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Abstract 

Purpose: Cardiac arrhythmia is one of the most common heart diseases that can have serious consequences. Thus, 

heartbeat arrhythmias classification is very important to help diagnose and treat. To develop the automatic classification 

of heartbeats, recent advances in signal processing can be employed. The Hidden Markov Model (HMM) is a powerful 

statistical tool with the ability to learn different dynamics of the real time-series such as cardiac signals. 

Materials and Methods: In this study, a hierarchy of HMMs named Layered HMM (LHMM) was presented to 

classify heartbeats from the two-channel electrocardiograms. For training in the first layer, the morphology of the 

heartbeats was used as observations, while observations in the second layer were the inference results of the first 

layer. The performance of the proposed LHMM was evaluated in classifying three types of heartbeat arrhythmias 

(Atrial premature beats (A), Escape beats (E), Left bundle branch block beats (L)) using fifteen records of the 

MIT-BIH arrhythmia database. Furthermore, the obtained results of the proposed model were compared with 

other HMM generalizations. 

Results: The best average accuracy was achieved 97.10±1.63%. The best sensitivity of 96.8±1.24%, 98.85±0.52%, 

and 95.64±1.41% were obtained for A, E, and L, respectively. Furthermore, the results of the proposed method were 

better than other HMM generalizations. 

Conclusion: Extracting information from time-series dynamics by HMM-based methods has good classification 

results. The proposed model shows that applying a two-layered HMM can lead to better extraction of information 

from the observations; therefore, the classification performance of cardiac arrhythmias has been improved using 

LHMM. 
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1. Introduction  

Today, cardiovascular disease is one of the main causes 

of death in the world. Cardiac arrhythmia is a very common 

type of cardiovascular disease, which increases the risk 

of stroke or sudden cardiac death [1]. Many arrhythmias 

appear as sequences of heartbeats with abnormal timing 

or morphology [2]. The most common method for cardiac 

arrhythmias detection is the use of an Electrocardiogram 

(ECG) signal, which is widely used as a clinical process 

[1]. Classification of arrhythmias based on ECG signals 

is very important in the diagnosis and treatment of various 

cardiovascular diseases. Over the past years, numerous 

algorithms have been proposed for the development of 

automated systems for the accurate classification of ECG 

signals [3-6]. Most existing researches have mainly focused 

on the processing of single-lead ECGs [7-9]. However, 

the ECG signal can be recorded in different locations of 

the body, and thus multi-lead / channel ECGs can be 

obtained, which can better reflect the state of the heart 

and improve the diagnostic function compared to the 

single-lead ECG [10]. Tanoh et al. have used the correlation 

between the two leads to classify the heartbeats. The 

results showed higher accuracy of two-lead (95.7%) than 

single-lead (91%) ECG in classification [11]. Among 

these leads, lead II emphasizes different segments within 

the heartbeat, while lead V and its associated leads (V1, 

V2) are used to classify ventricular arrhythmias [12]. Liu 

et al. have used the extracted features of lead II and V1 

to classify five types of arrhythmias by artificial neural 

networks and in a real scenario, their classification results 

showed an accuracy of 96.4% [13]. An efficient system 

for the recognition of three types of arrhythmias was 

reported by Zadeh et al. [14]. They achieved accuracy of 

97.14% using twelve two-channel (II, V1) ECG records.  

One of the methods used to classify heartbeats is Hidden 

Markov Model  )HMM(. HMM is a statistical model and 

uses a Markov process with a finite number of unobservable 

or hidden states (a change in the current state depends on 

the previous state) that generates a sequence of observations 

[15]. Due to the sequential nature of the events of each 

cardiac cycle and the quasi-oscillating behavior of the 

associated signals, the use of HMM can distinguish the 

underlying structures in the cardiac signals. Previous studies 

have demonstrated the usefulness of the HMM framework 

when analyzing ECG signals, and this model was widely 

used in the detection, classification, and prediction of 

cardiac abnormalities and arrhythmias such as apnea 

bradycardia detection in preterm infants [16, 17], ECG 

segmentation [18, 19], beat detection [20], and heartbeat 

classification [5, 21, 22]. Recently, Liao et al. have 

developed an automatic heartbeat classification system 

based on higher-order HMM (HOHMMs) with two 

leads (II, V1) and obtained an accuracy of 88.33% to 

classify three types of heartbeats [23]. 

