Published in Signal Processing (Elsevier), vol. 85, no. 5, pp. 975-995, May 2005. 1

A general approach for mutual information

minimization and its application to Blind Source

Separation

Massoud Babaie-Zadétand Christian Juttén

Abstract

In this paper, a non-parametric “gradient” of the mutual information is first introduced. It is used for showing that mutual
information has no local minima. Using the introduced “gradient”, two general gradient based approaches for minimizing mutual
information in a parametric model are then presented. These approaches are quite general, and principally they can be used in any
mutual information minimization problem. In blind source separation, these approaches provide powerful tools for separating any
complicated (yet separable) mixing model. In this paper, they are used to develop algorithms for separating four separable mixing

models: linear instantaneous, linear convolutive, Post Non-Linear (PNL) and Convolutive Post Non-Linear (CPNL) mixtures.
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|. INTRODUCTION

Let s (t), s2(t), ..., sm(t) be M statistically independent source signals, from which a¥lgifferent mixturese 1 (¢), z2(¢),

.,zn(t) have been observeieg. :
xi(t):fi(sl(t),"-,sN(t))a i=1...,N (1)

whereF; denotes the unknown mixing system, which may be nonlinear and/or have memory. In vector form, the above equation

is written asx(t) = F(s(t)), wheres(t) £ (s1(t),...,sm()T andx(t) £ (z1(t),...,zm(t))T are source and observation

vectors, respectively. Then, the goal of Blind Source Separation (BSS) is to recover the original source signals by knowing only
these observations. The problem is calBthd since there is no or very little information about the sources or about the mixing
system. This problem has applications in different areas including feature extraction, brain imaging, telecommunications, speec
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enhancementgtc [1]. Throughout this paper, it is always assumed that the number of observations is equal to the number of
sources, that isM = N.

Since the sole assumption is the independence of sources, the basic idea in blind source separation consists in estimating
systemg, only from the observed data(t), such that the components pft) = G(x(t)) are statistically independent. This
method, based on statistical independence, constitutes a generic approach called Independent Component Analysis (ICA).
general (nonlinear) case, it can be shown [2] that ICA does not lead to BSS. However, if some structural constraints are impose
on mixing and separating systems, the ICA approach may result in BSS, with eventually a few indeterminacies. For example
when both mixing and separating systems are assumed to be linear and memary/les&t) = As(t) andy(t) = Bx(t),
where A andB are N x N regular matrices), then we have the well-known instantaneous linear mixtures, for which the
equivalency of ICA and BSS has been already proved [3]: if the componegtad independent, and if there is at most one
Gaussian source, then the outputs will be equal to the source signals up to a scale and a permutation indeterminacy.

Consequently, for using the ICA approach for source separation, we impose a structural cdnstramiting and separating

systems. Then, the separating system is a parametric mapping:

y(t) = G(x(t);0) )

whereg is a “known” separating system with “unknown” paramet@rst is also required that this mixing-separating model be
“separable”, that is, the independence of the outputs (ICA) insures the separation of the sources (BSS). Under these condition
the problem of source separation reduces to finding the parahetet maximizes the independence of the outputs.

To measure the degree of independence of the outputs, their mutual information may be used. The mutual information of

the random variableg, , y, . .., yn is defined as [6]:

1) = [ pyo)n %dy @)

wherey = (y1,...,yn)". This is nothing but the Kullback-Leibler divergence betwpgity) and[]; py, (y:). It is well-known
that I(y) is always nonnegative and vanishes if and only if the componengsast independent. Consequently, the solution
of the BSS problem for the model (2) is the vecébthat minimizesl (y). Mutual information has been already used in BSS
by several authorse(. [3], [7], [8], [4]).

For minimizing I (y) with respect tof, gradient based methods may be applied. To construct such a method, knowing the
“differential” of the mutual information, that is, its variation resulting from a small deviation in its argument, is very useful.
Such a non-parametric differential has been recently proposed [9] (see also Section III).

The aim of this paper is to consider two general gradient based approaches (which are called “gradient” and “Minimization-
Projection” approaches) for minimizing mutual informationyofin a model like (2). These new approaches, and the model
(2), are quite general and can be used in any mutual information minimization problem. In BSS, they provide powerful tools
for having a unifying approach for separating any complicated (yet separable) mixing model. As some examples, we use thes
approaches for separating four separable mixing models (see Section VI). Moreover, it is shown in this paper that mutual
information has no “local minimum” (see Theorem 2 and Remark 2 after the theorem).

10ther regularization approaches have also been proposed, based on smooth mappingkilayer perceptrons [4] or based on Bayesian models with

ensemble learning [5].



The paper is organized as follows. In Section Il, multi-variate score functions and Score Function Difference (SFD) are
introduced and their properties are discussed. Using SFD, the “gradient” of mutual information is presented in Section Ill.
Using properties of multi-variate score functions and SFD, we propose estimation algorithms for estimating multi variate score
functions in Section IV. Two general approaches for minimizing mutual information are then introduced in Section V. These
approaches are used for blind separating four separable models, presented in Section VI: linear instantaneous mixtures
Section VII, linear convolutive mixtures in Section VIII, Post Non-Linear (PNL) mixtures in Section IX and Convolutive Post

Non-Linear (CPNL) mixtures in Section X.

Il. MULTI-VARIATE SCORE FUNCTIONS

Multi-variate score functions have been first introduced in [10], by extending the concept of score function of a random
variable to random vectors. The “gradient” of mutual information can be expressed in terms of these score functions (see

Theorem 1). This section starts with a review of definitions, and continues by discussing their properties.

A. Definitions

Recall the definition of the score function of a random variable:

Definition 1 (Score Function): The score function of a scalar random variablés the opposite of the log derivative of its

density, that isp, (z) £ —LInp,(z) = —58 wherep, denotes the probability density function (PDF)aof

In conjunction with this definition, we define two different types of score functions for a random veetdt: 1,...,zn)7:

Definition 2 (MSF): The Marginal Score Function (MSF) &f is the vector of score functions of its components, that is,

Yo (x) 2 (1 (21),...,Un(zn))", Where:
pégi(%‘)

» d _
vile) = =g e ) = ) “

Definition 3 (JSF): The Joint Score Function (JSF)fs the gradient of  In p (x)”, thatis g, (x) £ (¢1(x),...,on(x)7,

where:
_ %px(x)
Px(x)

b
pi(x) = — o2, Inpx(x) = (5)

We will see that the difference of these two score functions contains a lot of information about the independence of the

components of a random vector. Thus, it worths to give it a formal name:

Definition 4 (SFD): The Score Function Difference (SFD) af is the difference of its MSF and JSF, that 8, (x) £
d’x(x) - (px(x)'

B. Properties

The first property presented here points out that SFD contains information about the independence of the components of

random vector:



Property 1: The components of a random vector= (z1,...,zx)T are independent if and only 8, (x) = 0, that is, if

and only if o, (x) = ¥ (x).

The proof is simple and can be found in [10].

Property 2: For a random vectox = (z1,...,zx)":

0
Bi(x) = 5 Inp(zy,...,%i-1,Tit1,-..,TN|Ti) (6)

(2

where;(x) denotes theé-th component of the SFD of.

