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Abstract
Objective. In this paper, we propose a new tensor decomposition to extract event-related potentials
(ERP) by adding a physiologicallymeaningful constraint to the Tucker decomposition.Approach.We
analyze the performance of the proposedmodel and compare it with Tucker decomposition by
synthesizing a dataset. The simulated dataset is generated using a 12th-order autoregressivemodel in
combinationwith independent component analysis (ICA) on real no-task electroencephalogram
(EEG) recordings. The dataset ismanipulated to contain the P300 ERP component and to cover
different SNR conditions, ranging from0 to−30 dB, to simulate the presence of the P300 component
in extremely noisy recordings. Furthermore, in order to assess the practicality of the proposed
methodology in real-world scenarios, we utilized the brain-computer interface (BCI) competition III-
dataset II.Main results.Our primary results demonstrate the superior performance of our approach
compared to conventionalmethods commonly employed for single-trial estimation. Additionally,
ourmethod outperformed bothTucker decomposition and non-negative Tucker decomposition in
the synthesized dataset. Furthermore, the results obtained from real-world data exhibitedmeaningful
performance and provided insightful interpretations for the extracted P300 component. Significance.
Thefindings suggest that the proposed decomposition is eminently capable of extracting the target
P300 component’s waveform, including latency and amplitude aswell as its spatial location, using
single-trial EEG recordings.

1. Introduction

Event-related potentials (ERPs) are the responses of brain to an internal/external stimulus and aremostly
observable in electroencephalogram (EEG) signals. Depending upon the specifications of the stimulus and the
characteristics of the person responding to it, amplitude, time of occurrence (after the onset), polarity, and the
spatial position of the ERPsmay vary (Schomer andDa Silva 2012, Luck 2014, Ting et al 2014, Luck et al 2000).
As an example, P300 ERP component, which is provoked as a result of an oddball task during EEG recording,
mostly occurs after 250–650ms of the onset, has positive amplitude, and is located in thesuperior and inferior
frontal and parietal lobe (Kaplan et al 2013, Sabeti et al 2016).

Cross-trial temporal averaging, also known as grand averagingmethod, which averages trials over time, has
beenwidely used to extract ERP components fromEEG recordings, particularly in brain-computer interface
applications (Xiao et al 2019,Ma et al 2021). The underlying assumption of thismethod is that the ERP
component is deterministic and the background EEG is a white noise (Luck 2014). This assumption, though
practical and handy, has been questioned in several studies in presence of the jitter effect, whichmay happen due
tomental fatigue or attention deficit (Käthner et al 2014).Moreover, the amplitude, latency, and spatial location
of the ERP components have been prone to variations in different recording trials (between-trial-variability)
(Jarchi et al 2011). In this respect, several studies have attempted to proposemethods for extracting ERP (sub)
component(s) from single-trial EEG recordings. The approaches can be classified intofive groups; blind source
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separation (BSS), e.g. independent component analysis (ICA) (Lee et al 2016) or principal component analysis
(PCA) (Dien 2012), adaptive filter, e.g.Wiener filter (Cerutti et al 1987) orKalmanfilter (Georgiadis et al 2005),
denoising algorithms such aswavelet transform (Quiroga andGarcia 2003, Aniyan et al 2014), iterative
estimation algorithm such as RIDE (Ouyang et al 2011), and spatio-temporal filteringmethods (Li et al 2009,
Jarchi et al 2010, Ranjbar et al 2018).While somemethods suffer from lack of interpretable spatial estimation for
the targeted ERP component, the others require several trials to estimate the component in each trial or fail to
extract the dynamics of the component in bad SNR conditions (lower than−15 dB).

Tensor decompositions have beenwidely used in EEG analysis in various applications, including but not
limited tomulti-modal EEG and functionalmagnetic resonance imaging (fMRI) analysis (Mørup et al 2008,
Eliseyev andAksenova 2013), brain-computer interfaces (BCIs) (Cichocki et al 2008), seizure detection and
localization (DeVos et al 2007,Deburchgraeve et al 2009), and ERP analysis (Vanderperren et al 2013, Idaji et al
2017,Maki et al 2018,Wang et al 2018, Zhang et al 2020). Different tensor decompositions, such as canonical
polyadic (CP), also known as parallel factor analysis (PARAFAC) (Mørup et al 2006, 2008, Eliseyev and
Aksenova 2013), Tucker decomposition (Latchoumane et al 2012, Cong et al 2013), Non-negative Tucker
decomposition (NTD) (Dao et al 2020, Rošt’áková et al 2020,Wang et al 2020) , and their variations (Zhao et al
2012, Cichocki et al 2015, Idaji et al 2017), have been explored in these studies.Whilemuch research in thefield
of ERP analysis has focused on extracting features for pattern recognitionmodels, to the best of our knowledge,
no previouswork has proposed a new tensor decomposition specifically designed for robust single-trial ERP
estimation from rawEEG recordings in low signal-to-noise ratio (SNR) conditions. Theflexibility offered by
tensors in handlingmulti-dimensional datamay be beneficial in addressing the current limitations in single-trial
ERP estimation. A new approach, which can benefit frommulti-dimensional flexibility of tensorsmay be useful
to address the current gaps in single-trial ERP estimation.

The contribution of the paper is to propose a customized tensor decomposition by including a constraint,
which is inspired by spatio-temporalfilteringmodels, to the conventional Tucker decomposition. In this regard,
the notations, original Tucker decomposition, Non-negative Tucker decomposition, and our proposedmethod
(called ETucker) are discussed in section 2, then the performance of the proposedmethod on a physiologically
meaningful synthesized EEGdataset as well as on a real-world dataset is validated in section 3. And some
conclusions are drawn in section 4.

2.Methods

2.1. Notations
Before bringing up the details of the proposed decomposition, we need to demonstrate the assumptions and
notations.We use the same notations and definitions used byKolda andBader (Kolda andBader 2009).
Therefore, a tensor Î ´ ´ ´ IRI I IN1 2 is characterized as anNth dimensional array, also called anN-way tensor.
Boldface calligraphic letters, e.g. symbolizes tensors of dimension 3 or greater; bold capital letters likeX
symbolizematrices; bold letters in lower-case, e.g. x symbolize vectors; and lowercase letters, e.g. x denote
scalars. ‘⊗’ and ‘°’ denote theKronecker and outer products, respectively, and the n-mode tensor-times-matrix
product of and thematrix Î ´M IRJ In is indicated by ´ Î ´ ´ ´ ´ ´- + M IRn

I I J I In n N1 1 1 . Also, Î ´X IRn
I Mn( )

denotes themode-n unfolding of the tensor , where =  = ¹M Ii i n
N

i1, and is defined bymapping from element

(i1, i2,L ,iN) to (in, j)where =  ´ = ¹ = + ¹j i Ik k n
N

k m k k n
N

m1, 1, . The transpose ofmatrix Î ´X IRI I1 2 is denoted

as Î ´X IRI I2 1, and the pseudo inverse ofmatrixX is represented as Î ´X IRI I2 1† and can be calculated either as
- X X X1( ) or - X XX 1( ) according to the rank ofmatrixX.

2.2. Tucker decomposition
TheTucker decomposition of a tensor Î ´ ´ IRI I I1 2 3 is
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where Î ´ ´ IRR R R1 2 3 is called the core tensor, and each Î ´U IRi I Ri i( ) is called factormatrix. The factormatrices
are assumed to have orthonormal columns (Malik andBecker 2018). Also, the tensor in (1) is a rank-(R1,R2,R3)
tensor. Tucker decomposition can also be transformed to an optimization problemusing the cost function as
follows:
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where . F
2 indicates the Frobenius normof a tensor. Throughout this paper, it is assumed that the tensor

Î ´ ´ IRC T 2 corresponds to a single trial EEG epoch, and accordinglyU(1) andU(2) andU(3) contain
information regarding spatial dispersal, temporal dynamics, and contribution of the estimated sources in
reconstructing each slice of the tensor, respectively.

