problems.

Another sufficient condition for the equivalence of P0 and
P1 is given in [33] based on RIC:

Theorem 2. If δ2s <
√

2− 1, then, P0 and P1 problems are
equivalent.

There has been several papers providing larger upper bounds
for δ2s than the one in Theorem 2. For instance, recently, the
condition has been improved to δ2s < 0.493 [34].

C. Our contributions

In this paper, we introduce a property for sparse recovery
algorithms, which we call invariancy. We see that a sparse
recovery algorithm with such a property is more robust against
the conditioning of the dictionary. For example, as a result of
this property, the theoretical bounds for performance of some
invariant algorithms (e.g., the bounds for BP mentioned in
Theorem 1 and 2) can be improved.

After introducing the invariancy property and discussing
its significance, the invariancy of some well-known sparse
recovery algorithms will be studied. In particular, we show that
BP using interior-point Linear Programming (LP) solver, SL0,
and FOCUSS are invariant, while MP and SPGL1 are not. As
an example application, we consider the problem of Direction
of Arrival (DOA) estimation using sparse representation [26].
We show that if an invariant sparse recovery algorithm is used
for solving this problem, and if the number of sensors is suf-
ficiently large, then the estimated DOA is almost independent
of the positions of the sensors.

Moreover, we show that some non-invariant algorithms can
be modified to become invariant. As an example, with a
simple modification, we convert a class of greedy algorithms
(which are normally non-invariant) to invariant ones. The
improvement in performance of the modified algorithms will
then be numerically studied.

The paper is organized as follows. In Section II, the
invariancy property of sparse recovery algorithms is defined
and its significance is discussed. In Section III, we study the
invariancy of some of the existing sparse recovery algorithms.
Section IV studies the application of invariancy in DOA
estimation. Finally, Section V provides some numerical results.

II. DEFINITION OF INVARIANCY AND ITS SIGNIFICANCE

A. Definition

Algorithms for finding the sparse solution of (1) take A
and x as inputs and give ŝ in their output as an estimation
of the sparsest solution. Mathematically, such an algorithm
and its estimate can be denoted as ŝ = F(A,x), in which F

represents the algorithm. Usually, sparse recovery algorithms
are iterative, and they can be seen as creating a converging
sequence of improving approximate solutions. For an iterative
algorithm F , denote the sequence of these approximate solu-
tions by {si}Ki=1, where sK = ŝ is the final solution given by
the algorithm. We call this sequence of estimations, a solution
path1.

Now, consider a second problem,

(BA)s = (Bx). (3)

where B is an N × N invertible matrix. This linear trans-
formation of the dictionary may arise for example as a result
of sensors displacement (see section IV for an application to
DOA estimation). An invariant algorithm is expected to show
identical performance—iteration by iteration—when solving
problems (1) and (3). More specifically, it is expected that the
solution paths that the algorithm gives for these two problems
are identical. Formally:

Definition 1 (Invariancy). Consider problems (1) and (3)
and assume that an iterative algorithm, F , respectively gives
solution paths {si}K1

i=1 and {s̃i}K2
i=1 for these problems. Then,

the sparse recovery algorithm F is called invariant if for any
given A and x and any invertible N ×N matrix B,

K1 = K2,

si = s̃i, ∀i ∈ {1, 2, · · · ,K1}.

B. Significance of invariancy

Invariant algorithms have the interesting property of being
more robust against the conditioning of the dictionary. The
reason is the existence of an equivalent, implicit problem, with
a well-conditioned dictionary. For instance, assume that A in
problem (1) is ill-conditioned (e.g., it has a large RIP). If there
exists a matrix B such that BA is better conditioned, then
problem (3) will have a dictionary which is better conditioned
than A. So, an invariant algorithm solves the ill-conditoned
problem (1) as easy as the better-conditioned problem (3). We
discuss the existence of such B in appendix A. Note, however,
that there is no need to explicitly find B, and its existence is
sufficient, as we still solve problem (1) to find the solution.

In other words, the estimation quality of invariant algorithms
is less affected by the sensing conditions, due to the existence
of an equivalent problem with more proper sensing condi-
tions. Since invariant algorithms find the same solutions for
both problems, we can say that they are more robust to ill-
conditioned sensing.

For example, in atomic decomposition, if there are two
highly correlated atoms, the dictionary will have relatively
high mutual coherence and thus will be ill-conditioned, in
mutual coherence sense. In this case, the correlated atoms
may be mistaken by the algorithm, affecting its estimation.
However, there usually exists a matrix B that reduces the

1The term ‘solution path’ has been used in many settings to refer to
sequences of solutions. For instance, in the sparse regression literature, the
‘solution path’ of LASSO has been extensively studied (e.g., [35]).

3

mutual coherence2, and hence an invariant algorithm will
be less affected by the ill-conditioned dictionary, because
implicitly it is working with a low coherence dictionary.

As another example, in Blind Source Separation (BSS) [18],
where the number of sensors is smaller than or equal to the
number of sources, one may encounter highly correlated rows
in the mixing matrix A, where some sensors are close to
each other. Then, A is ill-conditioned (in condition number
sense), and a sparse recovery algorithm may have difficulties
in finding the sparse solution of (1), since signals picked up by
the close sensors are very similar. However, if the algorithm
is invariant, it would be insensitive to this high correlation
between the rows. This is because there exists a matrix B,
for which BA has orthogonal rows (this B can be obtained
for example by Gram-Schmidt orthogonalization; see also
Appendix A), and the invariant algorithm is implicitly working
with this new mixing matrix with orthogonal rows. Another
practical example will be studied in detail in Section IV.

C. Improved performance bounds

In addition to the robustness of algorithms, the analytical
guarantee for performance of some invariant algorithms can be
improved, since we can use the performance bounds of well-
conditioned problems for ill-conditioned ones. For example,
the guarantee bound of BP given in Theorem 1 can be
enhanced as follows.

Proposition 1. Let:

M̃(A) , inf
B

(M(BA)) ,

where M(·) is the mutual coherence and the infimum is taken
over invertible square matrices B. Then, s0 is the unique
solution of P1 and P0 problems if

‖s0‖0 <
1

2

(
1 + M̃(A)

−1
)
. (4)

Proof: First, note that M(BA) is always greater than or
equal to zero, and its infimum exists. Thus, there is a sequence
of invertible matrices Bi for which M(BiA) converges to
inf M(BA) over invertible matrices B. Therefore, it follows
from (4) that there exists a B such that 1

2

(
1 +M(BA)

−1
)
−

‖s0‖0 > 0. So, on the grounds of Theorem 1, s0 is the
unique solution of P1 and P0 problems for (3). However, every
solution of (1) is a solution of (3) and vice versa. Hence, P1

and P0 are equivalent also for (1).
The upper bound given in Proposition 1 is larger than

or equal to the bound in Theorem 1, because by definition
M̃(A) ≤ M(A). There are some numerical results in the
Appendix A, presenting upper bounds for the average value
of M̃(A)/M(A) and the average value of the ratio between
the bounds given by Theorem 1 and Proposition 1, in the case
of randomly generated matrices.

Similarly, the following proposition improves the bound
given in Theorem 2 for equivalence of P0 and P1.

2For example, if A is an invertible square matrix, by multiplying it by
its inverse, A−1, the mutual coherence of the resulted dictionary (identity
dictionary) will be zero. Refer to appendix A for further discussions and
algorithmic approaches to find such a B.

Proposition 2. Define the s-th order enhanced RIC of matrix
A as:

δ̃s(A) , inf
B
δs(BA), (5)

where δs(A) is the RIC of A. Then, if δ̃2s <
√

2−1 (or any of
the improved upper bounds), the solutions of P0 and P1 found
by BP are equal (i.e., P0 and P1 problems are equivalent).

Since δ̃2s ≤ δ2s, Proposition 2 presents a stronger statement
than Theorem 2. Note, however, that since the computation of
the RIC is an NP hard problem, so is the computation of δ̃s in
(5). We will present some numerical results in Appendix A in
which we obtain lower bounds for how much (5) enhances the
RIC for random matrices of small sizes, for which the RICs
can be practically computed.

As an example, it will be seen in Section III that BP with
interior-point LP solver is invariant, and hence its successful
recovery is guaranteed under conditions (4) and (5).

D. Performance enhancement of non-invariant algorithms

Having the invariancy insight in mind, it may be possible
to increase the robustness of some non-invariant algorithms
against ill-conditioning by modifying them to become in-
variant. For example, Matching Pursuit (MP) family of al-
gorithms, namely original MP, Orthogonal MP (OMP) [36],
Regularized OMP (ROMP) [37], and Compressive Sampling
MP (CoSaMP) [38] as well as Iterative hard thresholding
(IHT) [39] and hard thresholding pursuit (HTP) [40] algo-
rithms are non-invariant (as will be studied in Section III).
However, we can modify these algorithms to become invari-
ant. This modification is done by adding an initial step of
orthogonalizing the rows of the dictionary before utilizing
the algorithm to solve the P0 problem. In other words, one
should first find a matrix C, for which the rows of CA are
orthonormal (such a C can be found for example from Gram-
Schmidt Orthogonalization; note that C is different for differ-
ent dictionaries and is not unique), and then utilize the greedy
algorithm to find the sparsest solution of CAs = Cx. We
call the resulting algorithms (with the orthogonalization step)
IMP, IOMP, IROMP, ICoSaMP, IIHT, and IHTP respectively,
whose invariancy will be verified in Section III.