Proof: Without loss of generality, let = 1. Then:

ilnpx(xla"',xN)

Br(x) = Y1(x1) — p1(x) = ihle(X) - ilnp“(xl) = Oz Pay (21) (7
1 z1 (T1 7

or, or,
= a—mlnpm,...,m(xz, e oN | 71)
|
It is interesting to note the relationship between this property and Property 1. For example, for the two dimensional case,

(6) becomes:

0
Bi(w1,m2) = a—xllnp(ﬂh | 1) (8)
0
Ba(w1,72) = a—@lnp(wl | 2) 9)
In other words,3;(z1,z2) = 0 if p(z2|z;) does not depend om;, that is, whenz; andz, are independent. For th&-
dimensional case tog, (x) = 0 if “ z; and the other componentsofare independent”, that is, gz 1, . .., zi—1, it1,. - ., ZN|T;) =
p(wla sy Li—15, L1, - - .,ZUN), OI’p(X) :p(xla sy Li—15, L1, - - 7wN)p($l)1 Vi = 15 (A

The next property is, in fact, the generalization of a similar property of the score function of a scalar random variable [11],
[12].
Property 3: Let x be a random vector with densipy, and JSFp, (whosei-th component is denoted hy;(x)). Moreover,

let f(x) be a multivariate function with continuous partial derivatives such that:

lim FX)px(x)dy -+ dri—1 driyr - -day =0 (10)
TiEO Jo i 1,@ig1, TN

then:

B ()it} = B { 0] 1)

Note that the condition (10) is not too restrictive for usual sources, because for most physical gigfe)sdecreases

rapidly when||x|| goes to infinity. Indeed, most real signals are “bounded” (finite energy), and for them (10) holds.

Proof: Without loss of generality, let = 1. We write:

Opx(x)
0

T

E{f(x)p1(x)} = / £ ()01 ()px (x)dx = — / () dry diy - dzy (12)



Now, by applying integration by parts for the inner integral and using (10) the desired relation will be obtained. =
Corollary 1: For bounded random vectar, E {¢;(x) z;} is equal to one foi = j and is equal to zero far# j. In matrix
form, E {p,(x)x”} = I, wherel denotes the identity matrix.
Corollary 2: Suppose we would like to estimate (x) by a parametric functiorf (x; w), wherew = (w1, ..., wg)’ is the

parameters vector. Then:

argmin F { (pi(x) — f(x; w))2} = argmin {E {f(x;w)} —2E { g_f(x, w)} } (13)
w w Z;
This corollary shows a nice property of JS#en without priors about ¢ ;(x), we can design a minimum mean square error

(MMSE) estimator for it.

Property 4: For a random vectox = (z1,...,zx)? we have:

Yi(r) = E{pi(x) | z; = =} (14)

wherep; and); denote the-th component of JSF and MSF &f respectively.

Proof: Without loss of generality let = 1. Then:

Efpi(x) [ a1} = e1(x)p(x2, ..., 2N | 21)ds - - doy
B
T / axlp)C(X) . p(x) drs ---dry (15)
T2, TN p(x) Pz (@1)
1 0 1 o
B _pz1($1) . 8—1'1 /xg,-..,wzv p(X) iy = _pm(l'l) - a—l'lpxl(wl) = (371)

which proves the property. ]
The above property needs more discussion. Congideas a functiof of z;, denoted byp;(x;). If x; is independent from
the other variables, then Property 1 implies(z;) = v;(z;). Now, if the other variables depend an, ¢;(z;) is no longer
equal toy; (z;), however, the above property states that its “mean” will be still equal;ta;). In other words, the statistical
dependence, can introduce some fluctuationg jfw;), but only around its constant “mean”. We will later use this property
for estimating SFD.
Example. Lets; ands» be two independent random variables with uniform distributions on the inter@a3, 0.5]. Consider
now random variables; £ s; andzs £ s, + ks;. Fork = 0, z; andz, are independent and henge (z;) = 11 (). Now,
if k varies,y;(z1) remains unchanged (because it does not deperig bat ¢ (z1) will change. However, Property 4 states
that its “mean” remains unchanged. Figure 1 shows the estirhated:;) and, (z;) for k = 0.5.

Therefore, it is concluded thathe SFD s, in fact, a measure of the variations of JS- (around its smoothed value).

Property 5: Let y = Bx, wherex andy are random vectors arl8 is a non-singular square matrix. Then:

oy (y) =B T, (x) (16)

2strictly speaking, it is a “relation” not a “function”, because for each value; there are several values fof.
3These curves have been obtained by usiemel estimators (see Section IV-A).
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Fig. 1. 1 and; versusz; in the presence of statistical dependence.
Proof: Fromy = Bx we have:
Px(X
py(y) = |de‘5B)| = Inpx(x) = Inpy(y) + In|det B| a7
Therefore, fori =1,..., N:
0 0 0 Ok
X, 1 =——=1 x = — = bni .
SO s (X) 82171 np (X) a zk: a 83}1 zk: k Qova(y) (18)

whereyy i(x) andyy ;(y) denote the-th components of the JSFs sfandy, respectively. From the above relation, we have

v, (x) = BT, (y), which proves the property. |

[1l. “G RADIENT” OF MUTUAL INFORMATION

In this Section, we use the multivariate score functions defined previously, for deriving a “gradient” for mutual information.
The variation of mutual information resulting from a small deviation in its argument (it may be called “differential” of mutual

information) is given by the following theorem [9].

Theorem 1 (Differential of mutual information): Let x be a bounded random vector, and fetbe a ‘small’ random vector

with the same dimension, then:
I(x+A)—I(x)=E {ATﬁx(x)} +o(A) (19)

whereg, is the SFD ofx, ando(A) denotes higher order terms M.

Remark. Equation (19) may be stated in the following form (which is similar to what is done in [13]):
I(x+&y) = I(x) = E{(Ey)" Bx(x)} + o(€) (20)

wherex andy are bounded random vecto&,is a matrix with small entries, and &) stands for a term that converges to
zero faster than|€||. This equation is mathematically more sophisticated, because it defines more formally the term ‘small
random vector’ which is used in (19) without any formal mathematical definition. Conversely, (19) is simpler, and easier to

use in developing gradient based algorithms for optimizing a mutual information.



Recall that for a multivariate (differentiable) functigifx) we have:
fx+A8) = f(x) = AT (Vf(x)) +0(A) (21)

A comparison of this equation with (19) shows ttf##D can be called (or viewed as) the “ stochastic gradient” of mutual
information.

Recall now the Property 1, which states that SFD is z&amd only if I(x) is minimum (zero). For a usual multivariate
function f(x), Vf(x) = 0 is only anecessary condition forx to be a global minimum off (because it holds for every
local minimum, too). However, if this condition becomes alsafficient condition for a functionf, it can be concluded that
all minimums of f are global. Considering SFD as a “gradient” for mutual information, Property 1 states that vanishing the
gradient of mutual information is a necessary and also a sufficient conditiahttobe minimum (zero). This leads us to the

conclusion thamutual information has no “local minima” . This fact is more formally stated in the following theorem:

Theorem 2. Let xo be a random vector with a continuously differentiable PDF. If for any “small” random vefstor

I(Xo) < [(XO + A) holds, thenI(XO) =0.

Proof: Recall that for a usual multivariate functigh if V f(x) # 0, then a small variation in the opposite direction of
the gradient results in a reduction in the value of the function. In other wgifast A) < f(x), whereA = —uV f(x) andu
is a small positive constant. This result can be seen by letng —uV f(x) in (21), and using the fact th@itV f(x)|| 2 > 0.
Now, we apply a similar reasoning fdr, and combining it with Property 1 proves the theorem.
AssumingVA, I(xq) < I(xo + A) holds, if 8, (x) # 0 (which is, by Property 1, equivalent (x,) # 0), then a small
variation in its opposite direction must reduce mutual information. In other words, if wAlet —u3, (xo), then using

Theorem 1 we have (up to first order terms):
2
I(xo + A) — I(x0) = —uE { | B, (x0)[*} < 0 (22)

(see also Remark 1 below). Hengéxo + A) < I(xp), which is a contradiction. Consequently, (x) must be zero. By
Property 1, this is equivalent th(xq) = 0, that is, I is in its global minimum. [ |

Remark 1: In the above proof, for writing (22), we need to concldﬁe{ 1B, (x0)||2} # 0 by knowing that3, (x) is not
identically zero. This certainly holds if the PDF ®f, is continuously differentiable, as assumed in the theorem. However, it
also holds for every “usual” random vector, and the required restriction is highly less than having a continuously differentiable
PDF forx,.