2.3. Non-negative Tucker decomposition
TheNTD is a variant of Tucker decompositionwhere the core tensor ( ) and factormatrices (U(i)) are
constrained to have only non-negative elements (Kim andChoi 2007). This non-negativity constraint ensures
that all elements in the core tensor and factormatrices are non-negative, promoting sparsity and interpretability
of the factors.

The non-negativity constraint (  U, 0i( ) for i= 1, 2, 3) is incorporated in (2), and the problem is solved
through an optimization process, which are commonly projected gradientmethods or alternating non-negative
least squares algorithms (Kim andChoi 2007). In this paper, we utilizeNTD to compare the performance of our
model in cases with positive peaks in the synthesized dataset. In contrast to all the algorithms implemented in
MATLAB for this study,NTDwas implemented using the Tensorly library in Python (Kossaifi et al 2018).

2.4. Constrained Tucker decomposition for ERP extraction
Though capable of source separation, Tucker decomposition fails to extract sources properly in low SNR
conditions (Cichocki et al 2009, Zhou andCichocki 2012). In such cases, adding a priori information regarding
the sources can enhance not only the convergence possibility of the algorithmbut also the accuracy of estimated
sources (Fonał andZdunek 2019, Chen et al 2021).

In spatio-temporal filtering-based papers (Li et al 2009, Jarchi et al 2010, Ranjbar et al 2018), it is assumed
that the ERP component can be extracted by applying a spatial filter (w ä IRC) to the observationmatrix
(X ä IRC×T) and comparing the result with a pre-assumedwaveformwith different delays (g0(τ)), which can be
formulated as the following problem:

 t-w X gmin , 3
w

0 2
2( ) ( )

whereC is the number of channels,T is the number of temporal samples, and g0(τ) is the τ-sample shifted
gamma function. The original gamma function is defined as:

q
=

-- ⎛
⎝

⎞
⎠

g t ct
t

exp , 4K 1( ) ( )

where c andK and θ are amplitude, bandwidth, and peak of thewaveform, respectively. Similar assumptions can
likewise bemade on the tensor’s factormatrices. In this respect, the cost function in (5) is defined so that the
estimated sources in the second factormatrix of the tensor form an analogouswaveform to the gamma function
(r(t) is the vectorized notion of g(t)).
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Since (2) and (5) should be optimized concurrently, the second equation is appended in (2) as a constraint using
Lagrangemultiplier (λ). As a result, the Tucker decomposition in (2) is transformed to the following problem:
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where core tensor, factormatrices, filter coefficients (wi), and delay (τ) are target parameters and should be
estimated through an optimization process. To this end, the objective function in (6) is split into three objective
functions as follows:
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where . F
2 denotes Frobenius normof thematrix, andC(i)s are defined as follows:
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To reduce the risk of divergence, gradient descentmethodwas employed to estimate the target parameters. The
first-order derivatives with respect to the factormatrices and the filter are demonstrated below (Akbari et al
2015):
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The parameters are initialized using algorithm 1,whereRi specifies the expected rank of the tensor and f (.)
denotes any transformation or algorithm that can be used to extract ERP components in high SNR conditions,
e.g. spatio-temporal, ICA, or PCA-basedmethods (MacDonald andBarry 2014, Lee et al 2016, Ranjbar et al
2020, Zang et al 2022). Subsequently, the factormatrices and filter are updated recursively using (10)until the
algorithm converges (the difference between the normof two successive estimated filtering vectors, namelyw, is
below 0.0001) or reaches themaximumnumber of iterations (1000).

Algorithm1. Initialization algorithm for factormatrices and the core tensor

Require:  ,R1,R2,R3

Ensure:  , U 1( ), U 2( ), U w,3( )

1: ¬ RU 1
1

( ) leading left singular vector of X 1( )

2: ¬ RU 2
2

( ) leading ERP components of f X 2( )( )

3: ¬ RU 3
3

( ) leading left singular vector of X 3( )

4: ¬ Îw 0.5 IRR2

5: = ´ ´ ´  U U U1
1

2
2

3
3( ) ( ) ( )† † †

6: return  , U 1( ), U 2( ), U w,3( )
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where γ is the learning rate (0.001 in this paper). The proposedmethod is summarized in algorithm 2,whereTs is
the suspected range of the target ERP component (0.25s–0.65s in this work), s is the extracted ERPwaveform,
and a is the spatial vector of the extracted component.

Algorithm2.ETucker

Require:  ,R R R, ,1 2 3, λ ,r(t),Ts

Ensure:  U U U w s a, , , , , ,1 2 3( ) ( ) ( ) .

1: Initialize U i( ) and  using algorithm1.

2: ¬z 1

3: for Every τ in range ofTsdo

4: ¬k 1

5: while: not convergedOR not reachedmaximumnumber of iterations do

6: Update U i( ) for =i 1, 2, 3 using (10)
7: Update w using (10)
8: = ´ ´ ´  U U U1

1
2

2
3

3( ) ( ) ( )† † †

9: ¬ +k k 1

10: endwhile

11: J z( ) ≔ value of cost function in (6)
12: ¬ +z z 1

13: end for

14: t t= ÎtL J Targ min 0, s( ) [ ]
15: = Lr r( ) and repeat 6 to 11
16: = s w U 2( )

17: a= =a aj w Rarg max 1, 2, , 2

18: b= =b bi Rarg max 1, 2, ,j, ,1 1

19: =a U i:,
1( )

20: return  U U U w s a, , , , , ,1 2 3( ) ( ) ( )

4

Physiol.Meas. 44 (2023) 075005 BTaghiBeyglou andMBShamsollahi



3. Experiments

3.1. Synthesizing EEG recordings
Since there is no gold standard to compare the estimated ERP component and the original one directly, previous
research has used synthesizingmethods to generate EEG trials containing target ERP (sub)component(s) (Li et al
2009, Jarchi et al 2010, Lee et al 2016, Ranjbar et al 2020). Such studies have assumed that the background EEG
activity is similar to thewhite noise, and accordingly used theGaussian probability density function to generate
the temporal signals. Also, uniformdistribution has been used to generate the spatial vector of the ERP
component.However, this approach does not fully act following the frequency-domain characteristics of the
EEG signals such as hyperbolic (1/f )morphology of the power spectrumdistribution. Therefore, in this work,
an approachwas developed to utilize real EEG recordings and simulate the synthetic recordings for further
performance validation of the proposed decomposition. Accordingly, ICAwas used to extract sources of a
dataset recording no-task EEG. The dataset had been originally recordedwith closed-eyes using 19 channels and
a sampling frequency of 200Hz to simulate and identify the effect of electrooculogram artifacts on EEG signals
(Klados andBamidis 2016). In this research, an autoregressive (AR)model was used to learn the behaviour of
estimated sources from ICA. Themodel is characterized as follows:

å= - - +
=

x n w x n k u n , 11
k

q

k
1

( ) ( ) ( ) ( )

where u(n) is the input of the system and is usually considered as zero-meanGaussianwhite noise (GWN), x(n) is
the observation sequence, andwk, 1� k� q is the ARparameter with q being the order of theARmodel (Li et al
2015). For training the proposedARmodel, qwas set to 12, and the Yule-Walker algorithmwas used tofind the
ARparameters (wk). Using the ARmodel andwhiteGaussian noise as the input,multiplemeaningful EEG
sources can be generated. Regarding the target ERP component, which is P300 in this article, the parameters of
the gamma function are set as c= 1,K= 14, and q =

-K

0.3

1
. Furthermore, to simulate the jitter effect, the values

ofK and θ are incremented by 0.02 and 0.005 in each iteration over 100 trials, respectively. The sampling
frequency is 200Hz and the duration of each trial is 2 s. Simulated ERP components are illustrated infigure 1. To
project the sources in ameaningfulmanner, the Brainstorm toolboxwas used, and the sources’ positionswere
manually located. The scalp and skull and brain tissue conductivities were set to 0.33, 0.004, and 0.33μs cm−1,
respectively. The position of the corresponding sourcewas also located aroundCz channel location
(Linden 2005). The projection of sources from the source space to the observation space was done using

= å =X a si
N

i
T

i1
s , whereX is the observationmatrix,Ns is the number of sources or 19 (in this article), ai is the

spatial vector corresponding to the ith source, and si is the ith source. Infigure 2, the power spectral density
(PSD) of the generated recordings using the proposed synthesismethod andwhite noise are shown, and it can be

Figure 1.Temporal distribution of generated P300 components through all the trials.
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conceivable that the proposedmethod could retrievemore information in all frequency bands;moreover, it was
able to preserve the hyperbolic shape of the EEGPSD.