There are various generalizations of HMM in the 

literature that have been used in various applications, 

including classification, to improve performance and 

overcome certain limitations in the standard HMM. One 

of these models is the Layered HMM  )LHMM (, which 

was first proposed by Oliver et al. [24] to recognize human 

states in a static office environment, and it has been used 

in various applications such as intension recognition 

[25-27], event detection, and prediction [28, 29]. Instead 

of using a huge HMM, LHMM creates a hierarchy of 

HMMs. There is a set of HMM banks at each layer, related 

to each dynamic/class. The input of each layer is the output 

of the previous layer and signals are analyzed in different 

time resolution, which is defined as “time granularity”. 

Time granularity indicates the length of a window that 

segments the sequence of observations. Each layer can 

be trained and evaluated separately, which decreases the 

risk of overfitting [15]. The first layer is very sensitive 

to environmental changes and can be re-trained without 

training the other hierarchical layers and its inputs are 

directly analyzed, while the inputs of the following 

layers are the inferential results of the previous layer [24]. 

In this study, we intended to introduce the LHMM 

approach, used in other areas, in heartbeat classification, 

hence a model based on LHMM was constructed, trained, 

and evaluated to classify heartbeats using ECG signals from 

leads MLII and V1. This paper is organized as follows: 

Section 2, profiles the database that is used in this study. 

In section 3, the details of the proposed method as well as 

the optimization and validation methodology are presented. 

The results obtained are reported in section 4. Finally, 

the discussion is outlined in section 5. 

1.1. Database 

To conduct this study, we used the MIT-BIH Arrhythmia 

Database containing 48 half-hours extracted of two-channel 

(MLII, V1) ECG recordings. Three types of more or less 

similar heartbeats (Atrial premature beats (A), Escape 

beats (E), Left bundle branch block beats (L)) were included 

for this study. Out of 48 records, 15 records (108, 109, 111, 
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118, 200, 201, 202, 207, 210, 214, 220, 222, 223, 232, 

233) containing all of these types of heartbeats in the 

MIT-BIH arrhythmia database were selected. Figure 1 

shows the morphology of the beats used in this study. Each 

record of the MIT-BIH arrhythmia database was digitized 

at a rate of 360 samples per second and independently 

labeled by two or more cardiologists [30, 31]. The selected 

records must be preprocessed to use as observation 

sequences of HMM. The baseline wandering and power 

line interference noises were removed from the ECG signal 

by the wavelet denoising approach [32]. QRS complex 

detection and ECG wave delineation were performed 

using Pan and Tompkins’s algorithm [33] and wavelet 

transform [34], respectively. Then Trace Segmentation 

(TS) method was applied to reduce the length of heartbeats. 

To perform TS, an auxiliary signal was calculated, where 

each sample corresponds to the sum of the derivatives 

of the previous samples of the original signal. Thus, an 

ascending curve was obtained, which started from zero 

amplitude and ends with amplitude indicating the global 

change of the signal. Finally, to define sampling points, 

the range of this curve was divided into as many equal 

intervals as samples desired [35]. After TS, the length 

of the observation sequence in every beat was fixed to 

T=110 samples (minimum length of the beats).  

The distribution of arrhythmias between records was 

not balanced. To have a balanced database in the 

classification problem, 350 beats were extracted for each 

type of heartbeats from the aforementioned records. 

2. Materials and Methods  

All the analyses were performed in Matlab (2018b, 

The MathWorks Inc., Natick, MA, USA). 

2.1. Proposed LHMM Structure 

In this study, a two-layered hierarchy of the HMMs 

for heartbeat classification was proposed as shown in 

Figure 2.  