Remark 2: Although the above theorem guarantees that the mutual information has no local minimum, it expresses nothing
about the local minimum of a parametric separating system with respect to the parameter space. In other words, for the nonlinez
separating system = g(x; w), the functionh(w) = I(y) may have some local minima with respect to the parameter vector

w. For example, if we consider the following mixing system (corresponding to a rotation with @ngle

cosf) —sinf s
hn _ 1 (23)
Yo sinf cos@ So
then it has been shown [14], [15] thatf) = I(y:,y2) may contain local minima with respect o specially whens; and s,

have multimodal PDF’s. This is not in contradiction with the above theorem, because it is a minimization of mutual information



under constraints. For clarity, think about a two-variate functios f(z,y). Even if f has no local minima with respect
to (z,y), the functionh(t) = f(xz(t),y(t)) may have local minima with respect toIn fact, f represents a ‘surface’ in the
3-dimensional space which has no local minima, butpresents a ‘curve’ on this surface, which may have local minima.

The same problem exists, for example, in MMSE estimation of a nonlinear model: although the finctitvas no local
minima, the functiom(w) = E {(y — g(x;w))?} may contain local minima (as a function @f). The local minimum, can
also be introduced by the estimation method of SFD.

Finally, the theorem does not imply the uniqueness of the minimum ; mutual information may have several global minima,

all of them correspond té = 0.

IV. ESTIMATING MULTI-VARIATE SCORE FUNCTIONS

For using SFD in minimizing mutual information, it must be first estimated from the observed data. The MSF of a random
vector is nothing but the score functions of its components, and hence it can be estimated by any estimation method of a scot

function (see for example [12], [11], [16]). In this section, the estimation of JSF and SFD is considered.

A. Estimating JSF

The methods presented here for estimating JSF are, in fact, the generalizations of the corresponding methods for estimatir
uni-variate score functions.

1) Kernel Estimators: A multi-variatekernel functionk(x) = k(z1,...,zn) is defined as the PDF of a zero mean random
vector. That isk(x) is a kernel function if and only if: (&yx € RY, k(x) > 0, (b) [5~ k(x) dx = 1 and () [, x x k(x) dx = 0.
The bandwidth of the kernel in direction is defined as the variance of tiieh component of the corresponding random vector:

hi £ [~ 23 k(x) dx.

Let nowx be a random vector, from which the samples,, x»,...,xr} have been observed. Then the kernel estimation
of the PDF ofx is [17], [18]:
T
. a1
Px(x) = T ; k(x — x¢) (24)
And from there, the kernel estimation of tii¢h component of JSF will be:
s Bebx(%) Yoy 2 (x - xy)
¢i(x) = —— I (25)
Px(x) Yo k(x—x¢)

Remark 1. The bandwidth parameter in the above equations determines the degree of smoothness of the estimator: th
larger bandwidth, the smoother estimated PDF. If it is chosen too small, the estimated PDF will be too fluctuating, and if it is
chosen too large, the estimated PDF will be a rough shape of the kernel itself. Optimal choice can be done by cross-validatiol
(see [18] for instance). However, a rule of thumb is given in the Remark 3 below.

Remark 2. The bandwidth of the kernel can be different in each direction, which depends on the spread of data in that
direction. However, as suggested by Fukunaga [19], after a whitening process on data, we can use isotropic kernels (kerne
with equal bandwidths in all directions). To state this idea more clearlyRlgtdenote the covariance matrix &f andT be
its Cholesky decompositiom,e. T is an upper triangular matrix which satisfi®, = TT”. If we now define the random

vectory = T~ 'x, thenRy = I, that is, the variance of is the same in any directions, and moreover the variapleare



uncorrelated. Hence, it is natural to use isotropic kernels for estimating PDF and 3Skraf then we can use the equations

(see Property 5):

. _ byly)
Px(x) = |det T|’

Pu(x) =T Ty (y) (26)

for estimating PDF and JSF af.
Remark 3.  When the above prewhitening is done, as a rule of thumb the Valye= ¢ N~!/(¢+%) can be used for the

bandwidth [18], wherel is the dimension of the random vector, ang a constant which depends on the type of the kernel.

1\ 27
c_<2d+1> 27)

For example, for scalar Gaussian kerneks 1.06, and for 2-dimensional Gaussian kernels 0.96.

For d-dimensional Gaussian kernels:

2) Minimum Mean Square Error (MMSE) estimation: Property 3 can be used in designing Minimum Mean Square Error
(MMSE) estimators forp;(x) (see also Corollary 2 of the property). Here we consider a parametric model which is linear

with respect to the parameters.

Let p,;(x) be estimated as a linear combination of multi-variate funct{égnsx), . . ., k, (x)}, thatis,@;(x) = Zle wik;j(x) =
k" (x) w, wherek(x) 2 (ki (x),...,k(x))7, andw £ (wy,...,wr)T. w must be computed by minimizing the error:
~ 2
& =B{(pi(x) - 2:(x)"} (28)

Orthogonality principle [20] implies thaE' {k(x)(¢:(x) — ¢;(x))} = 0, and by using Property 3 we obtain the following

equation which determines:

E{kxk"T(x)}w=FE { g:i (x)} (29)

B. Estimating S-D

Since SFD is the gradient of mutual information, we are mainly interested in estimating SFD, and not only JSF. Therefore,
in this section, we consider some methods for SFD estimation.

1) Independent estimations of JSF and MSF: One method for estimating SFD, is to estimate independently JSF and MSF,
and then to compute their difference. That i, (x) = ¥, (x) — ¢, (x). We may apply kernel or MMSE estimation of the
joint and marginal score functions.

Example. (Polynomial estimation of SFD) The following estimator is applied successfully in [10] for separating convolutive

mixtures of two sourcesp;(x1,x2) is estimated by the polynomidl;(z;,z2) = E;Zl w;j kj(z1,2), where:

ki(z1,22) =1, ko(21,22) =21, ks(w1,22) =27, ka(w1,20) = 23

(30)
ks(z1,2) = 22,  ke(21,22) =23, ki(z1,22) = 23
Consequently:

T
k(zy,22) = ( 1z 22 23 2o 22 23 ) (31)

P T
8—x1k(x1’x2): ( 0 1 2z, 322 0 0 0) (32)

P T
a—l_zk(CUl;xQ) = ( 0000 1 2z 322 ) (33)
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Then from (29) we have:

0
FE {k(wl,wg)k(xl,wg)T} Wi = FE {671((371,372)} (34)
1
0
E{k(z1,72)k(z1,72)" } wo = E {aTk(SEth)} (35)
2
wherew; £ (wy1, w12, ..., wi7)T andwy £ (wa1,waz, ..., war)T. These equations determime; andw, which determine

(,51 (1'1, 1'2) andgég(xl, 1'2).
Similarly, 1;(z;) is estimated by);(z;) = wY) + wéi)xi + w§i>x§ + wff)a:?, and the optimal values of the coefficients are

obtained from:

E{(l z; x? xd )T(l z; x T} )}w(i):E{(O 1 2z; 3x? )T} (36)

wherew () £ (w%i), . ,wff))T fori =1,2.

Finally, the SFD is estimated by using the above estimations, that (g, z2) = ¢ (z1) — @1 (21, 22) and B (1, z2) =
o () — Ga (@1, 72).