As the performance of themethods should be evaluated in different SNR conditions, thematrix
corresponding to the reconstructed ERP component (S) and thematrix of noise signals or background EEG
recording (N) should bemerged using different coefficients,X= S+ ηN, where η is calculated as follows:

 
 

h =
*
S

N10
. 12F

F

2

2
10

( )SNR

The EEG synthesizing algorithm is illustrated infigure 3.

3.2. Real data
To evaluate the effectiveness of the proposed algorithm in real-world scenarios, we utilized EEG signals from
BCICompetition III (2004)-Dataset II (Blankertz et al 2004, 2006). The dataset consisted of participants
engaging infive sessions of several runs, where theywere taskedwith spelling a series of characters by observing a
6× 6 spellermatrix. During each character presentation, thematrix was displayed for a duration of 2.5 swith
uniform intensity (i.e. blankmatrix). Subsequently, individual rows and columns of thematrix were randomly
intensified for 100ms, resulting in 12 different stimuli. After each intensification, therewas a 75ms blank
period. The order of row/column intensificationswas randomizedwithin blocks of 12, and each set of 12
intensifications was repeated 15 times for each character, resulting in a total of 180 intensifications per character.
Following each sequence of 15 sets of intensifications, therewas another 2.5 s blank period.

Figure 2.PSD comparison (over channels) between two differentmethods for generating ERP-included EEG recordings; (a) the
proposed synthesismethod and (b)GWN-based synthesismethod.

Figure 3.The proposed EEG synthesis flowchart.
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Since the target character was repeated in two out of the 12 rows/columns, the experimental paradigmwas
considered as an odd-ball paradigm,with the intensification of the target row/column expected to elicit a P300
component. EEG signals were recorded using a 64-channel recording scheme at a sampling frequency of 240 Hz.

For this study, we utilized the training set of ‘Subject A,’which consisted of 85 epochs (characters). To focus
specifically on the time rangewhere P300 components are predominantly observed, we extracted the signals
from the onset of stimuli to 650ms after the onset. Subsequently, an 8th-order Chebyshev bandpassfilter with a
passband of 0.1–10 Hzwas applied to remove baseline drift and high-frequency artifacts from the signals. To
estimate the P300 component, we only considered the first repetition (trial) out of the 15 trials available for each
character. The estimated component was then correlatedwith the average of the 15 trials for each character. To
demonstrate the significance of ourwork, we applied the proposed algorithm to both target trials (containing
P300 components) and non-target trials (without P300 components), allowing for a comprehensive evaluation
of its performance.

3.3.Metrics
To compare the estimated and the original ERP component in the synthesized EEGdataset directly, four
differentmetrics have been proposed; (1) delay, which is the difference between the index of themaximum
amplitude in estimated and the original waveform, (2) relative amplitude, which is the ratio ofmaximum
amplitude of estimated component to the original one, (3) temporal correlation, which is the correlation
between the estimatedwaveform and the original one, and (4) spatial correlation, which is the correlation
between spatial vectors.

3.4. Tensorization
Making tensors fromEEG recordingmatrix can be done in several ways, e.g. concatenating recording of
different epochs in the thirdmode of tensor, using time-frequency representation such aswavelet, or using
transforms that have been developed for ERP extraction and adding the reconstructed component as the second
slice of the tensor. In this work, though exploring all approaches, the third family has shownbetter performance,
and accordingly were chosen for presentation and comparison of the results. Temporal PCA (TPCA), and ICA
were used as the blind source separationmethods inwhich sources are extracted from the observationmatrix
(Jung et al 1999, Kayser andTenke 2003, Bernat et al 2005). Then, the source that ismore correlated with the
standard gamma function is selected as the candidate source, and projected to the observation space using the
corresponding spatial vector. Thereafter, the reconstructedmatrix is placed in the second slice of the thirdmode
of tensor. The implementation of thementionedmethods has been done using ERPPCAToolkit and ICALAB
(Cichocki 2002,Dien 2010). The othermethod is based on spatio-temporal filtering, called STF, which estimates
the source and the spatial vector utilizing several trials (Li et al 2009). Afterwards, the source is projected to
observation space using the forwardmodel (aTs) and the reconstructedmatrix is placed in the thirdmode of the
tensor.

Regarding the rank estimation, we employed themodified eigenvalues estimator for Tucker rank
determination (MEET) algorithm (Yokota et al 2016), to estimate the rank of the firstmode (R1). After careful
consideration and for the sake of consistency among all SNRs, we set the firstmode rank to be 8 and the third
mode rank (R3) to be 2. Additionally, we intuitively set the temporal rank,R2, as 3 due to the presence of one ERP
source, one physiologicallymeaningful EEG component, and one non-physiological source (e.g. noise).

3.5. Results
3.5.1. Synthesized EEG
The comparison of the performance of the proposedmethod using different tensorization approaches is shown
infigure 4. It can be inferred that integrating the spatio-temporal filteringmethod (STF)with the ETucker
decomposition outperformed the other approaches.What can be clearly seen in this figure is the robustness of
the algorithm in low SNR (high noise) conditions. However, almost every approach failed to estimate the spatial
vector as the SNR gets worse (less than−20 dB).

As a tensor decomposition, Tucker has been shown as a source separation algorithm inwhich each vector of
the factormatrix can be considered as the source basis. In table 1, the performance of Tucker decomposition and
ETucker, whichwas exclusively extended for single-trial ERP extraction application, were comparedwith the
reference algorithms that were used initially for generating tensors. The table also shows that there has been a
sharp drop in the performance of Tucker in low SNR conditions as if the Tucker is unable to distinguish source
and background noise.

As table 1 illustrates, utilizing ICA alone can accurately estimate the temporal occurrence andmorphology of
the target component across all SNR conditions. However, it is found to be inadequate in determining the peak
amplitude and spatial vector of the component. The proposedmethod, ETucker, in conjunctionwith ICA,
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significantly improves the peak detection and peak onset estimation, while the spatial distribution estimation
remains inferior. A comparison of the proposedmethodwith the Tucker decomposition and ICA alone, reveals
that ETucker demonstrates superior performance in almost every SNR condition, particularly in low SNRor
extremely noisy conditions. The results of applying STF on our synthesized dataset suggest that themethod
demonstrates reliable performance in high SNR conditions. However, it is found to be inadequate in the
estimation of amplitude and peak occurrence in lower SNR conditions. These findings alignwith the results of
the original paper (Li et al 2008, 2009). Furthermore, the results indicate that the use of the proposed ETucker
method, in conjunctionwith STF, not only improves the performance of amplitude estimation, but also
enhances component occurrence detection and temporal correlation. It is important to note, however, that the
spatial correlation remains inadequate in high SNR conditions for allmethods. Additionally, the findings of our
study indicate that the Tucker decomposition built upon the STFmethod is ineffective in extracting the target
component, particularly in high SNR levels where the component is almost diminished.