The first layer was designed to include two HMM 

banks to separately analyze V1 (𝐵𝑉1) and MLII (𝐵𝑀𝐿𝐼𝐼) 

for classifying a heartbeat.  At each bank, three HMMs 

were trained, each one for a type of heartbeats (A, E, 

L) using relevant training data. The input observations 

of HMMs at the first layer were continuous, and hence 

to prevent degradation associated with amplitude 

quantization, Continues Density HMMs (CDHMMs) were 

built using CDHMM theory [15]. At the first layer, the 

concept of time granularity was considered as the length 

of a heartbeat. The extracted heartbeats of two channels 

(MLII, V1) were separately  used as the observations of 

related HMM banks. In the test step, for the observation 𝑂, 

the HMM of class 𝑘, 𝑘 ∈ { A, E, L}, in bank 𝐵, 𝐵 =

 𝐵𝑀𝐿𝐼𝐼 , 𝐵𝑉1, characterized by model parameters set 𝜆𝑘
𝐵, 

generates a likelihood value as its output (Equation 1): 

𝑙𝑙𝑘
𝐵 = 𝑙𝑜𝑔𝑃(𝑂|𝜆𝑘

𝐵). (1) 

The likelihood of a dynamic demonstrates the chance 

of the observation being generated by that dynamic, 

 

Figure 2. The beats used in this study (10 traces per 

class). The first and the second columns depict the 

traces of the MLII and V1 channels for the three types 

of beats, respectively 

 

Figure 1. The proposed layered structure for heartbeat 

classification 
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for which the model by the parameter set of 𝜆𝑘
𝐵 is trained. 

By comparing the likelihoods generated by the three 

models inside a bank 𝐵, the label of the model with the 

maximum likelihood was selected. Finally, two sequences 

were generated from the outputs of HMM banks in the 

first layer and used as the inputs to the second layer.  

The purpose of the second layer is to make the final 

classification of heartbeats by integrating and analyzing 

the two outputs of the first layer banks with the time 

granularity of five heartbeats that were selected empirically. 

In the second layer, classification was performed by one 

HMM bank (BII), the inferential results from the first layer 

(two sequences of discrete labels) were passed to the second 

layer as observations, and a two-dimensional discrete 

HMM was trained for each type of heartbeats (three 

HMMs). The outputs of each bank in the first layer were 

synchronously segmented with a five-heartbeat length 

with a stride of one heartbeat and were used as inputs 

of the second layer. The observation sequence (input) 

at the second layer was defined by (Equation 2): 

𝑂(𝑡) = (𝑂1(𝑡), 𝑂2(𝑡)) (2) 

Where 𝑂1(𝑡) and 𝑂2(𝑡) represent observation 

sequences that were obtained from the bank related to 

MLII and the bank related to V1, respectively. In the second 

layer, two approaches were considered to determine the 

label of each heartbeat.  

1. Without-voting approach, where the probability 

of each observation per model was calculated and the 

label of the model with the maximum likelihood was 

assigned to the last heartbeat of each observation. 

2. With-voting approach, where the probability of 

each observation per model was calculated and the label 

of the model with the maximum likelihood was assigned 

to observation. Finally, the class label of each heartbeat 

was determined by the maximum voting strategy in five 

consecutive observations containing the heartbeat. 

2.2. The Optimization and Evaluation 

The parameters 𝜆𝑘
𝐵 , 𝐵 ∈ {𝐵𝑀𝐿𝐼𝐼  , 𝐵𝑉1, 𝐵𝐼𝐼}, 𝑘 ∈

{ 𝐴, 𝐸, 𝐿}) required for the construction of the proposed 

LHMM structure were optimally determined. To optimize 

the parameters and to evaluate the performance of the 

proposed method in classification, out of 1050 (350 beats 

per class) extracted heartbeats, 150 heartbeats for each 

class (A, E, L) were randomly selected for the optimization 

dataset and the rest for the evaluation dataset.  

Out of 150 heartbeats per class in the optimization set, 

75 heartbeats per class were randomly selected and divided 

into two subsets of 50 and 25 heartbeats per class for 

training and validation in the first layer, respectively. A 

training phase was applied to estimate the parameters of 

each HMM using a training observation dataset. 