For instance, it is guaranteed that for the s-sparse solution
vector s, if δ4s ≤ 0.1, then the CoSaMP algorithm finds
the sparsest solution s of the P0 problem correctly [38].
Considering ICoSaMP being invariant, we can state a simi-
lar performance guarantee condition for ICoSaMP as in the
following proposition.

Proposition 3. For a given dictionary A, let C denote a
matrix for which the rows of CA are orthonormal. Also define
δ̄s(A) , δs(CA). Then, if P0 has an s-sparse solution and
δ̄4s(A) ≤ 0.1, then ICoSaMP finds this solution correctly.

Note that row orthogonalization cannot convert every non-
invariant algorithm to an invariant one. In fact, it only works
for algorithms having the property F(UA,Ux) = F(A,x),
for all unitary matrices U. Row orthogonalization is just an
example we used here to achieve invariancy for MP family.
However, it is neither the only, nor necessarily the optimal

4

approach. For example, we could achieve invariancy by choos-
ing a C that minimizes the RIC of CA (which is of course
impractical, since finding such C is NP–hard). Let us call this
algorithm that preconditions A using this specific C before
applying CoSaMP, ICoSaMP2 (to diffrentiate it with ICoSaMP
that applies an orthogonalizing C). Thus, the performance
bound of CoSaMP would be further improved by ICoSaMP2
than by ICoSaMP.

A similar concept in the literature is the idea of pre-
multiplying the measurement matrix and observation vector
by an invertible matrix which is known to be useful in the
optimization literature (where it is known as “precondition-
ing”) and has also been used in the context of sparse signal
recovery [41], [42], [43], [44]. In our proposed framework, the
preconditioning techniques can be seen as ways to improve
the performance of non–invariant algorithms. Note that the
definition of invariancy implies that invariant algorithms do not
need preconditioning as they are handling it inherently (i.e.,
without actually computing and pre-multiplying any matrices).

In Section V, we show through some numerical experiments
how the proposed modifications (e.g., orthogonalization) im-
proves the performance of these algorithms.

E. Presence of noise

In practice, there is always a noise level present in SCA
problems, and one needs to find the sparse solution of x =
As + n, where, n is the n× 1 vector of sensing noise (which
is usually assumed to be iid and Gaussian). We are especially
interested in the question: how this noise affects the perfor-
mance of invariant algorithms. Actually, as shown in [16],
both P0 and P1 problems are inherently unstable against
noise, and instead of them, their noise-aware variants should
be considered. The key-point in stabilizing these problems is
replacing the exact sparse decomposition (x = As) with an
approximate sparse decomposition (‖x−As‖2 ≤ ε) [45].

Performance analysis of invariant algorithms in the noisy
case is probably very tricky, and is not studied in this paper. To
see the reason, consider an invariant algorithm F computing
an estimation of s based on inputs A and x for the problem

x = As + n1, (6)

Now, if we take an invertible N ×N matrix B and use BA
as the sensing dictionary, the problem converts to:

y = (BA)s + n2, (7)

where n2 is the noise vector with the same distribution as
n1. By definition, we have F(BA,y) = F(A,x′), where
x′ = B−1y = As + B−1n2. Compared to x = As + n1, the
vector x′ may have smaller or larger noise level depending on
the singular values of B. Moreover, the entries of the noise
term in x′, i.e., B−1n2, would not be iid if B is not unitary.

However, the following example shows that to have a formal
analysis, we need to make further assumptions. Here, we
focus our attention on a special case where B is unitary.
In this case, the distribution of B−1n2 would be the same
as n1. Thus, the two problems As = x′ and As = x
are equivalent (note that we are dealing with problems, not

problem instances). Hence, for an invariant algorithm F , we
have F(BA,y) = F(A,x′) = F(A,x). In other words,
performance of invariant algorithms in presence of noise is
not affected if the dictionary undergoes unitary linear trans-
formations.

Although formal analysis of invariant algorithms for the
noisy case is tricky, intuition proposes that if the amount of
noise is “small enough”, then the performance of invariant
algorithms is not highly affected by the conditioning of the
dictionary, where “small enough” depends actually on the
conditioning of the dictionary. A similar intuitive statement
has been stated in [46, Section IV-D] in discussion of the affect
of noise on the performance of ‘equivariant’ BSS algorithms
(see the next subsection for a brief review on equivariancy in
BSS community).

F. Related concepts in other fields

A similar concept, also called invariancy (or affine in-
variancy), exists in optimization [47, Section 3.3] [48]. To
review the definition of invariancy in that context, consider the
problem of optimizing a cost function f(x) and an iterative
optimization algorithm which produces a sequence of points,
{x0,x1, . . . }, converging to the estimated optimizer of this
function. Consider now the affine transformation y = Bx+b,
where B is an invertible square matrix. Then, a function
f(x) can be regarded as being computed either from x (say
fx(x)) or from y (say fy(y) = fx(B−1(y − b))). Let
now {x0,x1, . . . } be the sequence produced by applying an
optimization algorithm on fx(x), and {y0,y1, . . . } be the
sequence produced by applying it on fy(y). If for all k,
yk = Bxk + b, then this optimization algorithm is said to
be invariant. It is important to note on the significance of this
property: an invariant optimization algorithm is not affected
by the conditioning of the Hessian of the cost function; this
is because it is ‘implicitly’ working in another domain with
a well-conditioned Hessian matrix. In fact, the problem can
be transformed to another domain in which the Hessian is
the identity matrix [47] (see Fig.1). For example, steepest
descent algorithm is not invariant, while Newton algorithm
is [47]. Hence, large condition number of the Hessian of
the cost function is not important for the Newton algorithm,
while it has a significant impact on the convergence of the
steepest descent algorithm. Another well-known example is
the conjugate gradient algorithm which is widely used in many
applications because of its invariancy [47]. See [48] for more
details.

A relatively similar concept exists in BSS which is called
‘equivariancy’ [46]. To express the BSS problem, suppose that
M source signals are recorded by N sensors, each of which
records a combination of all sources. In linear instantaneous
(noiseless) model, it is assumed that x(t) = As(t) in which
x(t) = [x1(t), . . . , xN (t)]T and s(t) = [s1(t), . . . , sM (t)]T

are the N × 1 and M × 1 vectors of source and recorded
signals, respectively, and A is the N ×M (unknown) mix-
ing matrix. The goal of BSS is then to find s(t) only by
observing x(t) (hence the term ‘Blind’). If the number of
sensors is equal to the number of sources (M = N), then a

5

(a) (b)

Fig. 1. Contours of cost functions of optimization problems with Hessian

matrices (a) H1 =

[
1 0.7
0.7 1

]
and (b) H2 =

[
1 0
0 1

]
. Although non-

invariant algorithms may have difficulty working with ill-conditioned Hessian
of the first problem (e.g., in terms of speed of convergence) it is not different
for an invariant optimization algorithm to solve either problem.

BSS algorithm takes the observed vectors x(t) and estimates
the source vectors ŝ(t), usually by estimating the mixing
matrix. Mathematically, such an algorithm and its estimate
can be denoted as Â(t) = G(x(t)), in which G represents
the algorithm. A BSS algorithm is said to be ‘equivariant’
if G(Bx(t)) = BG(x(t)). The significance of equivariant
algorithms is that they can separate the sources without
sensitivity to the ‘hardness’ of the mixing system, i.e., the
conditioning of the mixing matrix (mathematically, ŝ(t) =
G(x(t))−1x(t) = [AG(s(t))]−1As(t) = G(s(t))−1s(t)). For
example, an equivariant BSS algorithm retrieves the sources
that are mixed by A = [1, 0.99; 0.99, 1] with the same quality
as they were mixed by A = [1, 0.1; 0.1, 1]. This is because
an equivariant algorithm implicitly is working on a problem in
which sources are not mixed at all. This is derived by setting
B = A−1.

As mentioned earlier, pre-multiplying the measurement ma-
trix and observation vector by an invertible matrix, known as
preconditioning, is useful in the optimization and sparse signal
recovery literature [41], [42], [43], [44]. We differ from the
preconditioning literature in an important way (in fact, the
two approaches can be seen as complementary). To see this,
note that by introducing invariancy, we show that invariant
algorithms do not need preconditioning as they are handling it
inherently. Moreover, we show how some performance bounds
can be improved by the invariancy concept. Therefore, using
preconditioning is only meaningful in the case of non-invariant
algorithms. In appendix A, we discuss and introduce some
novel preconditioning techniques based on the concept of
invariancy.

III. INVARIANCY OF SOME SPARSE RECOVERY
ALGORITHMS

In this section, we study the invariancy of some existing
sparse recovery algorithms such as BP [49], SL0 [28], MP [1],
IMP (see Section II-D), and FOCUSS [26]. The results are
stated in the form of a set of lemmas with proofs in the
Appendix B.

A. Basis Pursuit (BP)

BP, that is solving P1 instead of P0, is not by itself an
algorithm; it is just an approach for estimating the solution

of P0. So, depending on the algorithm used for solving P1,
it can be invariant or non-invariant. Usually, BP is solved by
converting the problem to linear programming (LP), and so,
its invariancy depends on the LP solver that is used.

Lemma 1. BP based on primal-dual interior-point algo-
rithm [50] (as its LP solver) is invariant.

Lemma 2. Basis Pursuit with SPGL1 [30], [31] implementa-
tion is non-invariant.