2) Smoothing JSF: The problem of the previous method is that the estimation errors of JSF and MSF are independent.
Recall that a gradient based algorithm for minimizing the mutual information stops when SFD (the difference between MSF and
JSF) vanishes. However, small estimation er®r§(o(x) — ¢(x))*} and E {(z/:(x) - 1,7;(x))2} does not necessarily results
in a small estimation errof/{(8(x) — B(x))2}. In other words, when the MSF and JSF estimation errors are independent,
their difference does not necessarily vanish for independent variables. In linear mixtures, the limited degree of freedom of the
separating system overcomes this problem and the above estimator works well. On the contrary, nonlinear mixtures requir
more accurate estimation of the SFD.

Then we suggest to estimate MSF from the estimated JSF. From the Property 4 we know that MSF is the smoothed versio
of JSF. Therefore, we can estimate MSF as the smoothed version of the estimated JSF. With this trick, the estimation errors i
JSF and MSF are no longer independent, and they partially cancel each other when calculating their difference. In other words
in this method, SFD is estimated as the variations of JSF around its mean (see Fig. 1), and hence the separation algorith
tries to minimize these variations.

Practically, following Property 44);(x;) is a regression from:; to ¢;(x), which can be calculated for instance using
smoothing splines [21]. The final estimation procedure is summarized in the following steps:

1) From the observed valudx,xs,...,xr} estimatep; ; = @i(x¢),t = 1,...,T (eg. by kernel estimators).

2) Compute the smoothing spline (or another regressor) which fits on thésdatap; ;),t = 1,...,T. This spline will be

the estimated MSF); (z;).
3) Estimate SFD by3, (x) = 9, (x) — ¢, (x).

3) Histogram estimation method: Another method for estimating SFD (in two dimensional case) is based on a simple
histogram estimation of the PDF &f Histogram is not a very accurate estimator for PDF, but since we estimate SFD directly,
we do not need a very good estimation of PDF. In fact, despite of its simplicity, this estimator works very well for separating

instantaneous linear mixtures.
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In this method, a histogram is first used for estimating the joint PDEk.ofFor two-dimensional vectors, 16Y(n 1, n2)
denote the number of observations in the pin,n»), then the histogram estimation pf is:

N(nl, ng)

T (37)

p(ni,n2) =

whereT is the number of observations. From there, a histogram estimatign. ,ofs obtained byp, (n1) = -, p(ni,n2),
and then we will have an estimation pfz»|x1):

p(nl,n2) _ N(n1,n2)
pi(m1) N(n1)

Finally, from (8) we havel;(z1,z2) = (aimp(x2|x1))/(p(x2|x1)), consequently a histogram estimation ®f (z1,z2) is

p(naln) = (38)

obtained by:
p(na|ni) — p(na|ny — 1)
p(naln1)

(39)

ﬂ1(n1,n2) =

B2(n1,n2) will be estimated in a similar manner. Note that the val(@,n-) will be assigned to all the points of the bin
(n1,n2).

Note. p(nz2|n1) is not defined in the bins whega (n1) = 0, but this is not important, because we don’t need the value of
SFD in these bins, since there is no point in these bins. However, in the bins with smallestmputing3;(n,,ns) from
(39) requires the value @f(nz|n; — 1) which is not defined. In our simulations, we have u$efdr these values, too.

4) Pham's method: Recently D. T. Pham has proposed [22] a method for estimating the “conditional score function”, which
appears in separating temporary correlated sources. The conditional score function of the random ~egiar, ..., zx)7
is defined by:

A

¢lemN71_,_m1($N|$N_1,...,:Ul) _vlnpszN,l--.zl($N|$N—1;---;551) (40)

wherep, jon 1oy (TN|ZN_1,-..,21) IS the conditional density of 5 givenz,...,zy_1. From the Property 2, it is seen
that this is closely related to the SFD »f and its estimation can be used to estimate SFD. The Pham’s method uses cubic

splines for this estimation, which results in a fast algorithm.

V. TWO GENERAL APPROACHES FORMUTUAL INFORMATION MINIMIZATION

In this section, we propose two gradient-based approaches for minimizingwith the model of equation (2). These

approaches are both based on Theorem 1 and SFD as a non-parametric gradient for mutual information.

A. Gradient approach

In the first approach, Theorem 1 is used to calcuiféy)/00, and then applying the steepest descent algorithm on the

parameter vector:

ol(y)

00154

(41)

For calculatingd(y)/86 using Theorem 1, one can lé = 6 + § whered is a ‘small’ deviation in the parameters. Then

using Theorem 1 the effect of this deviation on the output can be calculated, which leads to the calculafign) 696.
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Example 1. For linear instantaneous mixtures,= Bx. Here the separation parameter is the maBixLet B = B + &,

where€ is a ‘small’ matrix. Then the new output i = Bx = Bx + £x = y + £x. Consequently, from Theorem 1:

[-1=E{8](y)ex} = (£, E{B,y)x"}) (42)
Where(.,.) stands for the scalar (Euclidean) product of matricé&snally (42) shows that:
oI
) = B {8, x") (43)

and the separation algorithm will 08 <~ B — uE {8, (y)x" }, wherey is a small positive constant.

Example 2. In convolutive mixtures, the separating system is:
y(n) =Box(n) + Bix(n — 1) +--- + Byx(n — p) (44)

To calculatedI(y(n))/OBy, let B, = B, + &, where€ denotes a ‘small’ matrix. This implies thgt(n) = y(n) + Ex(n— k),

and then by a reasoning similar to the above example, we conclude:

) — 2 {8y (y0)x" (02— 1)} (45)

However, the above gradient cannot be directly used for separating convolutive mixtures, since some other points must b

taken into account (see Section VIII).

B. Minimization-Projection (MP) Approach

Since SFD can be seen as the ‘gradient’ of mutual information, one may think about the following “steepest descent”-like

algorithm for minimizingI(y) in a parametric modey = G(x, 0):

y « ¥ —uBy(y) (46)

wherey is a small positive constant. This algorithm has no local minimum and converges to a randonywsittostatistically
independent components (provided thas small enough). To show this fact, tet, denote the value of at then-th iteration.

Theny,y1 = yn — pBy, (yn), and from Theorem 1:

I(¥ns1) = 1(ya) = =hE{ By, )"} <0 = I(yas1) < 1(y2) (47)

Moreover the equality holds if and only B, (y.) = 0, that is, if the components of,, are independent (Property 1).
Consequently, the algorithm (46) converges to an independent vector without trapping in any local minimum.

However, after the convergence of the algorithm (46), there may be no particular relation bgtwaahx. On one
hand, the transformatior — y may be non-invertible, and on the other hand, it does not necessarily belong to the desired
family y = G(x,0), and hence the independenceyofdoes not imply the source separation (recall that without structural
constraints, output independence does not insure separation). Then, the idea of the Minimization-Projection (MP) approach [23
for overcoming this problem is to replace, at each iteration, the transformationy by its “projection” on the desired family.
In other words, each iteration of the separating algorithm is composed of the following steps:

4The scalar (Euclidean) product of twox ¢ matricesM and N is defined by(M, N) ézi,j m;;n;j. Moreover, it can be easily seen that for vectors

x andy and matrixA we havex” Ay = (A, xyT).
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« Minimization:
Ly «y—uBy(y).
« Projection:
2.0y = argming E{|ly — G(x;0)|’}.
3.y =G(x,00).
Note that the dependence of the algorithm to the separating system appears only in the projection step: the minimization ste
is the same for all separating models.