In both banks (BMLII, BV1) of the first layer, three 

datasets were simultaneously constructed for the training 

phase. Training datasets were used to train HMMs in 

relevant banks with the same number of states for all 

classes. To determine the optimal state of each bank, a 

set of the number of states, {2, 4, …, 9}, were investigated 

and classification performance was evaluated using 

confusion matrices, by calculating sensitivity (SEN, 

Equation 3) and accuracy (ACC, Equation 4) on the 

validation set for each number of states. A confusion matrix 

was constructed by setting the rows for reference heartbeats 

and columns for labels obtained by the classification 

algorithm. To express how successfully the proposed model 

classified a class over other classes, SEN was calculated. 

For class 𝑘, 𝑘 ∈ { 𝐴, 𝐸, 𝐿}), SEN was defined as follows 

(Equation 3): 

𝑆𝐸𝑁𝑘 =  
 𝑥𝑘𝑘

∑ 𝑥𝑘𝑖
𝑡𝑜𝑡𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑖=1

 (3) 

Where 𝑥𝑘𝑘was the number of heartbeats that have 

been correctly assigned to the class k whereas 𝑥𝑘𝑖was 

the number of heartbeats that were wrongly assigned 

to other classes by the classification algorithm. ACC 

was defined as (Equation 4): 

𝐴𝐶𝐶 =
∑ 𝑥𝑖𝑖

𝑡𝑜𝑡𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑖=1

∑ ∑ 𝑥𝑖𝑗
𝑡𝑜𝑡𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑗=1

𝑡𝑜𝑡𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑖=1

 (4) 

Where 𝑥𝑖𝑗 was the number of heartbeats annotated 

as class 𝑖 but labeled by the detector as class 𝑗.  

Finally, the number of states of the model with the 

maximum ACC among the models was chosen as the 

optimal number of states of each bank. The remaining 

heartbeats of the optimization set were used to determine 

the parameters of HMMs in the second layer and were 

divided into two subsets of 50 and 25 heartbeats per 

class for training and validation, respectively. To determine 

optimal parameters in the second layer, three datasets 

were constructed from the optimization dataset. The 

five-heartbeat segments for each model (A, E, L) of the 

second layer were synchronously selected from the 

outputs of the first layer banks and training data were 

constructed for both approaches (without-voting, with-
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voting). The algorithm to obtain the optimal parameters 

for both approaches was similar to the first one except 

time granularity was five heartbeats. 

Cross-validation was performed on the evaluation set 

by repeating 5 folds, each of which involved the calculation 

of metrics. The average and Standard Deviation (STD) 

of overall folds were reported. 

3. Results  

The results of the proposed LHMM concerning the 

problem of heartbeat classification on fifteen records 

of the MIT-BIH database were reported. The comparison 

was made concerning existing Markovian models such as 

HMM with bivariate observations [15], Coupled Hidden 

Markov Model (CHMM) proposed by Rezek et al. [36], 

and CHMM proposed by Montazeri et al. [17].  

The optimal values of the number of states in banks of 

the first and the second layer, as well as calculated metrics 

in these optimal values, are summarized in Table 1. 

The SEN and ACC metrics were calculated for various 

numbers of states to find their optimal values. In the first 

layer, the maximum training ACC was obtained as 86.64% 

and 89.75% for banks related to MLII and V1, respectively. 

In the second layer, the maximum training ACC was 

obtained as 97.18% for the without-voting approach, 

and 98.05% for the with-voting approach.  

The performance metrics of each bank for two approaches 

were calculated on test data through cross-validation 

and reported in Table 2. According to this table, the 

best results for heartbeat classification were achieved 

by the second layer in both approaches with an average 

ACC of 96.14±2.02% for the without-voting approach, 

and 97.10±1.63% for the with-voting approach. 