Note that P1 is a convex problem and both BP, SPGL1
and many other algorithms are guaranteed to find its exact
solution. However, non-invariant algorithms like SPGL1 re-
quire substantially more effort to converge when the dictionary
tends to be ill-conditioned. As a result, in the case the
maximum number of iterations is limited or some tolerance
parameters are not chosen to be sufficiently small, the non-
invariant algorithm fails to converge to the correct solution
for ill-conditioned dictionaries. Analytically, by being more
robust against the sensing conditions, the invariant algorithms
converge in the ill-conditioned problems, as quickly as in the
case of well-conditioned problems.

B. Smoothed `0 (SL0)

SL0 is another successful algorithm for sparse recovery, in
which the l0 norm is approximated by a series of smooth
functions whose minima can be obtained by gradient projec-
tion [28]. More precisely, let:

Fσ(s) ,
M∑
i=1

exp(− si
2

2σ2
),

where s is a vector of length M with elements si. When
σ → 0, Fσ gives an approximation to M − ‖s‖0. Hence,
SL0 presents the following idea:

1) Take the starting point as s0 = AT (AAT)−1x, which is
the maximum of F∞ [29]. Choose a suitable decreasing
sequence for σ, i.e. [σ1, · · · , σk], where k is the number
of iterations.

2) For each i, maximize (approximately) the function Fσi
by applying a fixed number of Gradient-Projection it-
erations, that is, s ← s + (µσ2)∇Fσ followed by
s← s−AT (AAT)−1(As− x).

Lemma 3. SL0 is invariant.

Remark 1. The complex-valued version of SL0 [28] is
obtained just by replacing transpositions with Hermitians in
(28). All the arguments made for proving the invariancy of
the real-valued SL0 (in the appendix) still hold after replacing
transpositions with Hermitians and hence, complex-valued
SL0 is also invariant. The same argument can be made for
complex-valued BP introduced in [51].

C. Matching Pursuit (MP) family

MP is a greedy algorithm that expands the support set of s
in each iteration such that the correlation of the new atom with
the residual of the previous iteration is maximized. The first
step is to find the column of A (atom) that has the largest

6

correlation with x. Then this atom is added to the set of
selected variables and an approximation of x based on this
selected variable is calculated. In the next iteration, the atom
that has the largest correlation with the residual (difference
between actual and approximated x) is added to the set of
selected atoms, a new approximation and residual based on
the new set of selected atoms is calculated, and the whole
process continues until a convergence criterion is met.

Lemma 4. MP, OMP, ROMP, and CoSaMP are non-invariant.

Lemma 5. The modified greedy algorithms IMP, IOMP,
IROMP, and ICoSaMP, which are obtained form MP, OMP,
ROMP, and CoSaMP by row orthogonalization (discussed in
Section II-D) are invariant.

D. FOCUSS

In FOCUSS [26], the starting point of the algorithm is
supposed to be chosen based on domain-specific knowledge
for the application. In the case that there is no suitable
solution available, it is shown through simulation in [52]
that the minimum `2 norm solution is a good choice. In the
following lemma, a starting point is invariant if it is identical
for problems As = x and BAs = Bx for any given A, x,
and square invertible B. An example of an invariant starting
point is the minimum l2 norm solution.

Lemma 6. FOCUSS algorithm is invariant if it starts from an
invariant starting point.

E. Exhaustive search

Exhaustive search solves a system of linear equations for
every support of s of size rank(A) and chooses the solution
with least l0. Although exhaustive search is guaranteed to find
the exact solution, it needs combinatorially many computations
which is impractical. The next lemma states that this algorithm
is invariant.

Lemma 7. Exhaustive search algorithm is invariant.

This is an example which shows invariancy property does
not reflect efficiency of algorithms, but only robustness against
sensing conditions, in the sense of uniform performance.

F. Hard thresholding algorithms

Iterative hard thresholding (IHT) [39] and hard thresholding
pursuit (HTP) [40] are two other iterative algorithms for sparse
recovery. To find the s-sparse solution, IHT typically starts
with s0 = 0 and updates the solution at the i’th iteration as
follows:

IHT: si+1 = Hs(si + AT (x−Asi)), (8)

where Hs is the hard thresholding operator that keeps the s
largest components of a vector and sets the rest to zero. HTP
extends this simple algorithm and first, finds a good candidate
for the support and then, finds the vector with this support that

best fits the measurements:

HTP1: Ti+1 = {indices of the s largest entries of

si + AT (x−Asi)} (9)
HTP2: si+1 = argmin{‖As− x‖2, supp(s) ∈ Ti+1} (10)

Lemma 8. IHT and HTP are non-invariant.

Lemma 9. The modified greedy algorithms IIHT and IHTP,
which are obtained form IHT and HTP by row orthogonaliza-
tion (discussed in Section II-D) are invariant.

IV. AN APPLICATION EXAMPLE OF INVARIANCY:
INVARIANT DOA ESTIMATION METHODS

In this section, we consider an application of sparse de-
composition: Direction of Arrival (DOA) estimation [26]. We
show that utilizing invariant algorithms for solving the resulted
sparse decomposition problem leads to DOA estimators which
are almost invariant to the spatial locations of the sensors,
provided that the number of sensors is sufficiently large.

A. DOA estimation via sparse decomposition

Consider the following equation for a plane wave [53]:

E(r, ϕ) = ejkr cos(ϕ−θ), (11)

where E is the electric field, k is the wave number defined
as 2π

λ (in which λ is the wavelength), (r, ϕ) are the polar
coordinates, and θ is the direction of arrival of the wave. Here,
only a narrow band signal model is considered. In this paper,
the data vector received at the array of sensors due to a plane
wave in the direction θ is briefly called data vector at direction
θ, and according to (11) is equal to:

a(θ) = [ejkr1 cos (ϕ1−θ), · · · , ejkrN cos (ϕN−θ)]T , (12)

where {(ri, ϕi) : i = 1, · · · , N} are the polar coordinates of
the sensors and N is the number of sensors.

The objective in DOA estimation is to find the angles of
arrivals of some impinging waves on a set of sensors, based
on the observed data vector at these sensors. Here, only two-
dimensional DOA estimation is studied and thus only one
angle (the so-called DOA) should be estimated for each wave.
There are many classic methods for estimating DOA, including
MUSIC [54], ESPRIT [55], and Matrix Pencil [56].

Gorodnitsky and Rao [26] converted the DOA estimation
problem into a sparse decomposition problem by introducing
a dictionary whose columns are data vectors of a set of angles,
Θ = {θi|i = 1, · · · ,M}, where −π/2 ≤ θi < π/2. Note that
the choice of θi’s (their total number, M , and whether they are
equidistant or not) is arbitrary and depends on the application.
They showed that if x denotes the data vector (outputs of the
sensors) and A denotes this dictionary, one should first find
the sparse solution of

x =

[
a(θ1)

∣∣∣∣a(θ2)

∣∣∣∣ · · · ∣∣∣∣a(θM)

]
︸ ︷︷ ︸

A

· s, (13)

7

where a(θi) is the data vector at direction θi. Then, the
nonzero entries of s determine the angular directions of the
sources that compose the received signal. For example, if the
i-th entry of s is nonzero, it is understood that there is an
incoming wave at the angular direction of θi, where a(θi) is
the i-th column of the dictionary.

B. Invariant DOA estimation using invariant sparse recovery
algorithms

In this section, we show that utilizing invariant algorithms
for solving (13) leads to DOA estimation methods which are
almost invariant to the locations of sensors, provided that the
number of sensors is large enough. To show this, we have to
prove that if the number of sensors is sufficiently large, then
any two sensor locations leading to A1s = x1 and A2s = x2

can be converted to each other through a multiplicative square
matrix. In other words, there exists a matrix B such that A2 ≈
BA1 and x2 ≈ Bx1.

We first note that from (12) and (13) the data vectors and the
dictionary depend on both the locations of sensors, (rn, ϕn),
and the angular direction of the wave, θ. We use now a
decomposition that separates the dependence of data vectors
on positions of sensors and propagation direction.

From the series expansion [57, Chapter 9]:

ejx cosα =

+∞∑
l=−∞

(j)lJl(x)e−jlα,

where Jl(·) is the l-th order Bessel function of the first kind,
we have:

an(θ) = ejkrn cos (ϕn−θ) =

+∞∑
l=−∞

(j)lJl(krn)e−jlϕnejlθ,

(14)
where an is the n-th element of the data vector, a. The above
equation can be rewritten in the vector form as:

a(θ) = P(r,ϕ) · d(θ), (15)

where r = (r1, r2, · · · , rN)T and ϕ = (ϕ1, ϕ2, · · · , ϕN)T are
the vectors of polar coordinates of the sensors. Elements of
N ×∞ matrix P(r,ϕ) and the ∞× 1 vector d(θ) are given
by:

Pnl(r,ϕ) = (j)lJl(krn)e−jlϕn , (16)

dl(θ) = ejlθ, (17)

for n = 1, · · · , N and l = · · · ,−2,−1, 0, 1, 2, · · · .
In this decomposition, P(r,ϕ) is only a function of the

positions of sensors and d(θ) is only a function of the
propagation direction. The main problem is that P and d are
of infinite dimensions. However, according to (14), an(θ) =
limL→∞

∑L
l=−L(j)lJl(krn)e−jlϕnejlθ, hence:

∀ε > 0, ∃nε ∈ N : ∀1 ≤ n ≤ N, 1 ≤ m ≤M,

|an(θm)−
nε∑

l=−nε

(j)lJl(krn)e−jlϕnejlθm | < ε.