Remark. The minimization part of the MP approach has no local minimum, and the outputs are directly manipulated
regardless of the structure of the separating system. Consequently, it can be conjectured that it is less probable that th
approach traps in a local minimum compared to the gradient approach, in which a steepest descent algorithm is applied o
each parameter of the separating system. In other words, the MP approach is expected to have better convergence behav

than the gradient approach.

VI. SOME SEPARABLE MODELS FORBLIND SOURCE SEPARATION

In the following sections, we will use the presented gradient and MP approaches for Blind Source Separation. In BSS, a
parametric model for the separating system is required, because general non-linear mixtures are not separable [2] (that i
the output independence does not insure source separation). Four separable models, for which, separation algorithms will t
addressed in the following sections are:

1) Linear Instantaneous MixtureBhis is the simplest case, in which the mixing system is As and the separating system
is y = Bx, where A andB are constant (and regular) matrices. For these mixtures, it is shown [3] that the independence
of the outputs insures source separation, up to a scale and a permutation indeterminacy (provided that there is at most or
Gaussian source).

2) Convolutive mixturesin convolutive mixtures, the mixing matrix composed of finite order Linear Time-Invariant (LTI)

filters instead of scalars. For these mixtures, the separation system is:
p
y(n) = [B(z)]x(n) =Y Bix(n — k) (48)
k=0

As it has been proved in [24], convolutive mixtures are separable, t&8)=if is determined to produce statistically independent
outputs, then the sources are separated.

In convolutive mixtures, the scale indeterminacy of instantaneous mixtures extendittea ray indeterminacy. However, it
can be shown [25] that the effect of each source on each sensor (that is, what a sensor would receive if all other sources we
zero), can be found after the source separation.

In convolutive mixtures, the independence of outputs cannot be reduced to instantaneous indepengdefceanfd y-(n)
[10Q]. In effect, in convolutive mixturegy; andy, must be treated as stochastic processes, not random variables. Recall that
two stochastic processgs andy, are independent if the set of random variabfgs(n1),...,y1(ng)} is independent from
the set{y»(n}),...,y2(n},)}, for every choice oft andn,...,nx,n},...,n; [20]. This independence cannot be deducted

from the instantaneous independence ofn) andy»(n).
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<— Mixing System —<— Separating System—

Fig. 2. The mixing-separating system for PNL mixtures.

However, for separating convolutive mixtures, it is sufficient thatn) andy»(n — m) be independent for alk’s and all
m’s. This comes from the fact that this independence results in cancelling output bi-spectra, which is shown to be sufficient

for separating convolutive mixtures [24]. Consequently, as proposed in [26] the separation criterion may be chosen:
+M

J= > I(yi(n),y2(n—m)) (49)

m=—M

whereM = 2p+ 1, andp is the degree of the separating filtd((z)). This criterion is computationally expensive. To reduce
its computational cost, we ugdéy;(n),y2(n —m)) as the separation criterion, but at each iteration a different randois
chosen form{—AM,...,M}.

3) Post Non-Linear (PNL) mixture®ost Non-Linear (PNL) mixtures have been first considered by Taleb and Jutten [16], as
a (practically important) special case of non-linear mixtures which is separable. The PNL mixing-separating system is shown
in Fig. 2. This model corresponds to a linear mixing system followed by non-linear sensors. For this model, it is shown that the
independence of outputs insures that= f{l andB is a separating matrix [16] up to scale and permutation indeterminacies
like in linear mixtures (see [27] for a simple geometric proof for bounded sources). In other words, PNL mixtures are separable:
independence is sufficient for estimating the separating structure and restoring the sources.

4) Convolutive PNL (CPNL) mixturesthis model is a generalization of PNL models, in which the mixing and separating
matrices are convolutivé,e. A andB (with scalar entries) are replaced by filter matrice&:) andB(z) (where entries are
filters) in Fig. 2. The separability of this model can be deduced from the separability of PNL mixtures [28], for finite impulse

response filters.

VIl. APPLICATION TO LINEAR INSTANTANEOUS MIXTURES

Here, as an illustration of the “gradient” and “MP” approaches, we utilize them for separating linear instantaneous mixtures.
All of the algorithms and programs of this section are available as a MATLAB package with a graphical interface at:

http://ww. lis.inpg.fr/pages_perso/bliss/deliverables/d20.htm

A. Gradient approach

For these mixtures, the gradientKiy) with respect td has been obtained in equation (43). However, in linear instantaneous
mixtures, it is preferable to use the equivariant algorithm [29], [30], which results in a separation quality independent of the
mixing matrix. In equivariant algorithm, instead %% the natural [29] (or relative [30]) gradient is used:

A O
Va2 SLBT = B{8,(y)y") (50)
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« Initialization: B =1 andy = x.
o Loop:
1) Estimate B, (y) (eg. by histogram
method).
2) VeI =E{By(y)y"}
3) B+« (I-puVel)B.
4) y = Bx.
5) Normalization:
- Lety; = y;/0;, Whereo? is the energy
of 5.
- Div%de the i-th raw of B by o;.
« Repeat until convergence.

Fig. 3. Gradient algorithm for separating linear instantaneous mixtures.

and the updating algorithm fdB is:
B+« (I-uVgI)B (51)

wherel denotes the identity matrix.

The scale indeterminacy must also be taken into account. The algorithm (51), which is based on output independence
imposes no restriction on the output energies. Moredet, 0 is a trivial solution of the algorithm, which must be prevented.
To solve this problem, the output energies may be normalized at each step of the algorithm. This results in the algorithm of
Fig. 3 for separating linear instantaneous mixtures.

Experimental results. To examine the performance of the algorithm, we use two uniform random sources with zero means

and unit variances. The mixing matrix is:
1 0.7
A= (52)
05 1
and the parameters of the separating algorithm are: (a) Histogram estimation of SFD (d$ing1® histogram), (b) 500
point data block, and (¢} = 0.1. The experiment has been repeated 100 times (for 100 different realizations of the sources).
In this paper, for measuring the quality of separation, we use two performance indices. The first, is the mean of output

Signal to Noise Ratios (SNR). At each output, the SNR is defined by (assuming there is no permutation):

E{s}}
SNR; = 10log;, PHOETAE!

Then, as a performance index, we use the mean of output SNR’s, that is2§SRR; + SNRy)/2. This is done for having

(53)

just a single number as the performance index. Moreover, it must noted that we use averaged SNR’s over several (say 10
runs of the algorithm, for which SNRand SNR are essentially equal.

The second performance index is the number of iterations required for the SNR to reach at 90% of its final value.

In this experiment, averaged output SNR, taken over 100 runs of the algorithm was 32.4dB, and the number of iterations
was 31 (the results of the experiments of the paper are collected in the Table | at the end of paper).

As it can be seen in this experiment, despite of the simplicity of the SFD estimator{(a0 histogram), a good separation
performance has been obtained. This fact can be explained as follows. First note that (50) can be rewritten as (see the corollary

of the Property 3):

VeI =E{B,(y)y"} =E{¢,)y"} —E{o,(0)y"} =E{v,(y)y"} -1 (54)
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« Initialization: y = x.

o Loop:
1) y<y—uBy(y).
2) Remove the DC of each output, and nof

malize its energy to 1.

3) B=E {yx"} (E{xx"})""
4) y = Bx.

« Repeat until convergence.

Fig. 4. Minimization-Projection algorithm for separating linear instantaneous mixtures.

which is the equation used in the previous methods of separating linear instantaneous mixtures by mutual information
minimization [11]. Practically, this equation is simpler than (50), because it only requires estimation of marginal score functions.
However, the separation information (independence) is contained in the averaged SFD, as the gradient of the mutual informatior
and the separating algorithms will stop when it vanishes. Moreover, SFD is the difference of two terms. In (54), one of these
terms is theoretically computed. Hence, a good estimation of the other term is required for source separation (because th
difference of the two terms must vanish for the convergence of the algorithm). But in our method which is based on the direct
use of the SFD, since it is directly estimated, a good estimatioB e&n be achieved even with a coarse estimation of the
SFD (.g. a simple histogram).