Table 1. The optimal values of the number of states in the banks of the first layer and the second layer and related metrics 

Bank Class Optimal Number of States SEN (%) Training ACC(%) 

1st layer 

𝑩𝑴𝑳𝑰𝑰 

A 4 78.47 

86.64 E 4 98.30 

L 4 83.16 

𝑩𝑽𝟏 

A 4 80.04 

89.75 E 4 95.21 

L 4 94.01 

2nd layer 

Without-voting  

approach 

  A 3 96.10 

97.18 E 3 98.55 

L 3 96.89 

With-voting 

approach 

A 3 97.44 

98.05 E 3 98.94 

L 3 97.78 

 
Table 2. The cross-validation results of the proposed LHMM at the optimal number of states 

Bank Class SEN (%) ACC (%) 

𝑩𝑴𝑳𝑰𝑰 

A 81.82±8. 4 

84.70±8.48 E 94.25±4.69 

L 78.04±5.9 

𝑩𝑽𝟏 

A 77.12±7.48 

85.38±7.17 E 89.96±5.69 

L 89.07±5.25 

Without-voting approach 

A 94.58±1.65 

96.14±2.02 E 98.43±0.48 

L 95.42±1.65 

With-voting approach 
A 96.8±1.24 

97.10±1.63 E 98.85±0.52 

L 95.64±1.41 

Values are reported as average ± STD 
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Comparison of the obtained cross-validation results 

with other Markov-based approaches on test data is 

reported in Table 3. All results were reported with the 

optimal number of states. According to this table, the 

CHMM method proposed by Montazeri et al. demonstrates 

lower STD among the other studied methods. However, 

the proposed LHMM in both approaches (ACC: 

96.14±2.02% for the without-voting approach and ACC: 

97.10±1.63% for the with-voting approach) shows a 

reasonable STD and mostly the best average results in 

classifying the three classes of heartbeats  compared with 

coupled approaches (ACC: 92.85±4.54% for CHMM 

proposed by Rezeck et al. and ACC: 93.80±1.25% for 

CHMM proposed by Montazeri et al.), and HMM with 

bivariate observations (ACC: 92.89±5.05%). 

4. Discussion  

In this study, a classification algorithm based on LHMM 

was presented to classify three types of heartbeats. We 

were able to successfully: 1- implement the structure 

of an LHMM for analyzing ECG of MLII and V1 channels, 

2- evaluate the performance of each layer separately, 

and 3- classify heartbeats with an average ACC of 

96.14±2.02% for without-voting approach and 

97.10±1.63% for with-voting approach. 

LHMMs is an HMM-based hierarchical model that 

gives the ability for 1- training and evaluating each layer 

independently, 2- analyzing the observations by different 

time granularity, and 3- interpreting the effect of each layer 

separately. Furthermore, the inputs of the second layer 

in the LHMM structure are processed by the previous 

one. So, they are less sensitive to noise and baseline 

fluctuations of the model observations. Finally, classification 

can be performed using smaller HMMs in the hierarchy 

structure of LHMM instead of defining a single huge 

HMM. 

The proposed LHMM structure has been trained 

appropriately without overfitting as indicated by high 

training and test accuracy of 97.18% and 96.14±2.02% 

for the without-voting approach, and 98.05% and 

97.10±1.63% for the with-voting approach, respectively. 

Results indicate the robustness of the proposed model 

in heartbeats classification. For the proposed LHMM, 

higher accuracies were obtained in the second layer 

(96.14±2.02% for the without-voting approach and 

97.10±1.63% for the with-voting approach) compared 

to MLII (84.70±8.48%) and V1 (85.38±7.17%) banks 

in the first layer. These results show that combining the 

first layer outputs and analyzing them over a longer 

course of time in the second layer can improve the 

classification accuracy.  