Furthermore, table 1 suggests that TPCAmethod performs relatively acceptable in estimating the target
component at zero SNR level. However, as the SNRdecreases, the temporal occurrence and correlation of the
estimation deteriorate significantly. To address this limitation, we propose the use of ETucker in conjunction
with TPCA. The outcomes imply that this approach improves the delay, temporal correlation, and amplitude
estimation of the target componentwith a high level of significance. Despite this, it is important to note that all
methods, including TPCA, exhibit limitations in accurately estimating the spatial vectors of the target
component in noisy conditions. This is a common limitation among allmethods, regardless of the use of Tucker
or ETucker decomposition.

In addition to Tucker decomposition, we also compared our proposedmethodwithNTD, specifically
targeting the peak corresponding to our intended ERP component, which is the P300 characterized by a positive
peak. Table 2 presents the results of this comparison. The temporal estimation performance ofNTDwas found
to be superior to Tucker decomposition, indicating its ability to capture the temporal dynamics of the P300
componentmore accurately. However, it is important to note that the spatial precision ofNTDwas poor. This

Figure 4.The comparison of different tensorization approaches (where PCA represents TPCA) using differentmetrics; (a) shows
difference in estimated delay, (b) demonstrates the estimated relative amplitude, (c) and (d) show the temporal and spatial correlation
between estimated and original ERP component.
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Table 1.The comparison between the proposed tensor decomposition and the Tucker decomposition using different tensorizationmethodswith themethodswithout tensorizations in different SNR conditions. The numbers are reported
in the formofmean ± standard deviation over 100 trials.

Tensor

SNR

(dB)
Proposedmethod (ETucker) Tucker NoTensorization

Delay Peak Temporal Spatial Delay Peak Temporal Spatial Delay Peak Temporal Spatial

ICA (Jung et al
1999)

0 83.20 ± 100.79 0.44 ± 0.21 0.62 ± 0.35 0.27 ± 0.18 76.85 ± 96.06 0.15 ± 0.02 0.67 ± 0.29 0.34 ± 0.17 85.25 ± 110.50 3.09 ± 0.51 0.60 ± 0.32 0.22 ± 0.14

−5 95.25 ± 120.02 0.39 ± 0.22 0.55 ± 0.35 0.23 ± 0.16 106.95 ± 114.49 0.14 ± 0.02 0.49 ± 0.32 0.26 ± 0.15 90.95 ± 111.25 3.20 ± 0.51 0.58 ± 0.33 0.21 ± 0.14

−10 69.50 ± 91.46 0.42 ± 0.22 0.61 ± 0.34 0.19 ± 0.15 138.35 ± 145.12 0.14 ± 0.02 0.44 ± 0.31 0.24 ± 0.16 92.05 ± 105.60 3.15 ± 0.53 0.60 ± 0.33 0.20 ± 0.14

−15 81.10 ± 111.62 0.43 ± 0.23 0.65 ± 0.32 0.19 ± 0.15 107.80 ± 115.72 0.14 ± 0.02 0.48 ± 0.34 0.19 ± 0.13 102.40 ± 126.04 3.10 ± 0.55 0.55 ± 0.32 0.24 ± 0.16

−20 91.90 ± 121.68 0.43 ± 0.23 0.63 ± 0.33 0.20 ± 0.15 113.90 ± 129.51 0.14 ± 0.02 0.45 ± 0.32 0.18 ± 0.14 90.95 ± 113.77 3.12 ± 0.52 0.59 ± 0.30 0.21 ± 0.15

−25 104.90 ± 114.84 0.51 ± 0.85 0.60 ± 0.35 0.22 ± 0.15 107.25 ± 116.38 0.14 ± 0.02 0.45 ± 0.29 0.21 ± 0.15 112.80 ± 128.21 3.15 ± 0.58 0.55 ± 0.33 0.22 ± 0.16

−30 88.50 ± 111.02 0.42 ± 0.20 0.60 ± 0.34 0.20 ± 0.16 131.55 ± 138.32 0.14 ± 0.02 0.46 ± 0.32 0.18 ± 0.13 119.40 ± 130.37 3.15 ± 0.51 0.55 ± 0.36 0.20 ± 0.15

STF (Li et al
2008, 2009)

0 26.65 ± 67.35 0.63 ± 0.18 0.90 ± 0.17 0.48 ± 0.08 121.30 ± 148.54 0.18 ± 0.03 0.58 ± 0.41 0.30 ± 0.21 87.10 ± 254.12 0.74 ± 0.18 0.84 ± 0.24 0.45 ± 0.08

−5 30.35 ± 70.60 0.52 ± 0.16 0.90 ± 0.18 0.44 ± 0.14 70.90 ± 98.31 0.17 ± 0.02 0.71 ± 0.36 0.39 ± 0.16 91.95 ± 258.96 0.55 ± 0.17 0.85 ± 0.25 0.40 ± 0.04

−10 26.20 ± 47.50 0.46 ± 0.21 0.87 ± 0.14 0.38 ± 0.15 79.75 ± 111.84 0.16 ± 0.02 0.54 ± 0.28 0.34 ± 0.14 96.18 ± 263.20 0.36 ± 0.17 0.75 ± 0.15 0.39 ± 0.07

−15 39.70 ± 43.89 0.63 ± 0.22 0.83 ± 0.16 0.23 ± 0.13 193.00 ± 165.52 0.15 ± 0.02 0.19 ± 0.19 0.18 ± 0.12 99.95 ± 266.97 0.23 ± 0.16 0.79 ± 0.19 0.37 ± 0.13

−20 58.55 ± 54.20 0.77 ± 0.21 0.76 ± 0.20 0.16 ± 0.11 207.90 ± 160.76 0.15 ± 0.02 0.13 ± 0.11 0.14 ± 0.11 103.35 ± 270.37 0.17 ± 0.14 0.77 ± 0.18 0.28 ± 0.16

−25 46.95 ± 52.80 0.82 ± 0.20 0.80 ± 0.17 0.14 ± 0.09 231.85 ± 158.19 0.15 ± 0.02 0.11 ± 0.11 0.12 ± 0.09 106.45 ± 273.47 0.14 ± 0.13 0.70 ± 0.10 0.16 ± 0.14

−30 45.50 ± 50.25 0.83 ± 0.20 0.81 ± 0.15 0.13 ± 0.08 218.80 ± 163.39 0.15 ± 0.02 0.12 ± 0.10 0.12 ± 0.09 109.30 ± 276.31 0.12 ± 0.12 0.71 ± 0.12 0.09 ± 0.15

TPCA (Bernat
et al 2005)

0 77.75 ± 106.71 0.76 ± 0.35 0.67 ± 0.39 0.39 ± 0.19 76.75 ± 113.44 0.15 ± 0.02 0.77 ± 0.37 0.39 ± 0.18 52.75 ± 69.7 0.85 ± 0.27 0.40 ± 0.03 0.37 ± 0.15

−5 84.80 ± 107.28 1.05 ± 0.22 0.53 ± 0.39 0.36 ± 0.20 88.25 ± 110.28 0.15 ± 0.02 0.68 ± 0.34 0.39 ± 0.17 105.20 ± 175.3 0.77 ± 0.26 0.36 ± 0.04 0.36 ± 0.14

−10 127.10 ± 132.55 1.13 ± 0.30 0.38 ± 0.26 0.28 ± 0.14 110.45 ± 114.05 0.15 ± 0.02 0.35 ± 0.22 0.27 ± 0.14 331.80 ± 395.9 0.60 ± 0.32 0.26 ± 0.05 0.35 ± 0.16