This means that we can truncate P(r,ϕ) and d(θ) at |l| = nε
to achieve finite dimension P̂(r,ϕ) and d̂(θ), such that a(θ) in

(15) can be approximated by P̂(r,ϕ)d̂(θ) with elemental error
less than ε. Therefore, we have the following approximation
for the dictionary:

A ' P̂(r,ϕ) · D̂(θ), (18)

where:

D̂(θ) =

[
d̂(θ1)

∣∣∣∣d̂(θ2)

∣∣∣∣ · · · ∣∣∣∣d̂(θM)

]
.

We call P̂ the approximated location matrix.
Suppose now that we have two distinct sets of sensors with

polar coordinate sets (r1,ϕ1) and (r2,ϕ2). The number of
sensors in these two sets are assumed to be equal and large
enough to ensure the validity of the approximation in (18).
Now, by setting:

B , P̂2(r2,ϕ2) · (P̂H
1 (r1,ϕ1)P̂1(r1,ϕ1))−1P̂H

1 (r1,ϕ1)︸ ︷︷ ︸
pseudo-inverse of P̂1

(19)
where P̂1 and P̂2 are the approximated location matrices of
the two distinct sets of sensors, we will have:

P̂2(r2,ϕ2) = B · P̂1(r1,ϕ1).

Hence, if A1 and A2 are the corresponding dictionaries of
these two sets of sensors, i.e. A1 = P̂1(r1,ϕ1) · D̂(θ) and
A2 = P̂2(r2,ϕ2) · D̂(θ), then:

A2 = B ·A1. (20)

Remark 1. P̂ is an N × (2nε + 1) matrix. In (19), we need
P̂ to have a wide pseudo-inverse (i.e., with no less rows than
columns) which requires P̂ to be tall, i.e. N > 2nε. The
smallest nε itself can as well be upper bounded where the
sensors are enclosed in a disk of radius R:

nε = max

(⌈
e2

2
kR

⌉
,

⌈
kR+ ln

1

ε

⌉)
, (21)

which is independent of N and M . Hence, the number of
sensors must be greater than 2nε, which only depends on the
required precision. We provide a proof for (21) in Appendix
B.

Since s only depends on the impinging signal (and not
on the locations of sensors), it does not change with sensors
transformations. Hence, from (20) we have:

x2 = B · x1

In summary, we showed that for any two distinct sets of
sensors, there exists a matrix that converts their dictionaries
and data vectors to each other, provided that the number of
sensors is large enough (to ensure the validity of the approx-
imation (18)). Therefore, if an invariant algorithm is utilized
for solving (13), the final solution will be approximately
independent of the positions of the sensors. Note that the
existence of the matrices P, D, and B is only implicit, and
they are not explicitly used.

8

V. EXPERIMENTAL RESULTS

In this section, we perform four experiments. The first
two experiments are to compare the performance of specific
invariant and non-invariant algorithms when the dictionary
tends to be ill-conditioned. The third experiment is on DOA
estimation and compares the robustness of the estimations
against the locations of sensors where specific invariant and
non-invariant algorithms are used. Finally, another experiment
supports the non-invariancy of OMP and SPGL1 algorithms.

Experiment 1. Robustness of sparse recovery algorithms
against the correlation of the columns of the dictionary

In this experiment, we compare the robustness of five sparse
recovery algorithms against the correlation of the columns of
the dictionary (in this case, a large mutual coherence signi-
fies ill-conditioning). These algorithms are SL0 (invariant),
interior-point BP (invariant), IOMP (invariant), SPGL1 (non-
invariant) and OMP (non-invariant)3. To construct a 60× 100
dictionary with a controlled correlation between its columns,
we first randomly created the elements of its odd columns
(columns 1, 3, . . . , 59) by a uniform distribution over (−1, 1).
Then, we created each even column by rotating the previous
odd column by an angle θ. Consequently, in the constructed
dictionary, the correlation between the (2k−1)’th and (2k)’th
columns, for all k = 1, 2, . . . , 50, is equal to cos θ.

Next, we created a sparse 100 × 1 vector s with 15 non-
zero entries, whose positions and values are selected randomly.
Then, x = As was calculated and (A,x) was given to
the above mentioned sparse recovery algorithms to give an
estimation of s denoted by ŝ. To measure the accuracy of the
estimation, we used Normalized Euclidean Distance (NED)
between s and ŝ, which is defined as

NED =
‖ŝ− s‖2

(‖ŝ‖2 · ‖s‖2)
1
2

.

The parameters of the algorithms used for the simulation
are σmin = 0.001 for SL0, MaxTol = 0.01 for BP (in
the options of MATLAB’s ‘linprog’ function), σ = 0
for SPGL1, and MaxIteration= ∞ for OMP and IOMP; all
other parameters of all algorithms are their default values. The
values of θ were changed from 5 to 90 degrees, and for each
θ, the simulation was run 200 times with different randomly
generated dictionaries (A) and sparse vectors (s).

Figure 2(a) shows the averaged NEDs over these 200 runs
versus θ. Moreover, in Fig. 2(b) we have depicted the averaged
number of iterations over these 200 runs after normalizing it
with respect to the minimum number of iterations. In other
words, Fig. 2(b) shows how the relative cost of calculations
varies where the problem tends to be ill-conditioned, i.e.
as θ becomes smaller. As it is seen in the figure, invariant
algorithms (SL0, BP, and IOMP) are more robust against the

3The implementations used for these algorithms are as follows: 1) The
MATLAB code of SL0 is taken from ‘http://ee.sharif.edu/∼SLzero/’, 2)
Interior-point BP has been implemented using ‘linprog’ function in MAT-
LAB’s optimization toolbox by setting off its ‘simplex’ option and setting
on its ‘largescale’ option, 3) For SPGL1, we have taken its code
from ‘http://www.cs.ubc.ca/labs/scl/spgl1/’, and 4) For OMP and IOMP, we
have used the OMP implementation in ‘SparseLab’ toolbox available at
‘http://sparselab.stanford.edu/’.

correlation of the columns of the dictionary. Moreover, it can
be seen that IOMP performs essentially more accurately and
is more robust than its non-invariant counterpart, OMP. Note
that in the number of iterations of BP we also consider the
number of iterations of its primal-dual interior-point LP solver.

Experiment 2. Robustness of sparse recovery algorithms
against the correlation of the rows of the dictionary

We repeated the previous experiment for the case where the
rows of the dictionary tend to be highly correlated (in this case,
ill-conditioning is signified by condition number). Here, a 60×
100 dictionary A is created similar to the previous experiment,
where the correlation between its (2k−1)’st and (2k)’th rows,
as opposed to columns in the previous experiment, is equal to
cos θ for all k = 1, 2, . . . , 30. The rest of the experiment is
the same as the previous one.

Figure 3 shows the averaged NEDs and the normalized
average number of iterations versus θ through 200 runs of
the simulation. As it can be seen, the invariant algorithms are
more robust against dictionary row correlations as well.

It is also seen in Figs. 2 and 3 that invariant algorithms show
more robustness against correlation of rows than correlation of
columns. A careful reader would probably expect such an ob-
servation from the discussions of Section II and Appendix A:
In fact, as stated there, where the rows are correlated, there
exists always a matrix B that converts the dictionary to a
new dictionary with completely uncorrelated rows. However,
where the columns are correlated, by multiplying a matrix B
we can only reduce column correlation (i.e., mutual coherence)
to some extent (not eliminating it as in the case of row correla-
tion). However, such a B is not explicitly used anywhere, and
the above experiment verifies that in the case of high column
correlation case, too, invariant algorithms are more robust than
non-invariant ones.

Experiment 3. Robustness of DOA estimators against the
location of sensors

In this experiment, we study the effect of planar distribution
of sensors on the quality of DOA estimation. The sensors are
posed on two crossing straight lines (like a ×) with angle
θ, where the distance between two adjacent sensors in a line
is 0.4 meters. We assumed that the wave number is k = 1,
and that the total number of sensors posed on two crossing
lines is N = 139. With this choice of parameters, if nε is
set to 69, maximum absolute value between elements of the
matrices in the two sides of (18) would be approximately
10−4 yielding validity of approximation in (18). We refer
to θ as a measure of the conditioning of the constellation:
sensing is well-conditioned for θ’s near 90◦ and tends to be
ill-conditioned where θ becomes very small. We would like to
estimate the directions of 4 impinging signals with different
angles from M = 180 possible propagation directions (i.e.
a 1 degree resolution; see (13)). Since we are dealing with
complex numbers, two complex-valued sparse decomposition
algorithms are used to estimate DOA’s: SL0 (invariant), and
SPGL1 (non-invariant). For the parameters of the algorithms,
we used σmin = 0.01 and σ-decreasing factor = 0.8 for SL0,
and σ = 0 for SPGL1. The value of θ was changed from 5 to

9

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

θ

N
E

D

SL0

IOMP

BP

OMP

SPGL1

(a)

0 20 40 60 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

θ

N
or

m
al

iz
ed

 n
o.

 o
f

ite
ra

tio
ns

SPGL1

OMP

IOMP

SL0

BP

(b)

Fig. 2. Effect of correlation of columns on the quality of estimation in invariant (SL0, BP, and IOMP) and non-invariant (OMP and SPGL1) sparse recovery
algorithms for the case of M = 100 and N = 60. The correlation of the (2k − 1)’st and (2k)’th column is equal to cos θ for all k = 1, 2, . . . , 50. (a)
The averaged NEDs of the five algorithms over 200 runs versus θ in degrees. (b) The average number of iterations over 200 runs versus θ, normalized with
respect to the number of iterations done in θ = 90◦.