Another advantage of this method (based on SFD) is that it can be readily generalized to more complicated mixtures (as i
will be shown in the following sections), while the use of (54) is restricted to linear instantaneous mixtures. The drawback of
the methods based on SFD is the necessity of the estimation of a multi-variate density, which is quite difficult, and requires
a high computation cost and a lot of data, when the dimensiertlfe number of sources) increases. Practically, this method

is applicable only for a small number of sources (at most 3 or 4).

B. Minimization-Projection approach

In the MP approach, the minimization stage (step 1) does not depend on the separating model. The projection stage fo
linear instantaneous mixtures requires calculating the mBtnxhich minimizest {||y - Bx||2} (step 2), and then replacing

y by Bx (step 3). The solution of step 2 is given by the following well-known lemma.

Lemma 1: The matrixB which minimizesE {Ily - Bx||2} is:
Bop = E {yx"} (B {xx"})™" (55)

Taking into account the scale indeterminacy, the final MP algorithm for separating linear instantaneous mixtures is given in
Fig. 4.

Experimental results. We repeat the experiment of Section VII-A using the MP approach. The source signals are two
uniform random signals with zero means and unit variances. The mixing matrix is the same as (52). The parameters of the
separating algorithm are like Section VII-A: (a) Histogram estimation of SFD, (b) 500 point data block, ane-(@)L. The
averaged SNR’s taken over 100 runs of the algorithm, and the number of required iterations for convergece are given in the

Table 1.
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Here, for linear instantaneous mixtures and the histogram estimation of SFD, the MP approach shows no advantages c
disadvantages to the gradient approach. However, as our experiences shows for more complicated mixtures (and for othe
estimation methods of SFD), the MP approach has, in general, better convergence behavior (as discussed at the end

Section V-B) and converges in fewer iterations, while the gradient approach leads to slightly higher output SNRs.

VIII. A PPLICATION TO CONVOLUTIVE MIXTURES

In this section, we show how the gradient and the MP approaches can be used in separating convolutive mixtures of twc

sources.

A. Gradient approach

To use the gradient approacgg—kl(yl (n),y2(n —m)) must be first calculated. Although this gradient is directly calculated
in [10], here, we recalculate it using the general approach of Section V-A and Theorem 1, to show how this general approact
can be used in convolutive mixtures.

For calculating this gradient, we first define the following notation for any siga) = (y1(n),y2(n)):

y<m><n)é( Z“(") | ) (56)
Y2(n —m

In other wordsy (™) (n) shows a shift operation on the second component(af) with respect to the first one.

Now, the gradient off (y(m) (n)) must be calculated. LeB; = B; for i # k and B = B, + &, where€ is a “small”
matrix. Then, from (48) we conclude th§(n) £ [B(z)]x(n) = y(n) + £x(n — k). DenotingA(n) = Ex(n — k), we will
havey(™ (n) = y(™ (n) + A(™(n), and hence from Theorem 1:

1(3 @) =1 (3" () = E{Byon )T A (0)} = B { By 1 (AT ()}
+ B{ By 2L ()} = B {Byim 1 (m)B1(m)} + B { By »(n)Ao(n —m)}
= E{Bym 1(n)A1(n)} + E {Byom) o(n +m)Ay(n)}
wherefy, ) (n) stands foBy(m) (y(m) (n)). Note that in writing the above equations, the sources are assumed to be stationary.

Now, we define:

Bou(n) 2 85 (n) = ( , Byimalt) ) (57)

y(m) 2 (n+m)
In other words, for obtaining,,(n), the second component g{n) must be shiftedn times, then after calculating its SFD,

the second component of SFD must be shifted bactimes:

( y1(n) ) Shift ( yi(n) ) SFD ( Bi(n) ) Shift back ( Bt (n) ) N
— - — = Bn(n)
y2(n) y2(n —m) B3(n) B3 (n +m)

By using this notation, we can write:
I-T1=E{B,mTAM)} =E{B,(n)TEx(n —k)} = (£,E{B,,(n)x(n —k)T})
and finally:

aimf (y2(n),y2(n —m)) = E {B,,,(n) x(n — k)" } (58)



18

« Initialization:
1) Bo=1
2) Fork=1...p,By=0.
3) y(n) =x(n).
« Loop:
1) Choose a randomm from the sef{—M, ..., +M}.
2) EstimateB*(n), the SFD of(yi(n), y2(n—m)) .

3) Letp,,(n) = (Bi(n),Bs(n+m))".
4) Fork=0...p:

By By — uB {B,,(n)x(n— k)" }

5) Calculatey(n) = [B(z)]x(n).
6) Normalization:
— Lety; = yi/oi, wherea? is the energy ofy;.
— Divide thei-th raw of B(z) by ;.
« Repeat until convergence.

Fig. 5. Gradient algorithm for separating convolutive mixtures.

Now, taking into account the scale indeterminacy, the separation algorithm is obtained as shown in Fig. 5.
Experimental results. Here, an experimental result with the algorithm of Fig. 5 is presented. Because of the filtering

indeterminacy, instead of (53), the SNR is defined here as:
E{y}}

E{#lso}

where y;|,. _, stands for what is at theth output, where thé-th input is zero (assuming there is no permutation). By using

SNR; = 101log;, (59)

this definition, SNR will be a measure of “separation”, that is, a high SNR means that there is not a large leakage from the
other sources to this output. However, it can be a filtered version of the actual source, and a post-processing can be done f
recovering the effect of this source on each sensor [25] (as mensioned at the begining of this section).

Now, we mix two uniform random sources with zeros means and unit variances. The mixing system is:

1402271401272 0.54+0.32z714+0.1z72
A(z) = (60)
054+0327'4+012z72 14+02z'+0.1272
The separation parameters are: Second order filfees 2), M = 2p+ 1 = 5, p = 0.3, 500 samples data block, and the
Pham’s method [22] for estimating SFD. The averaged SNR’s (takenlO®erepetitions of the experiment), and the number

of required iterations for convergence are given in the Table I.

B. Minimization-Projection Approach

In this section, an algorithm based on the MP approach (Section V-B) is developed for separating convolutive mixtures.
The minimization step of this algorithm (Equation (46)) does not depend on the separating model. The projection step for
convolutive mixtures consists of first finding the filBi(z) which minimizes the erroff {||y(n) — [B(2)] X(n)||2}, and then
replacingy (n) by [B(z)]x(n).

After doing some algebric calculations, it can be found that the fl8ér) which minimizesE {||y(n) — [B(2)] X(n)||2}

is given by the following system of linear equations (see [26] for details):

14
ZB]RXX(]’k) :Ryx(o’k) ) k= ]-,'"7p (61)
7j=0
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« Initialization: y(n) = x(n).
« Loop:
1) Choose a randomm from the set
{—M,...,+M}.
2) Estimate3, (n), the SFD of(y1 (n), y2(n—
T

m)) .
3) Update the outputs by:

Y™ =y ™ = uBy o (v ™)
4) Remove the DC of each output, and nor-
malize its energy.
5) Compute the matriceB;, £k = 0,...,p,
from (61).
6) Lety(n) = [B(2)]x(n).
« Repeat until convergence.

Fig. 6. Projection algorithm for separating convolutive mixtures.

where:
Rox (4, k) £ E{x(n — j)x"(n — k) } (62)
Ryx(j,k) £ E{y(n —j)x"(n —k)} (63)

Finally, taking into account the scale indeterminacy, the MP algorithm for separating convolutive mixtures is obtained as
shown in Fig. 6.