−15 132.80 ± 140.52 1.18 ± 0.29 0.35 ± 0.23 0.20 ± 0.12 193.70 ± 164.24 0.15 ± 0.02 0.13 ± 0.12 0.17 ± 0.12 732.50 ± 389.8 0.40 ± 0.35 0.11 ± 0.07 0.21 ± 0.14

−20 138.85 ± 147.45 1.23 ± 0.28 0.38 ± 0.28 0.16 ± 0.10 212.35 ± 163.11 0.15 ± 0.02 0.11 ± 0.08 0.14 ± 0.10 822.35 ± 371.8 0.42 ± 0.36 0.06 ± 0.05 0.20 ± 0.13

−25 122.10 ± 148.53 1.23 ± 0.28 0.42 ± 0.31 0.15 ± 0.09 221.55 ± 169.94 0.15 ± 0.02 0.10 ± 0.08 0.13 ± 0.10 848.60 ± 376.5 0.42 ± 0.36 0.05 ± 0.04 0.20 ± 0.13

−30 127.45 ± 151.52 1.20 ± 0.28 0.41 ± 0.30 0.14 ± 0.09 225.95 ± 169.84 0.15 ± 0.02 0.10 ± 0.08 0.13 ± 0.10 867.05 ± 363.8 0.42 ± 0.36 0.04 ± 0.04 0.20 ± 0.13
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Table 2.The comparison between ETucker, Tucker decomposition, andNTDusing STF tensorizationmethod in different SNR conditions. The numbers are reported in the formofmean ± standard deviation over 100 trials.

Tensor

SNR

(dB)
Proposedmethod (ETucker) Tucker Non-negative Tucker (Kim andChoi 2007)

Delay Peak Temporal Spatial Delay Peak Temporal Spatial Delay Peak Temporal Spatial

STF (Li et al
2008, 2009)

0 26.65 ± 67.35 0.63 ± 0.18 0.90 ± 0.17 0.48 ± 0.08 121.30 ± 148.54 0.18 ± 0.03 0.58 ± 0.41 0.30 ± 0.21 23.75 ± 20.3 1.38 ± 0.21 0.47 ± 0.28 0.08 ± 0.01

−5 30.35 ± 70.60 0.52 ± 0.16 0.90 ± 0.18 0.44 ± 0.14 70.90 ± 98.31 0.17 ± 0.02 0.71 ± 0.36 0.39 ± 0.16 33.65 ± 27.8 0.3 ± 0.23 0.44 ± 0.18 0.08 ± 0.01

−10 26.20 ± 47.50 0.46 ± 0.21 0.87 ± 0.14 0.38 ± 0.15 79.75 ± 111.84 0.16 ± 0.02 0.54 ± 0.28 0.34 ± 0.14 112.75 ± 82 0.27 ± 0.12 0.24 ± 0.12 0.07 ± 0.01

−15 39.70 ± 43.89 0.63 ± 0.22 0.83 ± 0.16 0.23 ± 0.13 193.00 ± 165.52 0.15 ± 0.02 0.19 ± 0.19 0.18 ± 0.12 110.8 ± 87.02 0.25 ± 0.1 0.25 ± 0.13 0.06 ± 0.01

−20 58.55 ± 54.20 0.77 ± 0.21 0.76 ± 0.20 0.16 ± 0.11 207.90 ± 160.76 0.15 ± 0.02 0.13 ± 0.11 0.14 ± 0.11 113.12 ± 89.25 0.24 ± 0.12 0.26 ± 0.14 0.07 ± 0.02

−25 46.95 ± 52.80 0.82 ± 0.20 0.80 ± 0.17 0.14 ± 0.09 231.85 ± 158.19 0.15 ± 0.02 0.11 ± 0.11 0.12 ± 0.09 115.42 ± 89.1 0.22 ± 0.13 0.26 ± 0.15 0.08 ± 0.02

−30 45.50 ± 50.25 0.83 ± 0.20 0.81 ± 0.15 0.13 ± 0.08 218.80 ± 163.39 0.15 ± 0.02 0.12 ± 0.10 0.12 ± 0.09 113.2 ± 91.2 0.22 ± 0.14 0.26 ± 0.16 0.08 ± 0.03
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can be attributed to the specific characteristics of the synthesized data used in our study, where different weights
were assigned to project sources onto the EEG subspace, resulting in amixture of positive and negative values.
The optimization procedure ofNTD,which enforces non-negativity, ignores the presence of negative values,
leading to suboptimal spatial estimation. Furthermore, when comparing our proposedmethodwithNTD, our
model demonstrated superior performance. This can be attributed to the fact that our approach considers the
condition as a physiologicallymeaningful constraint, rather than solely relying on non-negativity.

3.5.2. Real data
The STF tensorization approach, using the specified hyperparameters that were used to simulate synthesized
EEGdata, was employed to generate a tensor from themulti-channel recordings. Temporal correlationwas
calculated between the estimated component in both target and non-target epochs and the grand average of four
specific channels: Cz, Fpz, Oz, andT9. The selection of Cz and Fpz channels was based on their proximity to the
source of the P300 component, whileOz andT9were chosen as they are spatially distant and not expected to
contain substantial P300-related information. The reported results present the average correlation of the target
row and column for target trials (2 out of 12), as well as the average correlation of all rows and columns for non-
target trials (10 out of 12). These correlations provide insights into the performance of the algorithm in
distinguishing between target and non-target trials.

Thefindings indicate that theCz channel (figure 5(a)) and Fpz channel (figure 5(b)) exhibit the highestmean
correlation across different epochs, suggesting their sensitivity to the underlying ERP characteristics.
Furthermore, these channels demonstrate a significant distinction between target and non-target trials.
Conversely, infigures 5(c) and (d), themean correlation between target and non-target ERPs is not significant.
This indicates that the algorithm successfully detects the ERP component in target trials, while being unable to
identify a significant component in channels that lack sufficient information about the underlying ERP
component.

Figure 5.Correlation between estimated ERP component and grand-averaged ERP in four channels: (a)Cz channel, (b) Fpz channel,
(c)Oz channel, (d)T9 channel. Blue lines and circles represent correlations of the target ERP, obtained by averaging the correlation of
the target rowERPwith the grand average and the correlation of the target columnERPwith the grand average. Red lines and dots
correspond to the non-target stimuli.
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3.6. Limitations and future directions
The proposed algorithm in this study has been shown to perform superiorly compared toTucker, NTD, and
other conventionalmatrix-based transformations for the task of source separation.However, the convergence
of the algorithm is not fully guaranteed due to the complexity of the loss function. This complexity leads to some
unexpected trends in the results, as seen infigures 4 and 5 and tables 1 and 2. In future directions of this study,
more complex and non-linear optimization algorithms should be investigated to address this challenge. One
possible approach is to use second-ordermethods, such asNewton’smethod and quasi-Newtonmethods. These
methods require the computation of theHessianmatrix, which can be computationally expensive, but they can
provide faster convergence than first-ordermethods. Another approach is to use heuristicmethods, such as
genetic algorithms or simulated annealing, which do not rely on gradient information and can be less sensitive to
the loss function’s complexity.

In this study, we utilized higher-order singular value decomposition (HOSVD) for initializing thefirst and
thirdmodes of the tensor decompositions under investigation.While the uniqueness ofHOSVD is guaranteed
due to the uniqueness of the corresponding singular vectormatrices of the unloading factors of the tensor, we
adopted a different approach to initialize the second factormatrix, which in turn compromised the uniqueness
of the proposed decomposition. However, it is important to note that themain focus of this studywas to explore
the Tucker decomposition in away that allows for accurate prediction of the underlying ERP by appropriately
combining differentfibers of the second factormatrix. Additionally, the introduced constraint
(l t-w U r2

2
2∣ ( )∣( ) ) ensures that the amplitude of the estimated component falls within an acceptable range.