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

θ

N
E

D

OMP

SPGL1
SL0,BP,
IOMP

(a)

0 20 40 60 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

θ

N
or

m
al

iz
ed

 n
o.

 o
f

ite
ra

tio
ns

OMP

SPGL1

SL0, BP, IOMP

(b)

Fig. 3. Effect of correlation of rows on the quality of estimation in invariant (SL0, BP, and IOMP) and non-invariant (OMP and SPGL1) sparse recovery
algorithms for the case of M = 100 and N = 60. The correlation of the (2k − 1)’st and (2k)’th row is equal to cos θ for all k = 1, 2, . . . , 30. (a) The
averaged NEDs of the five algorithms over 200 runs versus θ in degrees. (b) The average number of iterations over 200 runs versus θ, normalized with respect
to the number of iterations done in θ = 90◦.

80 degrees and the experiment was repeated 100 times for each
θ. Figure 4 shows the Percentage Of Success (POS) versus
θ, where by a success we mean that maximum elemental
difference between original sparse vector and the estimated
vector is less than 0.1. Note that the performance of the
non-invariant algorithm improves as the correlation decreases
(i.e., larger θs). However, the invariant algorithm (SL0) has
a consistent performance, independent of the correlation (θ),
showing more robustness against the location of the sensors,
as expected.

Experiment 4. Non-invariancy of OMP and SPGL1

We provide self-contained proofs of non-invariancy for
some algorithms in Appendix B. In this experiment, we
provide only empirical support for the non-invariancy of OMP,
SPGL1, IHT and HTP algorithms. We generate a 60 × 100
random matrix A with elements uniformly and independently
distributed in (−1, 1), and use the orthogonalization method
mentioned in Appendix A to obtain orthonormal rows. Then,
for a given 0 < σ < 1, we create a matrix B = UΣV, where
U and V are 60 × 60 random unitary matrices and Σ is the

diagonal matrix with half of diagonal elements being 1 and the
other half equal to σ. Hence, the condition number of B would
be 1

σ , and BA tends to be ill-conditioned when σ decreases.
For a random 15-sparse vector s (similar to Experiment 1),
we compute x = As and calculate F(BA,Bx) using the five
algorithms used in Experiment 1. The experiment is repeated
200 times for each σ and the resulted average NEDs are
plotted in Fig. 5. It can be seen that linear transformation have
essentially no effect on performance of invariant algorithms
(reflecting the robustness of these algorithms against high
condition number), whereas the error of the estimation of
OMP, SPGL1, IHT and HTP increases with condition number
of B, showing their non-invariancy.

VI. CONCLUSIONS

In this article, we introduced the concept of invariancy
of sparse recovery algorithms. The significance of invariant
algorithms is that they are more robust where the sensing
(the dictionary) is ill-conditioned, because ‘implicitly’ there
exists an equivalent well-conditioned problem, which is being
solved. In other words, being more robust against the sensing

10

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

θ

PO
S

SL0

SPGL1

Fig. 4. Performance of invariant and non-invariant algorithms in the cases
of well-conditioned and ill-conditioned constellation of sensors in DOA
estimation problem in the case of M=180, N = 139, k = 1, and 4 signals
in different DOAs composing the impinging signal. Here, the percentage Of
Success (i.e., percent of times that the estimation of algorithm has an elemental
error less than an 0.1) of two algorithms are plotted versus the angle between
crossing lines (in degrees, i.e. 5◦ ≤ θ ≤ 80◦) for the sensor constellation of
two crossing lines.

0 0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

IHT

HTP

SPGL1

OMP

SL0, BP, IOMP,

IIHT, IHTP



N
E

D

Fig. 5. Performance of invariant and non-invariant sparse recovery algorithms
when a 60×100 dictionary, A, undergoes a linear transformation (i.e., A←
BA). Here, B is square matrix half of whose singular values are 1 and the
other half equal to σ (hence the condition number of B is 1

σ
). The figure

shows the resulted NEDs versus σ.

conditions, the invariant algorithms will converge in the ill-
conditioned problems, as quickly as in the case of well-
conditioned problems. Besides these advantages, we showed
that it is possible to improve existing theoretical performance
bounds for some invariant algorithms, because we can use the
bounds of well-conditioned problems for ill-conditioned ones.
As some examples of invariant algorithms, we proved the in-
variancy of BP using interior-point LP solver, SL0, FOCUSS,
and the non-invariancy of MP, OMP, ROMP, ICoSaMP, IHT,
and HTP. We showed that these non-ivariant algorithms can be
modified, by adding an initial step of row orthogonalization,
to become invariant, and hence enjoy all the advantages of
invariant algorithms. As an example application, we studied a

group of DOA estimators that are almost invariant to the spatial
distribution of sensors on a plane. The main direction for future
research will be the analysis of the noisy case. Although the
main emphasis of this paper is on the noiseless case, as we
briefly discussed in Section II-E, invariant algorithms can be
advantageous in noisy settings too. Future research will mainly
focus on providing better bounds for stability and recovery
conditions as well as improving the signal to noise ratio for
better recovery.

APPENDIX A
EXISTENCE OF Conditioning Enhancing LINEAR

TRANSFORMATIONS

We mentioned three measures for conditioning of a dictio-
nary in Section II, namely condition number, mutual coher-
ence, and RIC. In this appendix, we study improving these
measures by multiplying the dictionary by a matrix from the
left. First, we show that the condition number of the dictionary
can be simply set to unity (which is the least possible value).
Then, we propose a method to find an approximation of the
optimum matrix B that minimizes the mutual coherence of
BA (i.e., M(BA)). Next, we evaluate the extent to which
these methods can improve conditioning of the randomly
generated matrices through some numerical simulations. For
the case of RIP, since computation of the RIC is itself an NP-
hard problem, finding a B that minimizes RIC of BA can be
very difficult. Here, we use the same matrix, B, as the one
enhancing the condition number, and derive a lower bound for
how much (5) improves the RIC of random matrices, through
a simulation.

A. Condition Number

Consider a wide dictionary, A, and its singular value
decomposition (SVD) [58],

A = UΣV,

where U (N ×N) and V (M ×M) are unitary matrices and

Σ =

 σ1 0 0 · · · 0
. . .

...
. . .

...
0 σn 0 · · · 0

 ,
in which σ1, · · · , σn are called singular values of A. The
condition number of A is then defined as maxi,j

σi
σj

. Matrix
B that minimizes the condition number of BA can be written
as

B =

 σ1
−1 0

. . .
0 σn

−1

U−1.

Using such a preconditioner, the condition number of BA
would be 1, which is the least possible value.

B. Mutual Coherence

Here, we present an algorithmic approach to find an approx-
imation of the matrix B that minimizes the mutual coherence
of BA. After the columns of A are normalized, the mutual

11

4 6 8 10 12 14
1

1.5

2

2.5

3

3.5

4

N

Im
pr

ov
em

en
t i

n
M

(A
)

(a)

4 6 8 10 12 14
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

N

Im
pr

ov
em

en
t i

n
sp

ar
si

ty
 b

ou
nd

(b)

Fig. 6. Improvement in mutual coherence and the bound guaranteeing equivalence of P1 and P0 problems when a suitable linear transformation is applied on
dictionaries with 15 columns (i.e., M = 15). (a) Improvement in mutual coherence in terms of M(A)

M(BA)
versus N (i.e., the number of rows of the dictionary).

(b) Improvement in sparsity bound in terms of (1+(M(BA)−1))

(1+(M(A)−1))
versus N .

coherence of A is equal to the maximum absolute value
of non-diagonal elements of ATA. Moreover, the diagonal
elements of ATA are equal to 1. Thus, the problem of
finding a nearly optimal matrix B can be formulated as an
optimization problem,

argmin
B

(
max
i6=j
|
(
(BA)TBA

)
ij
|
)

s.t.(
(BA)TBA

)
ii

= 1, 1 ≤ i ≤ m,
(22)

where
(
(BA)TBA

)
ij

is the element in the i-th row and
the j-th column of (BA)TBA. However, this gives just an
approximation, because for the optimum matrix B, it is not
necessary to have

(
(BA)TBA

)
ii

= 1, for 1 ≤ i ≤ m (i.e.,
the constraint in (22) may possibly not hold for the optimal
matrix B). Let D = BTB, and hence (BA)TBA = ATDA.
In this case, D is positive semidefinite. On the other hand,
if we have such a D (i.e., positive semidefinite), Cholesky
decomposition [59] gives a B such that BTB = D. This
D can be found using the following convex optimization
problem:

argmin
D

(
max
i 6=j
|
(
ATDA

)
ij
|
)

s.t.
(
ATDA

)
ii

= 1,

1 ≤ i ≤ m, and D is positive semidefinite.
(23)

The problem in (23) is a convex problem and can be solved
using semidefinite programming (SDP) [59], which is handled
for example by CVX toolbox for Matlab [60].

C. Numerical Results

In this subsection, we conduct two experiments in order
to see how much linear transformations can enhance mutual
coherence and RIP of random dictionaries.