The resemblance among heartbeats in the three classes 

makes the classification a difficult issue. The sensitivity 

of heartbeats A, E, L was obtained as 94.58±1.65%, 

98.43±0.48%, and 95.42±1.65% for the without-voting 

Table 3. Comparison of cross-validation results corresponding to Markovian methods at the optimal number 

of states 

Method Observation Class SEN (%) ACC (%) 

HMM (MLII,V1) 

A 90.45±1.98 

92.89±5.05 E 98.69±0.65 

L 89.52±3.9 

CHMM proposed by Montazeri et al. [17] (MLII,V1) 

A 92.74±3.2 

93.80±1.25 E 95.18±1.45 

L 93.48±2.1 

CHMM proposed by Rezeck et al. [36] (MLII,V1) 

A 91.64±1.76 

92.85±4.54 E 97.87±2.36 

L 89.04±1.17 

LHMM (Our study) 

Without-voting 
(MLII,V1) 

A 94.58±1.65 

96.14±2.02 E 98.43±0.48 

L 95.42±1.65 

LHMM (Our study) 

With-voting 
(MLII,V1) 

A 96.8±1.24 

97.10±1.63 E 98.85±0.52 

L 95.64±1.41 

Values are reported as average ± STD 
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approach, respectively, and 96.8±1.24%, 98.85±0.52%, 

and 95.64±1.41% for the with-voting approach, 

respectively. 

Our proposed LHMM in this study was compared with 

other Markovian approaches. The obtained results of 

the proposed LHMM reported higher accuracies 

(96.14±2.02% for the without-voting approach and 

97.10±1.63% for the with-voting approach) than the 

others (93.80±1.25% for CHMM proposed by Montazeri 

et al., 92.85±4.54% for CHMM proposed by Rezeck 

et al., and 92.89±5.05% for HMM with bivariate 

observations) under the same conditions. In comparison 

to the previous studies (Table 4), our proposed model 

in both approaches showed reasonable average accuracies 

with low STDs. 

Although the number of data used in this study might 

be small, it was reasonable for developing a Hidden 

Markov-based algorithm. However, the small number 

of records is considered a limitation of the study and can 

be addressed by performing the proposed model on 

different databases and validating more records with 

different types of heartbeats in the future.  

One of the main difficulties of the proposed model 

is to determine the structure of LHMM (choosing the 

number of layers and their time granularities) for heartbeat 

classification. In this study, there were two layers, and 

time granularities chosen for the first and the second layers 

were one heartbeat and five heartbeats, respectively. It 

seems interesting that this step will be done automatically 

as future work. 

The ECG signal is susceptible to various noises and its 

quality changes with time under different conditions and 

disappears completely in some cases; therefore, using 

other cardiovascular signals may be useful to classify 

the heartbeats [42]. In further works, the LHMM approach 

could be extended using integrated cardiovascular signal 

data to improve the classification of heart abnormalities.  

5. Conclusion 

In this study, a hierarchical structure based on HMM 

was developed to classify three types of heartbeats. The 

first layer of the proposed LHMM received two observation 

sequences from two-channel ECGs in parallel and 

inferential outputs of the first layer were passed to the 

second layer as inputs. Two approaches were considered 

in the second layer.  

Based on the obtained results, the first approach 

(without-voting approach) was able to provide a 

satisfactory heartbeat classification performance, however, 

applying voting in the second layer (with-voting 

approach) further improved the performance of the 

proposed algorithm in heartbeat classification over 15 

records from the MIT-BIH arrhythmia database.  

The results showed the capability of the proposed 

LHMM model to assist the experts in the medical field 

or to incorporate in the diagnosis system of heart 

diseases based on ECG signals. 

 

 

Table 4. Comparison of the classification performance of the proposed method with other approaches 

Author Classifier #Type of heartbeats ACC (%) 

Liao et al. [23] HOHMM 3 88.33 

Zadeh et al. [14] ANN, SVM 3 97.14 

Casas et al. [37] LG, ANN, SVM 3 93 

Inan et al. [38] ANN 3 96.2 

Kumar et al. [39] RFT 3 92.16 

Dutta et al. [40] SVM 3 95.82 

Lin et al. [41] weighted LD 3 93 

This study 
LHMM (without-voting approach) 3 96.14±2.02 

LHMM (with-voting approach) 3 97.10±1.63 

HOHMM: Higher-Order HMM; ANN: Artificial Neural Network; LD: Linear Discriminants; LG: Logistic 

Regression; SVM: Support Vector Machines; RFT: Random Forest Classification 
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