Moreover, the presence ofw helps alleviate the issue of columnpermutationwithin the secondmode factor
matrix. In future steps of this study, additional constraints and/or unique initializationmethods can be
incorporated into the decomposition to address the issue of non-uniqueness.

Additionally, it is important to investigate the robustness of the proposed algorithm to different types of
noise and different EEGdatasets. This will allow us to better understand the limitations and strengths of the
proposed algorithm and to identify areas for further improvement. Furthermore, it would be also interesting to
study the extension of the proposed algorithm to other source separation tasks such as audio and image source
separation.

Overall, this study provides a promising approach for source separation, but there is still room for
improvement. By investigatingmore complex and non-linear optimization algorithms and studying the
robustness of the proposed algorithm, we can further improve its performance andmake itmorewidely
applicable to different source separation tasks.

4. Conclusion

In this paper, we proposed an extended tensor decomposition for single-trial ERP extraction. The proposed
model is based onTucker decomposition and addsmeaningful constraints to the tensor factorizations to
improve performance in source separation.Our experimental results in the synthesized EEGdataset show that
the proposedmodel outperforms Tucker decomposition in terms of source separation accuracy. Additionally,
the feasibility of leveraging themodel in clinical applications is evaluated using a publicly available dataset that
includes the P300 component.

This study has important implications for the field of EEG signal processing and source separation.Our
findings suggest thatmodified tensor decompositionsmay be a promising approach for extracting single-trial
ERPs fromEEGdata. Furthermore, the proposedmethodmay also be applied to other source separation
problems, such as audio and image source separation.

In future work, we plan to investigate the effectiveness of the proposedmethod on different EEGdatasets
andwith different types of noise. Additionally, wewill explore the possibility of incorporating additional
constraints into the tensor decomposition to further improve the performance of the proposedmethod.Overall,
this study has the potential to pave theway for new andmore accuratemethods for extracting single-trial ERPs
and other source separation applications.

Data availability statement

The data are simulated and can be provided upon request. The data that support the findings of this study are
available upon reasonable request from the authors. The real-world data are also available throughBCI
competitionwebsite ( https://www.bbci.de/competition/iii/.)

12

Physiol.Meas. 44 (2023) 075005 BTaghiBeyglou andMBShamsollahi

https://doi.org/https://www.bbci.de/competition/iii/


ORCID iDs

Behrad TaghiBeyglou https://orcid.org/0000-0003-4031-9537

References

AkbariH, ShamsollahiMB andPhlypo R 2015 Fetal ECG extraction usingπTucker decomposition 2015 Int. Conf. on Systems, Signals and
Image Processing (IWSSIP) (IEEE) pp 174–8

AniyanAK, PhilipN S, SamarV J,Desjardins J A and Segalowitz S J 2014Awavelet based algorithm for the identification of oscillatory
event-related potential components J. Neurosci.Methods 233 63–72

Bernat EM,WilliamsW J andGehringW J 2005Decomposing ERP time-frequency energy using PCAClin. Neurophysiol. 116 1314–34
Blankertz B,Muller K-R, Krusienski D J, SchalkG,Wolpaw JR, Schlogl A, Pfurtscheller G,Millan J R, SchroderMandBirbaumerN 2006

TheBCI competition III: validating alternative approaches to actual BCI problems IEEETrans. Neural Syst. Rehabil. Eng. 14 153–9
Blankertz B et al 2004TheBCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials IEEETrans.

Biomed. Eng. 51 1044–51
Cerutti S, Bersani V,Carrara A and Liberati D 1987Analysis of visual evoked potentials throughWiener filtering applied to a small number

of sweeps J. Biomed. Eng. 9 3–12
ChenZ, XuZ andWangD2021Deep transfer tensor decompositionwith orthogonal constraint for recommender systems Proc. of the AAAI

Conf. on Artificial Intelligence 35 pp 4010–8
Cichocki A 2002 ICALAB toolboxes (http://bsp.brain.riken.jp/ICALAB)
Cichocki A,MandicD,De Lathauwer L, ZhouG, ZhaoQ, Caiafa C and PhanHA2015Tensor decompositions for signal processing

applications: from two-way tomultiway component analysis IEEE Signal ProcessMag. 32 145–63
Cichocki A,WashizawaY, Rutkowski T, BakardjianH, PhanA-H, Choi S, LeeH, ZhaoQ, Zhang L and Li Y 2008Noninvasive BCIs:

multiway signal-processing array decompositionsComputer 41 34–42
Cichocki A, ZdunekR, PhanAH andAmari S I 2009NonnegativeMatrix andTensor Factorizations: Applications to ExploratoryMulti-way

Data Analysis and Blind Source Separation (NewYork:Wiley)
Cong F, PhanA-H, Astikainen P, ZhaoQ,WuQ,Hietanen J K, Ristaniemi T andCichocki A 2013Multi-domain feature extraction for small

event-related potentials through nonnegativemulti-way array decomposition from lowdense array EEG Int. J. Neural Syst. 23
1350006

DaoNTA et al 2020Multi-channel EEG epileptic spike detection by a newmethod of tensor decomposition J. Neural Eng. 17 016023
DeVosM,Vergult A,De Lathauwer L,DeClercqW,VanHuffel S, Dupont P, Palmini A andVan PaesschenW2007Canonical

decomposition of ictal scalp EEG reliably detects the seizure onset zoneNeuroImage 37 844–54
DeburchgraeveW,Cherian P J, DeVosM, Swarte RM, Blok JH,VisserGH,Govaert P andVanHuffel S 2009Neonatal seizure localization

using PARAFACdecompositionClin. Neurophysiol. 120 1787–96
Dien J 2010The ERPPCAToolkit: an open source program for advanced statistical analysis of event-related potential data J. Neurosci.

Methods 187 138–45
Dien J 2012Applying principal components analysis to event-related potentials: a tutorialDevelopmental Neuropsychology 37 497–517
Eliseyev A andAksenova T 2013RecursiveN-way partial least squares for brain-computer interface PLoSOne 8 e69962
FonałKandZdunek R 2019 Fast recursive nonnegative standard and hierarchical Tucker decomposition IEEE Signal Process Lett. 26 1265–9
Georgiadis SD, Ranta-aho PO, TarvainenMP andKarjalainen PA2005 Single-trial dynamical estimation of event-related potentials: a

Kalman filter-based approach IEEETrans. Biomed. Eng. 52 1397–406
IdajiM J, ShamsollahiMB and Sardouie SH2017Higher order spectral regression discriminant analysis (HOSRDA): A tensor feature

reductionmethod for ERPdetection Pattern Recognit. 70 152–62
Jarchi D, Sanei S,MohseniHR and LoristMM2011Coupled particle filtering: A new approach for P300-based analysis ofmental fatigue

Biomed. Signal Process. Control 6 175–85
Jarchi D, Sanei S, Principe J C andMakkiabadi B 2010Anew spatiotemporal filteringmethod for single-trial estimation of correlated ERP

subcomponents IEEETrans. Biomed. Eng. 58 132–43
JungT,Makeig S,WesterfieldM,Townsend J, Courchesne E and Sejnowski T 1999 Independent component analysis of single-trial event-

related potentialsProc. ICA 99 173–9
KaplanAY, Shishkin S L,Ganin I P, Basyul I A andZhigalov AY 2013Adapting the P300-based brain-computer interface for gaming: a

review,” IEEETransactions onComputat. Intell. AI Games 5 141–9
Käthner I,Wriessnegger S C,Müller-PutzGR,Kübler A andHalder S 2014 Effects ofmental workload and fatigue on the P300, alpha and

theta band power during operation of an ERP (P300) brain-computer interfaceBiol. Psychol. 102 118–29
Kayser J andTenkeCE 2003Optimizing PCAmethodology for ERP component identification andmeasurement: theoretical rationale and

empirical evaluationClin. Neurophysiol. 114 2307–25
KimY-D andChoi S 2007Nonnegative Tucker decomposition 2007 IEEEConf. onComputer vision and Pattern Recognition (IEEE) pp 1–8
KladosMA andBamidis PD2016A semi-simulated EEG/EOGdataset for the comparison of EOGartifact rejection techniquesData Brief 8