Experiment 5. Mutual Coherence

In this experiment, we utilize the above mentioned method
to find a lower bound for the extent to which the mutual

coherence of a random dictionary can be enhanced, and
consequently how much Proposition 1 improves the bound
of Theorem 1 for equivalence of P1 and P0 problems. We
fix the number of columns of the dictionary to 15 (i.e.,
M = 15), vary N from 4 to 14 and construct random
matrices of size N ×M whose elements are independently
drawn from uniform distribution on [−1, 1]. Then, we apply
the approach presented in the previous subsection to find a
matrix B that minimizes the mutual coherence of BA and
compute M(A)

M(BA) and (1+(M(BA)−1))
(1+(M(A)−1)) , which represent the

improvement in mutual coherence and the bound guaranteeing
the equivalence of P1 and P0 problems, respectively. The
results are plotted versus N in Fig. 6, where each point is
an average over 100 experiments. It can be seen that as the
number of rows increases, the improvement enhances.

Experiment 6. RIP

Due to the difficulty of finding a B that minimizes the
RIC of B, here we use the same B that minimizes condition
number. Simulations show that this choice of B also reduces
the RIC to some extent. The experiment is performed on
randomly generated dictionaries with elements independently
drawn from a uniform distribution on [−1, 1]. We consider
matrices of size 12 × 15 and computed the ratio of δk/δ̄k
for different k’s, where δk and δ̃k are the RICs of A and
BA, respectively. The average value of this ratio is plotted
versus k in Fig. 7, in which each point is an average over 100
experiments.

APPENDIX B
PROOFS.

In the following, for every variable in F(A,x), we denote
the corresponding variable in F(BA,Bx) by adding a ‘∼’
over it.

Proof of Lemma 1
P1 can be expressed in standard LP format as

Minimize
s̄

cT s̄ s.t. Ās̄ = x, s̄ ≥ 0,

12

4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

k

Im
pr

ov
em

en
t i

n
R

IP

Fig. 7. A lower bound for the improvement of RIC when a linear
transformation is applied on random dictionaries of size 12 × 15. In this
figure δk/δ̃k is plotted versus k, where δk and δ̃k are the RICs of A and
BA, respectively. Here, B is chosen to be the matrix that minimizes the
condition number of BA.

where Ā , [A − A] and c , [1, · · · , 1]T . Having solved
this LP problem, the solution of P1, s, is obtained from si =
s̄i − s̄i+M , where si and s̄i are the i-th elements of s and s̄,
respectively. Now, if the LP solver gives the same solutions
for the input pairs (Ā,x) and (BĀ,Bx) the algorithm would
be invariant.

Due to its convexity, there are several algorithms for finding
the solution of LP. One such algorithm is the primal-dual
interior-point method. In the following, we show that this
algorithm is itself affine invariant. As such, not only the output
of the LP subroutine would be the same for (1) and (3), but
also the internal solution paths in the LP subroutine would be
identical for the two problems. Therefore, the computational
complexity of LP (and hence BP) is not affected by linear
transformations of the input. This does not hold, for example,
when the simplex algorithm is used for solving LP, in which
case the time complexity of the transformed problem may
grow exponentially compared to the untransformed problem.

Using the notation of [50, Chapters 13 and 14], an interior-
point LP solver aims to solve:

Minimize
x

cTx s.t. Ax = b, x ≥ 0.

The dual problem can be written as:

Maximize
x

bTλ s.t. ATλ+ s = c, s ≥ 0.

Thus, s and λ are the variables of the dual problem. In the
following, we will show that for the starting point and for all
iterations, the equality

(x̃, λ̃, s̃) = (x,B−Tλ, s) (24)

holds.
a) Checking the starting point: Denote by (x0,λ0, s0) the

starting point of the algorithm. Let:

x′ , AT (AAT)−1b, λ′ , (AAT)−1Ac,

s′ , c−A(AAT)−1Ac.

It is easy to verify that x̃′ = x′, λ̃
′

= B−Tλ′, and s̃′ = s′.
As an example, we verify the first equality:

x̃′ = (BA)T (BAATBT)−1Bb

= ATBTB−T (AAT)−1B−1Bb

= AT (AAT)−1b = x′.

The starting point is then computed from these variables:

x0 = x′ + δ̂xe, λ0 = λ′, s0 = s′ + δ̂se,

where e = [1, · · · , 1]T and δ̂x and δ̂s are scalars given by

δ̂x =
x′′

T
s′′

2eT s′′
, δ̂s =

x′′
T
s′′

2eTx′′
,

in which x′′ and s′′ are

x′′ = x′ + (max(0,−3

2
min
i

x′i))e,

s′′ = s′ + (max(0,−3

2
min
i

s′i))e.

Since x̃′ = x′ and s̃′ = s′, it directly leads to x̃′′ = x′′ and
s̃′′ = s′′, and hence x̃0 = x0 and s̃0 = s0.

b) Checking (24) in the iterations: In each iteration of the
interior-point LP algorithm, the variables of primial and dual
problems are updated according to [50]

(x,λ, s)← (x,λ, s) + α(∆x,∆λ,∆s),

where α is a fixed coefficient and (∆x,∆λ,∆s) is the solution
of the following linear system: 0 AT I

A 0 0
S 0 X

 ∆x
∆λ
∆s

 =

 −ATλ− s + c
−Ax + b
−XSe

 , (25)

in which S , diag(s) and X , diag(x). By induction, suppose
that (24) holds at the k-th iteration. In order to show that (24)
still holds at the (k + 1)-th iteration, it is enough to prove
(∆x̃,∆λ̃,∆s̃) = (∆x,B−T∆λ,∆s). Suppose (∆x,∆λ,∆s)
is the solution of (25), then: 0 ATBT I

BA 0 0
S 0 X

 ∆x
B−T∆λ

∆s

 =

 −ATλ− s + c
B(−Ax + b)
−XSe

 .
Thus (∆x̃,∆λ̃,∆s̃) = (∆x,B−T∆λ,∆s) and the invariancy
of primal-dual interior-point algorithm (and BP) results. �

Proof of Lemma 2
SPGL1 is not invariant because it needs to solve a LASSO

problem [61] at each iteration, that is:

Minimize
s

‖As− x‖2 subject to ‖s‖1 ≤ τ,

where τ is a constant. The objective function of the LASSO
problem differs when A and x are substituted by BA and
Bx, respectively, and thus, the solutions differ in general. This
means that SPGL1 is non-invariant. �

We have provided simple computer tests in Section V which
support the non-invariancy of SPGL1.

Proof of Lemma 3

13

a) Checking the starting point:

s0 = AT (AAT)−1x

s̃0 = (BA)T (BAATBT)−1Bx

= ATBTB−T (AAT)−1B−1Bx

= AT (AAT)−1x = s0. (26)

b) Checking the iterations: each iteration consists of two steps:
i) Gradient ascent step: in this step s is updated according

to
s← s + (µσ2)∇Fσ(s), (27)

Since neither A nor x affects (27), s̃ = s holds after this step.
ii) Projection step: Assume that s̃k−1 = sk−1 (the inductive

hypothesis). Then we have:

sk = sk−1 −AT (AAT)−1(Ask−1 − x)

s̃k = s̃k−1 − (BA)T (BAATBT)−1(BAs̃k−1 −Bx) (28)

= sk−1 −ATBTB−T (AAT)−1B−1B(Ask−1 − x)

= sk−1 −AT (AAT)−1(Ask−1 − x) = sk.

�

Proof of Lemma 4
We start by MP and then discuss the others. MP is a greedy

algorithm that expands the support set of s in each iteration
such that the correlation of the new atom with the residual of
the previous iteration is maximized. Mathematically, the first
step is to find the column of A (atom) that has the highest
correlation with x. Then this atom is added to the set of
selected variables and an approximation of x based on this
selected variable is calculated. In the next iteration, the atom
that has the highest correlation with the residual (difference
between actual and approximated x) is added to the set of
selected atoms, a new approximation and residual based on
the new set of selected atoms is calculated, and the whole
process is continued until a convergence criterion is met.

MP is non-invariant since its solutions can differ from
the very first iteration for linearly transformed problems.
When both the dictionary and observed vector undergo a
linear transformation, the correlations between the atoms and
the transformed observation vector can be quite different.
Denoting the i’th column of A by ai and inner products by
〈·, ·〉, in general, we have 〈ai,x〉 6= 〈Bai,Bx〉 for an invertible
matrix B.

As a small toy example to show this, consider x = [1, 2, 3]T ,
and:

A =

1 0 0

0 1 0

0 0 1

 ; B =

1/
√

3 0 0

1/
√

3 1 0

1/
√

3 0 1

 ,
where B is chosen such that the columns of BA are also
normalized. Then the inner products of columns of A and x
are [1, 2, 3], and the inner products of columns of BA and
Bx (i.e., transformed problem) are [3.46, 2, 3]. Therefore, in
the first iteration of MP, for the first problem, the third atom is
chosen and for the second problem, the first atom is chosen.

The same phenomenon in general matrices, causes different
selections in the early stages which makes MP non-invariant.

The other three algorithms have similar steps. Despite minor
differences, they all have an initial correlation step followed
by updating the set of selected atoms and calculating the
new approximations and residuals. The correlation step that
makes MP non-invariant makes the others non-invariant in
exact same way as discussed above. Therefore, OMP, ROMP,
and CoSaMP are not invariant.