Experimental results. The experiment of Section VIII-A is repeated here using the MP method. The separation parameters
are: Second order filterp & 2), M = 2p+1 = 5, u = 0.1, 500 samples data block, and the Pham’s method [22] for estimating
SFD. The averaged SNR'’s (taken over 100 runs of the algorithm), and the number of required iterations for convergence are
given in Table I.

A look at the Table | shows that the quality of the projection approach is slightly less than the gradient approach. However,

as discussed at the end of section V-B, it has better convergence behavior.

IX. APPLICATION TOPNL MIXTURES

In this section, we consider the application of the general mutual information minimization approaches of Section V (gradient

and MP approaches) in separating PNL mixtures (Fig. 2).

A. Gradient approach

The gradient approach for separating PNL mixtures has been first reported in [31]. The parameters of the separating systel
(Fig. 2) are the matriB and the functiong;’s, and for using the gradient approach, the gradient&®j must be calculated
with respect to these parameters.

The gradient with respect BB can be obtained by repeating the calculations done in Example 1 of Section V-A, and hence
(43) gives the desired gradient (or (50) for the relative gradient).

For calculating the gradients df(y) with respect to the functiong;, two different approaches may be used. The first is

a ‘parametric’ approach, in which, a parametric model for these functions is assumed, and then the gradigntsvih
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respect to these parameters are calculated. Finally the steepest descent gradient algorithm is applied on each parameter of
model. For example, neural networks and polynomial models have already been used for mpdel[ag], [32].

Another approach, which is used in this paper, is ‘non-parametric’ [33], [31]. In this approach, no parametric model is
assumed forg;'s, and the ‘gradient’ of the criterion with respect to these functions, which is itself a function, is directly
calculated. To clarify the idea, suppose that a cost funcfies to be minimized with respect to a functigiiz). Moreover,

suppose that for any ‘small’ functios(z) we have:

+o0
Clg+e)—Clg) = / (z) £ () p(x) dz + ofe) (64)

—o0
wherep(z) is a non-negative function ange) stands for higher order terms. Then, it can be said that the gradi€htvith
respect to the functiop(z) is the functionf (z)p(z). Equivalently, it can be said that the gradientCofvith respect tog via
the weighting functiorp(z) is f(x). The main point here is that a little movement in the opposite direction of these gradients
(that is,g <+ g — ufp or g < g — uf) insures a reduction in the cost function.

Now, for calculating the gradients df(y) with respect to the functiong;, suppose there is a small perturbation in these
functions of the formg; = g; + €; o g;, wheree; denotes a ‘small’ function. This is equivalent 4 = z; + ¢;(x;). Using

Theorem 1 and after doing some algebric calculations (see [31] for details), we will have:

19)-10) =3 [ a@E{aiy) | = 2} pu (o (65)
where:

a(y) 2 BT B,(y) (66)
From the above equation, we conclude that the (natural) gradieftydfwith respect tag; via the weighting functiorp,, is:
(Vg I)(z) = E{ei(y) | z; = z} (67)

We emphasize again th&t,, I is itself a function.

In PNL mixtures, there are scale indeterminacies on hgtland y; signals, and a mean (DC) indeterminacy on[16].
Moreover, when using nonparametric methods, a smoothness constraint is necessary on fygncfRijs Without any
smoothness constraint, the value ggf at each data point acts as a parameter, and the number of parameters will be equal
to the number of data points, which is mathematically ill-posed. To insure this smoothness, smoothing splines [21] may be
used [31]: at each iteratiom, is the smoothing spline which has the best fit on the data péintsy;).

Taking into account these indeterminacies, the separation algorithm is obtained as shown in Fig. 7.

Experimental results. As an experiment, two uniform random sources with zero means and unit variances are mixed. The

mixing system composed of:

A= boos ,  fi(z) = f2(x) = 0.1z + tanh(22) (68)
05 1
Then, we have used the separation algorithm of Fig. 7 with 1000 data samples, kernel estimation of SFD (by Gaussian kernels
andpu, = pe = 0.2.
The separation quality is measured by mean of output SNR’s, where each output SNR is defined in (53). The averagec

SNR’s taken over 100 runs of the algorithm, and the number of required iterations for convergence are given in the Table I.
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« Initialization:

1) B=1

2) x=e

3) y=x
o Loop:

1) Estimates, (y) (SFD ofy).

2) Letay(y) £B"B,(y).

3) Fori = 1,...,N, estimate(Vy,I)(z;), by
fitting a smoothing spline ofix;, a;).

4) For: = 1,...,N, modify z; by z; « z; —
1 (¥, T) (1) S

5) Let g; be the smoothing spline which fits on the
(ei, ;) points.

6) For: = 1,...,N, normalize z; by z; <
”ijﬂmi .

7) Absorb the effect of the above normalization
B:

>

Oz, 0
B«+~B
0 Oan
8) EstimateVgI, using (50).
9) Modify B by B «+ (I — 11 VBI)B.
10) Compute outputs by = Bx.
11) Normalization:
— Lety; = y; /o, Whereo? is the energy ofy;.
— Divide the-th raw of B by o;.
« Repeat until convergence

Fig. 7. The gradient approach for separating PNL mixtures.

B. Minimization-Projection Approach

In this section, an algorithm for separating PNL mixtures is developed based on the MP approach (Section V-B). As usual,
the minimization step of this algorithm (Equation (46)) is the same for all mixing-separating models. The projection step for
PNL mixtures (see Fig. 2), consists in first finding functignsand matrixB which minimize E {Ily - Bg(e)||2}, and then
replacingy by Bg(e), whereg(e) £ (g1(e1), .., gn(en))"-

For finding functiongy; and matrixB which optimally mape to y, an iterative algorithm is proposed in [23]. It is based on
the fact that the invertibility ofy;’s implies their monotonicity, and without loss of generality they can be assumed ascending.

If x was known, then the matri8 which optimally mapsx to y were given by (55). Knowind3, x can be re-calculated
usingx = B~ ly. It automatically defines a set ¢f’s, which are not necessarily ascending. To makascending, we change
the order of the values;(1),z;(2),...,z;(T) (T is the length of data block) in such a way that for anyk;) > e;(k2) we
havez; (k1) > z;(k2). This may be better explained by its MATLAB code:

[tenmp, index_i] = sort(e_i);

X_i(index_i) = sort(x_i);

It defines a newk, and the above process is repeated. This results in the algorithm of Fig. 8 for finding the optimal mapping.
It is experimentally shown in [23] that this algorithm converges very fast, typically in 2 to 5 iterations.
Having this algorithm for finding the projected mapping, the final MP algorithm for separating PNL mixtures can be easily

obtained. However, two modifications is done in the algorithm of Fig. 8: (a) instead of initializing by, the value ofx
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« Initialization: x = e.
« Loop:

1) LetB=E {yx"} (E{xx"})"".

2) Letx=B7y.

3) Fori = 1,...,N, change the order of
z;(k) such that the functionr; = gi(e;)
become ascending (see the text).

« Repeat until convergence

Fig. 8. Finding the projected PNL mapping.

o Initialization:y = x = e.

« Loop:
1) Estimates, (y), the SFD ofy.
2) Modify the outputs byy <y — u8, (y).
3) Fork=1,...,K, do:

a) LetB=E{yx"} (E {xxT})_l.

b) Letx=B y.

c) Fori = 1,...,N, change the order
of z;(k) such that the functionr; =
gi(ei) be ascending.

4) Fori=1,...,N, remove the mean aof;
and normalize its energy.
5) Fori=1,...,N, let g; be the smoothing

spline which fits on(e;, z;).