1004–6
Kolda TG andBader BW2009Tensor decompositions and applications SIAMRev. 51 455–500
Kossaifi J, Panagakis Y, Anandkumar A and PanticM2018Tensorly: Tensor learning in python arXiv:1610.09555
LatchoumaneC-FV, Vialatte F-B, Solé-Casals J,MauriceM,Wimalaratna S R,HudsonN, Jeong J andCichocki A 2012Multiway array

decomposition analysis of EEGs in alzheimerʼs disease J. Neurosci.Methods 207 41–50
LeeWL, TanT, Falkmer T and Leung YH2016 Single-trial event-related potential extraction through one-unit ICA-with-reference

J. Neural Eng. 13 066010
Li P et al 2015Autoregressivemodel in the Lp norm space for EEG analysis J. Neurosci.Methods 240 170–8
Li R, Keil A andPrincipe J C 2009 Single-trial P300 estimationwith a spatiotemporal filteringmethod J. Neurosci.Methods 177 488–96
Li R, Principe J C, BradleyMand Ferrari V 2008A spatiotemporal filteringmethodology for single-trial ERP component estimation IEEE

Trans. Biomed. Eng. 56 83–92
LindenDE 2005The P300: where in the brain is it produced andwhat does it tell us? Neuroscientist 11 563–76
Luck S J 2014An Introduction to the Event-related Potential Technique (Cambridge,MA:MITPress)
Luck S J,WoodmanGF andVogel EK 2000 Event-related potential studies of attentionTrends Cogn Sci 4 432–40

13

Physiol.Meas. 44 (2023) 075005 BTaghiBeyglou andMBShamsollahi

https://orcid.org/0000-0003-4031-9537
https://orcid.org/0000-0003-4031-9537
https://orcid.org/0000-0003-4031-9537
https://orcid.org/0000-0003-4031-9537
https://doi.org/10.1016/j.jneumeth.2014.06.004
https://doi.org/10.1016/j.jneumeth.2014.06.004
https://doi.org/10.1016/j.jneumeth.2014.06.004
https://doi.org/10.1016/j.clinph.2005.01.019
https://doi.org/10.1016/j.clinph.2005.01.019
https://doi.org/10.1016/j.clinph.2005.01.019
https://doi.org/10.1109/TNSRE.2006.875642
https://doi.org/10.1109/TNSRE.2006.875642
https://doi.org/10.1109/TNSRE.2006.875642
https://doi.org/10.1109/TBME.2004.826692
https://doi.org/10.1109/TBME.2004.826692
https://doi.org/10.1109/TBME.2004.826692
https://doi.org/10.1016/0141-5425(87)90093-8
https://doi.org/10.1016/0141-5425(87)90093-8
https://doi.org/10.1016/0141-5425(87)90093-8
http://www.bsp.brain.riken.jp/ICALAB
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1109/MC.2008.431
https://doi.org/10.1109/MC.2008.431
https://doi.org/10.1109/MC.2008.431
https://doi.org/10.1142/S0129065713500068
https://doi.org/10.1142/S0129065713500068
https://doi.org/10.1088/1741-2552/ab5247
https://doi.org/10.1016/j.neuroimage.2007.04.041
https://doi.org/10.1016/j.neuroimage.2007.04.041
https://doi.org/10.1016/j.neuroimage.2007.04.041
https://doi.org/10.1016/j.clinph.2009.07.044
https://doi.org/10.1016/j.clinph.2009.07.044
https://doi.org/10.1016/j.clinph.2009.07.044
https://doi.org/10.1016/j.jneumeth.2009.12.009
https://doi.org/10.1016/j.jneumeth.2009.12.009
https://doi.org/10.1016/j.jneumeth.2009.12.009
https://doi.org/10.1080/87565641.2012.697503
https://doi.org/10.1080/87565641.2012.697503
https://doi.org/10.1080/87565641.2012.697503
https://doi.org/10.1371/journal.pone.0069962
https://doi.org/10.1109/LSP.2019.2926845
https://doi.org/10.1109/LSP.2019.2926845
https://doi.org/10.1109/LSP.2019.2926845
https://doi.org/10.1109/TBME.2005.851506
https://doi.org/10.1109/TBME.2005.851506
https://doi.org/10.1109/TBME.2005.851506
https://doi.org/10.1016/j.patcog.2017.05.004
https://doi.org/10.1016/j.patcog.2017.05.004
https://doi.org/10.1016/j.patcog.2017.05.004
https://doi.org/10.1016/j.bspc.2010.09.001
https://doi.org/10.1016/j.bspc.2010.09.001
https://doi.org/10.1016/j.bspc.2010.09.001
https://doi.org/10.1109/TBME.2010.2083660
https://doi.org/10.1109/TBME.2010.2083660
https://doi.org/10.1109/TBME.2010.2083660
https://doi.org/10.1109/TCIAIG.2012.2237517
https://doi.org/10.1109/TCIAIG.2012.2237517
https://doi.org/10.1109/TCIAIG.2012.2237517
https://doi.org/10.1016/j.biopsycho.2014.07.014
https://doi.org/10.1016/j.biopsycho.2014.07.014
https://doi.org/10.1016/j.biopsycho.2014.07.014
https://doi.org/10.1016/S1388-2457(03)00241-4
https://doi.org/10.1016/S1388-2457(03)00241-4
https://doi.org/10.1016/S1388-2457(03)00241-4
https://doi.org/10.1016/j.dib.2016.06.032
https://doi.org/10.1016/j.dib.2016.06.032
https://doi.org/10.1016/j.dib.2016.06.032
https://doi.org/10.1016/j.dib.2016.06.032
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
http://arxiv.org/abs/1610.09555
https://doi.org/10.1016/j.jneumeth.2012.03.005
https://doi.org/10.1016/j.jneumeth.2012.03.005
https://doi.org/10.1016/j.jneumeth.2012.03.005
https://doi.org/10.1088/1741-2560/13/6/066010
https://doi.org/10.1016/j.jneumeth.2014.11.007
https://doi.org/10.1016/j.jneumeth.2014.11.007
https://doi.org/10.1016/j.jneumeth.2014.11.007
https://doi.org/10.1016/j.jneumeth.2008.10.035
https://doi.org/10.1016/j.jneumeth.2008.10.035
https://doi.org/10.1016/j.jneumeth.2008.10.035
https://doi.org/10.1109/TBME.2008.2002153
https://doi.org/10.1109/TBME.2008.2002153
https://doi.org/10.1109/TBME.2008.2002153
https://doi.org/10.1177/1073858405280524
https://doi.org/10.1177/1073858405280524
https://doi.org/10.1177/1073858405280524
https://doi.org/10.1016/S1364-6613(00)01545-X
https://doi.org/10.1016/S1364-6613(00)01545-X
https://doi.org/10.1016/S1364-6613(00)01545-X


MaR, YuT, ZhongX, YuZL, Li Y andGuZ 2021Capsule network for ERPdetection in brain-computer interface IEEETrans. Neural Syst.
Rehabil. Eng. 29 718–30

MacDonald B andBarry R J 2014Trial effects in single-trial ERP components and autonomic responses at very long ISIs Int. J. Psychophysiol.
92 99–112