An empirical support for the non-invariancy of OMP was
provided by a simulated counter-example in Section V. �

Proof of Lemma 5
We start by proving the invariancy of ICoSaMP and then

discuss the other algorithms. We need to show that for any ma-
trices B1 and B2, ICoSaMP finds the same sparsest solution
for the two following problems:

B1As1 = B1x,

B2As2 = B2x;

i.e., s1 = s2.
For the two problems, ICoSaMP first finds matrices C1 and

C2 such that the rows of A1 , C1B1A and A2 , C2B2A
are orthonormal, and then utilizes CoSaMP [38] to find the
sparsest solutions s1 and s2 of

A1s1 = x1,

UA1s2 = Ux1;

where x1 , C1B1x, x2 , C2B2x, and U ,
C2B2(C1B1)−1 is a unitary (i.e., orthonormal and square)
matrix, because according to the choice of C1 and C2, both
A1 and UA1 have orthonormal rows. Denote the variables
of the two problems with indices 1 and 2; with T1 and T2

being the support sets of s1 and s2 and v1 and v2 being the
residuals in each iteration.

a) Starting Point: The starting point is s1 = s2 = 0, v1 =
x1, and v2 = x2 = Ux1.

b) Iterations: By induction, assume that s1 = s2, T1 = T2,
and v2 = Uv1 at the k-th iteration. The new elements of
the support set T at the (k + 1)-th iteration are chosen as
the largest elements of y1 = A1

Hv1 and y2 = A2
Hv2 =

(UA1)HUv1 = A1
Hv1 = y1, where the third equality is

due to orthonormality of U. Hence, T1 = T2 at the (k + 1)-
th iteration. Denote by s|T and A|T the matrices obtained
by omitting the rows of s and A whose indices are not in
the set T . Then, the sparse vectors s1 and s2 are updated as
s1|T1

= (A1|T)
†
x1 = (A2|T)

†
x2 = s2|T2

and s1|T c1 = s2|T c2 =
0, where (·)† denotes pseudo-inverse operation. In the same
way, the new residual vectors are v2 = x2−A2s2 = U(x1−
A1s1) = Uv1. Thus, s1 = s2 and ICoSaMP is invariant.

IMP, IOMP, and IROMP follow similar steps: in each
iteration, adding one or more atoms that have the highest
correlation with residual and then, updating the approximation
and the residual. In the same way described above, we can
show that the orthogonalization causes the original and linearly
transformed problems to have the same set of correlations and

14

consequently, the same set of chosen atoms and approxima-
tions. Thus, IMP, IOMP, and IROMP are also invariant. �

Proof of Lemma 6
a) The starting point: The invariancy of this initial point

(which is also the starting point in SL0) was verified in (26).
b) Checking the iterations: The following transformation

operates on sk in each iteration:

sk = Wk(AWk)†x

where Wk , diag(sk−1), and (·)† denotes pseudo-inverse
operation. Assume that W̃k = Wk (the inductive hypothesis).
Then, we have:

s̃k = W̃k(BAW̃k)†Bx

= Wk(BAWk)†Bx

= Wk(AWk)TBTB−T (AWkWk
TAT)B−1Bx

= Wk(AWk)T (AWkWk
TAT)x

= Wk(AWk)†x = sk,

yielding the invariancy of FOCUSS. �

Proof of Lemma 7
The exhaustive search algorithm needs to solve exactly(
m

rank(A)

)
systems of linear equations and finds the exact solu-

tion. Hence, its performance is not affected by preconditioning.
�

Proof of Lemma 8
In IHT with starting point s0 = s̃0 = 0, we have s1 =

Hs(A
Tx) and s̃1 = Hs(A

TBTBx). Similar to the proof of
Lemma 4, these two solutions are not equal and thus, IHT is
not invariant. This non-invariance is independent of the starting
point, because for any starting points s0, we have Hs(s

0 +
AT (x−As0)) 6= Hs(s

0 + ATBT (Bx−BAs0)) in general.
The same argument can be made for the first step of HTP and
conclude that the selected supports will be different for the
original and transformed problems. Therefore, HTP is non-
invariant too. �

Proof of Lemma 9
The proof is somewhat similar to the proof of Lemma 5.

Define A1, A2, x1, x2, and U exactly as defined in the proof
of Lemma 5. To prove the inavriancy of IIHT, it suffices to
show AT

1 (x1 − A1s) = AT
1 UT (Ux1 − UA1s) for any s,

x and unitary U. The equality is obvious because we have
UTU = I. Thus, with equal starting points, the updates are
exactly the same in each iteration of IIHT, and thus, IIHT is
invariant.

For IHTP, the invariancy of the first step (support estima-
tion) follows from the argument in the previous paragraph.
It remains to show that the second step is also invariant.
For a unitary matrix U, the minimizers of ‖A1s− x1‖2 and
‖UA1s−Ux1‖2 over the same support are the same. Thus,
the second step of IHTP is also invariant. This completes the
proof. �
Proof of Bound in Equation (21)

To prove (21), we need to bound the approximation error:

∀r ≤ R, |an(θm)−
nε∑

l=−nε

(j)lJl(kr)e
−jlϕnejlθm |

=

∣∣∣∣∣∣
∑
|l|>nε

Jl(kr)e
jl(θm−ϕn+π

2)

∣∣∣∣∣∣
≤
∑
|l|>nε

|Jl(kr)|

=
∑
|l|>nε

∣∣∣∣∣
∞∑
m=0

(−1)m

m!(m+ l)!

(
kr

2

)2m+l
∣∣∣∣∣

≤
∞∑
m=0

1

m!

(
kr

2

)2m
 ∑
|l|>nε

1

(m+ l)!

(
kr

2

)l
≤ 2

(∞∑
m=0

1

(m!)2

(
kR

2

)2m
)(∑

l>nε

1

l!

(
kR

2

)l)

= 2I0(kR)
∑
l>nε

1

l!

(
kR

2

)l
≤ 2ekR

∑
l>nε

1

l!

(
kR

2

)l
,

(29)

where I0(x) is the zero order modified bessel function of the
first kind and the inequality I0(x) ≤ ex is proved in [62]. The
implication in the third line is due to:

Jl(x) =

∞∑
m=0

(−1)m

m!(m+ l)!

(x
2

)2m+l

.

It follows from the assumption nε ≥ kR, that:∑
l>nε

1

l!

(
kR

2

)l
=
∑
l≥1

1

(nε + l)!

(
kR

2

)nε+l
≤ 1

nε!

(
kR

2

)nε∑
l≥1

(
kR

2nε

)l
≤ 1

nε!

(
kR

2

)nε
.

(30)

Finally, using the Stirling approximation, n! ≥
√

2πn
(
n
e

)n
,

we have

∀r ≤ R, |an(θm)−
nε∑

l=−nε

(j)lJl(kr)e
−jlϕnejlθm |

≤ 2ekR
1

nε!

(
kR

2

)nε
≤ 2ekR

1
√

2πnε
(
nε
e

)nε (kR2
)nε

≤ 2e(nε−ln 1
ε) 1
√

2πnε
(
nε
e

)nε (nεe2

)nε
=

2ε√
2πnε

< ε

(31)

�

15

REFERENCES

[1] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. on Signal Processing, vol. 41, no. 12, pp.
3397–3415, 1993.

[2] R. Gribonval and M. Nielsen, “Sparse decompositions in unions of
bases,” IEEE Trans. Information Theory, vol. 49, no. 12, pp. 3320–
3325, Dec. 2003.

[3] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization,” in Proceedings of the
National Academy of Sciences, vol. 100, no. 5, pp. 2197–2202, March
2003.

[4] A. M. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of
nonnegative sparse solutions to underdetermined systems of equations,”
IEEE Trans. Information Theory, vol. 54, no. 11, pp. 4813–4820, 2008.

[5] S. Foucart and H. Rauhut, “Sparse solutions of underdetermined
systems,” in A Mathematical Introduction to Compressive Sensing, pp.
41–59. Springer, 2013.

[6] E.J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Information Theory, vol. 52, no. 2, pp. 489–509,
Feb. 2006.

[7] D. L. Donoho, “Compressed sensing,” IEEE Trans. Information Theory,
vol. 52, no. 4, pp. 1289–1306, April 2006.

[8] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Processing Mag.,
vol. 24, no. 4, pp. 118–124, July 2007.

[9] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde, “Model-based
compressive sensing,” IEEE Trans. Information Theory, vol. 56, no. 4,
pp. 1982–2001, April 2010.

[10] R. Gribonval and S. Lesage, “A survey of sparse component analysis for
blind source separation: principles, perspectives, and new challenges,”
in Proceedings of ESANN’06, April 2006, pp. 323–330.

[11] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation
using sparse representations,” Signal Processing, vol. 81, pp. 2353–2362,
2001.

[12] P. G. Georgiev, F. J. Theis, and A. Cichocki, “Blind source separation
and sparse component analysis for over-complete mixtures,” in Pro-
ceedinds of ICASSP’04, Montreal (Canada), May 2004, pp. 493–496.

[13] Y. Li, A. Cichocki, and S. Amari, “Sparse component analysis for blind
source separation with less sensors than sources,” in in Proceedings
ICA2003, 2003, pp. 89–94.

[14] Z. Ma et al., “Sparse principal component analysis and iterative
thresholding,” The Annals of Statistics, vol. 41, no. 2, pp. 772–801,
2013.

[15] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no.
1, pp. 33–61, 1999.

[16] D. L. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans.
Information Theory, vol. 52, no. 1, pp. 6–18, Jan 2006.