6) Lety = Bg(e).
7) Fori=1,...,N, remove the mean af;
and normalize its energy.
« Repeat until convergence

Fig. 9. Minimization-Projection algorithm for separating PNL mixtures.

obtained in the previous iteration of MP algorithm is used, which is a better initial estimation(bj we do not wait for the
projection algorithm of Fig. 8 to converge (even, it is possible that it does not converge, when the outputs cannot expresse
asBg(e)). Instead, we simply repeat the loop for some fixed number of iterations, say 5 or 10 times (even 1 iteration seems
sufficient in many cases, because the whole MP algorithm is itself iterative, and the value thfe previous iteration is used
as initial value in the current iteration).

Finally taking into account the indeterminacies (similir to what is done for the gradient approach), the final separation
algorithm is obtained as shown in Fig. 9.

Experimental results. Now we repeat the experiment of Section IX-A using the MP algorithm with parameters).1,
1000 samples data block, Pham’s estimation of SFD, Iand 5. The averaged SNR'’s taken over 100 runs of the algorithm,

and the number of required iterations for convergece are given in the Table I.

X. APPLICATION TOCPNL MIXTURES

We terminate the applications of gradient and MP approaches by using them in separating Convolutive Post Non-Lineat
(CPNL) mixtures of two sources. In CPNL mixtures, the separation system composed of the linear FIR filter (48) and non-linear
functions g;. Consequently, the separation algorithms can be obtained by combining the algorithms obtained for convolutive

and PNL mixtures.
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« Initialization:
1) B(z) =1, thatissBp =I and fork =1...p,
B, =0.
2) x(n) = e(n).
3) y(n) = x(n).

« Loop:
1) Choose a random m from the set
{—-M,...,+M}.
2) Compute3*(n), the SFD of (yi(n),y2(n —
T
m)) .

3) Letf,,(n) = (B;(n), 85 (n +m))".

4) Estimate (V,,I)(z;), by fiting a smoothing
spline on(z;, a;). .

5) Modify z;: z; < x; — 1 (Vg I) ().

6) Letg; be the smoothing spline which fits on the
(ei, ;) points.

7) Normalizexz;: z; <+ (x; — fiz;) [0z, -

8) Absorb the effect of the above normalization
B(z):

>

b2, 0
B(z) « B(z)

0 Oz n

9) Fork=0...p:
B, « B, — ng {ﬂm(n) x(n — k)T}

10) Calculatey(n) = [B(2)]x(n).
11) Normalization:
— Lety; = y; /o, Whereo? is the energy ofy;.
— Divide thei-th raw of B(z) by a;.
« Repeat until convergence.

Fig. 10. Gradient algorithm for separating CPNL mixtures.

A. Gradient Approach

Similar to convolutive mixtures, the separation criterion/ig 1 (n),y2(n — m))), wherem is randomly chosen at each
iteration from—(2p + 1) to 2p + 1. To use the gradient approach in separating CPNL mixtures, the gradient of this criterion
must be calculated with respect to bdsh,’s and g;'s.

Following the same calculations done in Section VIII-A, the gradient with respeBtts is given by (58). The gradient
with respect to functiong; can be obtained using a method similar to what is done for PNL mixtures at Section IX-A. The

final result is given by (67), where in this caaeis [28]:

a(n) 2 kzp;B{gm(n +k) = [BT (%)] 8, (n) (69)

Taking into account the DC and scale indeterminacies, the final separation algorithm is obtained as shown in Fig. 10.

Experimental results. As an experiment, two uniform radom sources with zero means and unit variances are mixed by
a system composed of the mixing matrix (60) and sensor nonlinearities given by (68). Each output SNR is defined as (59).
Moreover, there are a lot of parameters to be estimated and to not encounter “over-learning”, a new data set is used at eac
iteration. Here, the main parameters are: observation blocks of 2000 sapp!es,M = 5 andy = 0.2. The averaged SNR's

taken over 100 runs of the algorithm, and the number of required iterations for convergence are given in the Table I.
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« Initialization:y = x =e.
o Loop:
1) Choose arandom from the se{ —M, ..., M}.
2) EstimateB,m(y), the SFD ofy™.
3) Modify the outputs byy(™ « y(m™ —
By o) (™).
4) Fork=1,...,K, do:
a) Find the bestB(z) which mapsx(n) to
y(n), using (61).
b) Computex(n) = [inv(B(z))] y(n) using the
recursive equation (70).
c) Fori = 1,2, change the order af;(k) such
that the functionz; = g;(e;) be ascending.
5) Fori =1, 2, remove the DC of; and normalize
its energy.
6) Fori = 1,2, letg; be the smoothing spline which
fits on (e, ;).
7) Lety(n) = [B(2)]g(e(n)).
8) Fori=1,2, remove the DC of;; and normalize
its energy.

« Repeat until convergence

Fig. 11. Minimization-Projection algorithm for separating CPNL mixtures.
TABLE |

SUMMARY OF THE RESULTS OF THE EXPERIMENTS OF THE PAPEFSNR’S ARE AVERAGED OVER100EXPERIMENTS

Mixture type Algorithm | SNR (in dB) | Number of
iterations
Linear Instantaneous Gradient 32.4 31
MP 31.7 22
Convolutive Gradient 25.4 86
MP 20.4 108
PNL Gradient 21.4 22
MP 18.7 19
CPNL Gradient 24 1090
MP 24.7 328

B. Minimization-Projection Approach
The MP approach for separating CPNL mixtures can be obtained by directly combining the corresponding approaches for
separating convolutive and PNL mixtures. However, step (2) of the projection algorithm of Fig. 8 (for finding the optimum

mapping) must be replaced Ix(n) = [inv(B(z))] y(n). This inverse function can be found using the recursive equation:
x(n) = B, * [y(n) - Bix(n—1)—--- —B,x(n — p)] (70)

Consequently, the final MP separation algorithm is obtained as shown in Fig. 11.
Experimental results. The same experiment of Section X-A is repeated here, but with block lengths of 1000 samples and
1= 0.1. The averaged SNR’s taken over 100 runs of the algorithm, and the number of required iterations for convergece are

given in the Table I.
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XI. CONCLUSION

In this paper, we introduced the concept of SFD, which can be considered as a non-parametric ‘gradient’ of the mutual
information. We also showed that SFD is a powerful tool for minimizing mutual information of a parametric model, and
we proposed two general approaches called gradient and Minimization-Projection (MP) approaches. These approaches give
unifying view and powerful tools for separating any complicated (yet separable) mixing model (for example, up to our best
knowledge there is currently no other method for separating CPNL mixtures). Finally, we showed how these approaches cal
be used for separating sources in four mixing models: linear instantaneous, linear convolutive, PNL, and CPNL mixtures.

Moreover using the properties of SFD, it was shown that mutual information has no local minimum (Theorem 2).

In general, because of direct manipulation of outputs in the MP method, and since mutual information has no local minimum,
this method has better convergence behavior (faster convergence and lowest risk of a local minimum) than gradient methoc
especially when the number of parameters are laggg ¢onvolutive mixtures with long separating filters). Moreover, in the
gradient-based algorithms, it is very tricky to select parameters which insures the algorithm convergence. On the contrary, the
convergence of MP algorithms is very robust with respect to the parameters. However, if convergence is achieved, the gradier
approach may result in a slightly better separation performance. Finally, for linear instantaneous mixtures, gradient approacl
may be simplified (as done in (54)) such that it only uses marginal distribution estimations, which is a great advantage for
large number of sources.

The limitation of methods based on mutual information minimization with SFD is the requirement of multi-variate PDF
estimations which is quite difficult and requires a large number of data when the number of variables grows. Practically, they

are currently limited to 3 or 4 sources.
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