MakiH, TanakaH, Sakti S andNakamura S 2018Graph regularized tensor factorization for single-trial EEG analysis 2018 IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP) (IEEE)pp 846–50

MalikOA andBecker S 2018 Low-rankTucker decomposition of large tensors using tensorsketchAdvances inNeural Information Processing
Systems

MørupM,Hansen LK, Arnfred SM, LimL-H andMadsenKH2008 Shift-invariantmultilinear decomposition of neuroimaging data
NeuroImage 42 1439–50

MørupM,Hansen LK,HerrmannC S, Parnas J andArnfred SM2006 Parallel factor analysis as an exploratory tool for wavelet transformed
event-related EEGNeuroImage 29 938–47

OuyangG,HerzmannG, ZhouC and SommerW2011Residue iteration decomposition (RIDE): a newmethod to separate ERP
components on the basis of latency variability in single trials, Psychophysiology 48 1631–47

Quiroga RQ andGarciaH2003 Single-trial event-related potentials withwavelet denoisingClin. Neurophysiology 114 376–90
RanjbarM,MikaeiliM andBanaraki AK 2018 Single trial estimation of peak latency and amplitude ofmultiple correlated ERP components

J.Med. Biol. Eng. 38 161–72
RanjbarM,MikaeiliM andBanaraki AK 2020 Single trial estimation of event-related potential components using spatiotemporal filtering

and artificial bee colony optimizedGaussian kernelmixturemodel Int. J. Adapt Control Signal Process. 34 1135–47
Rošt’áková Z, Rosipal R, Seifpour S andTrejo L J 2020A comparison of non-negative Tucker decomposition and parallel factor analysis for

identification andmeasurement of humanEEG rhythmsMeas. Sci. Rev. 20 126–38
SabetiM,Katebi S, Rastgar K andAzimifar Z 2016Amulti-resolution approach to localize neural sources of P300 event-related brain

potentialComput.Methods Programs Biomed. 133 155–68
SchomerDL andDa Silva F L 2012Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields

(Philadelphia, PA: LippincottWilliams&Wilkins)
TingC-M, Salleh S-H, Zainuddin ZMandBaharA 2014Artifact removal from single-trial ERPs using non-Gaussian stochastic volatility

models and particle filter IEEE Signal Process Lett. 21 923–7
VanderperrenK et al 2013 Single trial ERP reading based on parallel factor analysis Psychophysiology 50 97–110
WangD, ZhuY, Ristaniemi T andCong F 2018 Extractingmulti-mode ERP features using fifth-order nonnegative tensor decomposition

J. Neurosci.Methods 308 240–7
WangX, LiuW, Toiviainen P, Ristaniemi T andCong F 2020Group analysis of ongoing EEGdata based on fast double-coupled nonnegative

tensor decomposition J. Neurosci.Methods 330 108502
XiaoX, XuM, Jin J,Wang Y, Jung T-P andMingD2019Discriminative canonical patternmatching for single-trial classification of ERP

components IEEE Trans. Biomed. Eng. 67 2266–75
Yokota T, LeeN andCichocki A 2016Robustmultilinear tensor rank estimation using higher order singular value decomposition and

information criteria IEEETrans. Signal Process. 65 1196–206
Zang S,DingX,WuMandZhouC 2022AnEEG classification-basedmethod for single-trial N170 latency detection and estimationComput.

Math.MethodsMed. 2022 6331956
ZhangG et al 2020Multi-domain features of the non-phase-locked component of interest extracted fromERPdata by tensor

decomposition,Brain Topography 33 37–47
ZhaoQ,Caiafa C F,MandicDP,Chao ZC,Nagasaka Y, Fujii N, Zhang L andCichocki A 2012Higher order partial least squares (HOPLS): a

generalizedmultilinear regressionmethod IEEE Trans. Pattern Anal.Mach. Intell. 35 1660–73
ZhouG andCichocki A 2012 Fast and unique Tucker decompositions viamultiway blind source separationBull. Polish Acad. Sci. Tech. Sci.

60 389–405

14

Physiol.Meas. 44 (2023) 075005 BTaghiBeyglou andMBShamsollahi

https://doi.org/10.1109/TNSRE.2021.3070327
https://doi.org/10.1109/TNSRE.2021.3070327
https://doi.org/10.1109/TNSRE.2021.3070327
https://doi.org/10.1016/j.ijpsycho.2014.03.007
https://doi.org/10.1016/j.ijpsycho.2014.03.007
https://doi.org/10.1016/j.ijpsycho.2014.03.007
https://doi.org/10.1016/j.neuroimage.2008.05.062
https://doi.org/10.1016/j.neuroimage.2008.05.062
https://doi.org/10.1016/j.neuroimage.2008.05.062
https://doi.org/10.1016/j.neuroimage.2005.08.005
https://doi.org/10.1016/j.neuroimage.2005.08.005
https://doi.org/10.1016/j.neuroimage.2005.08.005
https://doi.org/10.1111/j.1469-8986.2011.01269.x
https://doi.org/10.1111/j.1469-8986.2011.01269.x
https://doi.org/10.1111/j.1469-8986.2011.01269.x
https://doi.org/10.1016/S1388-2457(02)00365-6
https://doi.org/10.1016/S1388-2457(02)00365-6
https://doi.org/10.1016/S1388-2457(02)00365-6
https://doi.org/10.1007/s40846-017-0309-2
https://doi.org/10.1007/s40846-017-0309-2
https://doi.org/10.1007/s40846-017-0309-2
https://doi.org/10.1002/acs.3110
https://doi.org/10.1002/acs.3110
https://doi.org/10.1002/acs.3110
https://doi.org/10.2478/msr-2020-0015
https://doi.org/10.2478/msr-2020-0015
https://doi.org/10.2478/msr-2020-0015
https://doi.org/10.1016/j.cmpb.2016.05.013
https://doi.org/10.1016/j.cmpb.2016.05.013
https://doi.org/10.1016/j.cmpb.2016.05.013
https://doi.org/10.1109/LSP.2014.2321000
https://doi.org/10.1109/LSP.2014.2321000
https://doi.org/10.1109/LSP.2014.2321000
https://doi.org/10.1111/j.1469-8986.2012.01405.x
https://doi.org/10.1111/j.1469-8986.2012.01405.x
https://doi.org/10.1111/j.1469-8986.2012.01405.x
https://doi.org/10.1016/j.jneumeth.2018.07.020
https://doi.org/10.1016/j.jneumeth.2018.07.020
https://doi.org/10.1016/j.jneumeth.2018.07.020
https://doi.org/10.1016/j.jneumeth.2019.108502
https://doi.org/10.1109/TBME.2019.2958641
https://doi.org/10.1109/TBME.2019.2958641
https://doi.org/10.1109/TBME.2019.2958641
https://doi.org/10.1109/TSP.2016.2620965
https://doi.org/10.1109/TSP.2016.2620965
https://doi.org/10.1109/TSP.2016.2620965
https://doi.org/10.1155/2022/6331956
https://doi.org/10.1007/s10548-019-00750-8
https://doi.org/10.1007/s10548-019-00750-8
https://doi.org/10.1007/s10548-019-00750-8
https://doi.org/10.1109/TPAMI.2012.254
https://doi.org/10.1109/TPAMI.2012.254
https://doi.org/10.1109/TPAMI.2012.254

	1. Introduction
	2. Methods
	2.1. Notations
	2.2. Tucker decomposition
	2.3. Non-negative Tucker decomposition
	2.4. Constrained Tucker decomposition for ERP extraction

	3. Experiments
	3.1. Synthesizing EEG recordings
	3.2. Real data
	3.3. Metrics
	3.4. Tensorization
	3.5. Results
	3.5.1. Synthesized EEG
	3.5.2. Real data

	3.6. Limitations and future directions

	4. Conclusion
	Data availability statement
	References