[17] S. Nam, M. E. Davies, M. Elad, and R. Gribonval, “The cosparse
analysis model and algorithms,” Applied and Computational Harmonic
Analysis, vol. 34, no. 1, pp. 30–56, 2013.

[18] P. Comon and C. Jutten, Handbook of Blind Source Separation:
Independent component analysis and applications, Academic press,
2010.

[19] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE
Trans. Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[20] H. Zayyani, M. Babaie-Zadeh, and C. Jutten, “Decoding real-field codes
by an iterative expectation-maximization (em) algorithm,” in Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008. IEEE International
Conference on. IEEE, 2008, pp. 3169–3172.

[21] M. A. T. Figueiredo and R. D. Nowak, “An EM algorithm for wavelet-
based image restoration,” IEEE Trans. Image Processing, vol. 12, no.
8, pp. 906–916, 2003.

[22] M. A. T. Figueiredo and R. D. Nowak, “A bound optimization approach
to wavelet-based image deconvolution,” in IEEE Internation Conference
on Image Processing (ICIP), August 2005, pp. II–782–5.

[23] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of
systems of equations to sparse modeling of signals and images,” SIAM
review, vol. 51, no. 1, pp. 34–81, 2009.

[24] M. Elad, “Why simple shrinkage is still relevant for redundant represen-
tations?,” IEEE Trans. Image Processing, vol. 52, no. 12, pp. 5559–5569,
2006.

[25] W. Dong, X. Li, D. Zhang, and G. Shi, “Sparsity-based image denoising
via dictionary learning and structural clustering,” in Computer Vision

and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE,
2011, pp. 457–464.

[26] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from
limited data using FOCUSS, a re-weighted minimum norm algorithm,”
IEEE Trans. Signal Processing, vol. 45, no. 3, pp. 600–616, March 1997.

[27] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “Fast sparse represen-
tation based on smoothed l0 norm,” in Proceedings of 7th International
Conference on Independent Component Analysis and Signal Separation
(ICA2007), Springer LNCS 4666, London, UK, September 2007, pp.
389–396.

[28] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “Complex-valued
sparse representation based on smoothed `0 norm,” in Proceedings of
ICASSP2008, Las Vegas, April 2008, pp. 3881–3884.

[29] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for
overcomplete sparse decomposition based on smoothed `0 norm,” IEEE
Trans. Signal Processing, vol. 57, no. 1, pp. 289–301, January 2009.

[30] E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for
basis pursuit solutions,” SIAM Journal on Scientific Computing, vol. 31,
no. 2, pp. 890–912, 2008.

[31] E. van den Berg and M. P. Friedlander, “SPGL1: A solver for large-scale
sparse reconstruction,” June 2007, http://www.cs.ubc.ca/labs/scl/spgl1.

[32] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University
Press, Cambridge, 1985.

[33] E. Candes, “The restricted isometry property and its implications for
compressed sensing,” Elsevier, vol. 346, pp. 589–592, 2008.

[34] Qun Mo and Song Li, “New bounds on the restricted isometry constant
δ2k,” Applied and Computational Harmonic Analysis, vol. 31, no. 3,
pp. 460–468, 2011.

[35] Ryan Joseph Tibshirani, The solution path of the generalized lasso,
Stanford University, 2011.

[36] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proceedings of the 27 th Annual Asilomar Confer-
ence on Signals, Systems, and Computers, Nov. 1993.

[37] D. Needell and R. Vershynin, “Uniform Uncertainty Principle and Signal
Recovery via Regularized Orthogonal Matching Pursuit,” Foundations
of Computational Mathematics, vol. 9, no. 3, pp. 317–334, 2009.

[38] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples,” Applied and Computational
Harmonic Analysis, vol. 26, no. 3, pp. 301–321, May 2009.

[39] Thomas Blumensath and Mike E Davies, “Iterative thresholding for
sparse approximations,” Journal of Fourier Analysis and Applications,
vol. 14, no. 5-6, pp. 629–654, 2008.

[40] Simon Foucart, “Hard thresholding pursuit: an algorithm for compres-
sive sensing,” SIAM Journal on Numerical Analysis, vol. 49, no. 6, pp.
2543–2563, 2011.

[41] K. Schnass and P. Vandergheynst, “Dictionary preconditioning for
greedy algorithms,” IEEE Trans. Signal Processing, vol. 56, no. 5, pp.
1994–2002, 2008.

[42] D. Paul, E. Bair, T. Hastie, and R. Tibshirani, “Preconditioning for
feature selection and regression in high-dimensional problems,” The
Annals of Statistics, pp. 1595–1618, 2008.

[43] J. C. Huang and N. Jojic, “Variable selection through correlation sifting,”
in Research in Computational Molecular Biology. Springer, 2011, pp.
106–123.

[44] J. Jia and K. Rohe, “Preconditioning to comply with the irrepresentable
condition,” arXiv preprint arXiv:1208.5584, 2012.

[45] M. Babaie-Zadeh and C. Jutten, “On the stable recovery of the sparsest
overcomplete representations in presence of noise,” IEEE Transactions
on Signal Processing, vol. 58, no. 10, pp. 5396–5400, 2010.

[46] J.-F. Cardoso and B. Laheld, “Equivariant adaptive source separation,”
IEEE Trans. Signal Processing, vol. 44, no. 12, pp. 3017–3030, Dec.
1996.

[47] R. Fletcher, Practical methods of optimization, New York: Wiley, 1981.
[48] Peter Deuflhard, Newton methods for nonlinear problems: affine invari-

ance and adaptive algorithms, vol. 35, Springer Science & Business
Media, 2011.

[49] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 43, no.
1, pp. 129–50, 2001.

[50] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 2006.
[51] Arsalan Sharif-Nassab, Milad Kharratzadeh, Massoud Babaie-Zadeh,

and Christian Jutten, “How to use real-valued sparse recovery algorithms
for complex-valued sparse recovery?,” in Signal Processing Conference
(EUSIPCO), 2012 Proceedings of the 20th European. IEEE, 2012, pp.
849–853.

16

[52] S. F. Cotter, Subset selection algorithms with applications, Ph.D.
dissertation, UC San Diego, La Jolla, CA,, 2001.

[53] H. Krim and M. Viberg, “Two decades of array signal processing
research: The parametric approach,” IEEE Signal Processing Mag., vol.
13, no. 4, pp. 67–94, July 1996.

[54] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas and Propagation, vol. 34, no. 3, pp. 276 – 280,
March 1986.

[55] R. Roy, A. Paulraj, and T. Kailath, “Estimation of signal parameters via
rotational invariance techniques - esprit,” in IEEE Military Communi-
cations Conference - Communications-Computers: Teamed for the 90’s,
MILCOM86,, oct. 1986, vol. 3, pp. 41.6.1 –41.6.5.

[56] Y. Hua and T.K. Sarkar, “Matrix pencil method for estimating parameters
of exponentially damped/undamped sinusoids in noise,” IEEE Trans.
Acoustics, Speech and Signal Processing, vol. 38, no. 5, pp. 814 –824,
may 1990.

[57] Milton Abramowitz, Irene A Stegun, et al., “Handbook of mathematical
functions,” Applied mathematics series, vol. 55, no. 62, pp. 39, 1966.

[58] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University
Press, Cambridge, 1990.

[59] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004.

[60] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control, V. Blondel,
S. Boyd, and H. Kimura, Eds., Lecture Notes in Control and Information
Sciences, pp. 95–110. Springer-Verlag Limited, 2008, http://stanford.
edu/∼boyd/graph dcp.html.

[61] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of Royal Statistical Society Series B, vol. 58, no. 1, pp. 267–288,
1996.

[62] Andrea Laforgia and Pierpaolo Natalini, “Some inequalities for modified
bessel functions,” Journal of Inequalities and Applications, vol. 2010,
no. 1, pp. 253035, 2010.

Milad Kharratzadeh received his B.Sc. degree
in electrical engineering from Sharif University of
Technology, Tehran, Iran in 2010; and M.Eng. and
Ph.D. degrees in electrical and computer engineering
from McGill University, Montreal, Canada in 2012
and 2016, respectively. He is currently a postdoctoral
research scientist in statistics at Columbia Univer-
sity. His research interests include statistics, machine
learning, data science, and computational cognitive
science.

Arsalan Sharifnassab received B.Sc. degrees in
Electrical Engineering and Mathematics in 2011,
and M.Sc. degree in Electrical Engineering in 2013,
all from Sharif University of Technology (SUT),
Tehran, Iran. Since 2013, he has been a Ph.D. stu-
dent in the Department of Electrical Engineering
at SUT, and he is currently a visiting student in
the Laboratory of Information and Decision Sys-
tems (LIDS) at MIT. His research interests include
network scheduling, distributed computations, and
computational complexity.

Massoud Babaie-Zadeh received the B.Sc. degree
in electrical engineering from Isfahan University of
Technology, Isfahan, Iran in 1994, and the M.Sc. de-
gree in electrical engineering from Sharif Univer-
sity of Technology, Tehran, Iran, in 1996, and the
Ph.D. degree in Signal Processing from Institute Na-
tional Polytechnique of Grenoble (INPG), Grenoble,
France, in 2002. He received the best Ph.D. thesis
award of INPG for his Ph.D. dissertation. Since
2003, he has been a faculty member of the Elec-
trical Engineering Department of Sharif University

of Technology, Tehran, IRAN, in which, he is currently a full professor. His
main research areas are Blind Source Separation (BSS) and Sparsity-aware
Signal Processing.

