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Abstract—When our sources are graph signals, a more 

efficient algorithm for Blind Source Separation (BSS) can 
be provided by using structural graph information along 
with statistical independence and/or non-Gaussianity. To 
the best of our knowledge, the GraphJADE and GraDe 
algorithms are the only BSS methods addressing this issue 
in the case of known underlying graphs. However, in many 
real-world applications, these graphs are not necessarily a 
priori known. In this paper, we propose a method called 
GraphJADE-GL (GraphJADE with Graph Learning) that 
jointly separates the graph signal sources and learns the 
graphs related to them accurately, in an alternating style. 
 

Index Terms—Graph Signal Processing (GSP); Graph 
Learning (GL); Blind Source Separation (BSS); Numerical 
Optimization; Erdös-Rényi graph; Machine Learning. 

I. INTRODUCTION 
N many data processing applications, signals are not 
necessarily on a regular grid. In such cases, considering a 
flexible grid for signals can help better understand and 

describe the data structure. These necessities form the 
foundations of Graph Signal Processing (GSP) [1]. In this 
field, various tools have been developed for processing signals 
live on known or defined graphs in a way that express the 
statistical and structural characteristics of the data well [1, 2]. 
However, in many applications, there are no such graphs that 
can accurately describe the graph structure of signals [3, 4]. 
Therefore, it is very important and helpful to learn such graphs 
using reasonable assumptions (smoothness [4, 5], sparsity [5], 
etc.) that are consistent with the statistical nature of the data. 
Another powerful and widely used tool for understanding the 
statistical nature of data is Blind Source Separation (BSS). 
The main purpose of the BSS methods is to retrieve the latent 
components from a mixture (usually linear) provided to us as 
observation. To this end, various assumptions have been made 
about the latent components and the mixing system. One of 
the most famous and widely used branches of these methods is 
Independent Component Analysis (ICA). To name a few well-
known ICA methods, we can mention FastICA [6, 7], JADE 
[8], and also recent approaches such as UMME [9], Picard 
[10], NeoICA [11], and RobustICA [12]. In this family of 
methods, a criterion for examining independence is 
considered, and based on it and also the statistics of the input 
data, an attempt is made to separate and retrieve independent 
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sources. One of the most useful criteria is non-Gaussianity. 
Therefore, most of these methods have difficulty to separate 
Gaussian components. In these cases, methods that measure 
temporal correlation can be used (e.g. SOBI [13], etc.). In the 
case of graph signal sources, these temporal correlations can 
be expressed as graph dependencies. Despite the great efforts 
that have been made in the area of BSS, the development of 
methods dealing with graph signals has not yet been studied 
well. To the best of our knowledge, only two methods have 
been proposed to address this issue: GraphJADE [14, 15] and 
Graph Decorrelation (GraDe) [16, 17]. These methods use the 
structure of underlying graphs as a prior knowledge in the 
separation process and lead to the BSS of graph signals. 

In addition to the significant advantages of GraphJADE and 
GraDe methods, there is a major drawback in using these 
methods in many graph-based data. In these methods, the 
graphs that make up the structure of the graph signals of the 
hidden components are assumed to be known. This 
assumption is not practical in many real-world applications [3, 
4]. In this paper, our main goal is to provide a method for 
separating the graph signal sources that simultaneously takes 
the advantages of GraphJADE and GraDe, and also learns the 
data structure graphs with high accuracy. In our proposed 
method, called GraphJADE with Graph Learning 
(GraphJADE-GL), the eigenvectors of the adjacency matrix of 
graphs are shared with those of the sample covariance matrix 
of the latent components. So, our optimization problem 
reduces to learning the eigenvalues of the adjacency matrices 
of the graphs with the minimum L1-norm constraint. Finally, 
the proposed method is compared with classic/recent ICA 
methods denoted as non-graph ICAs (namely JADE, Picard, 
NeoICA and RobustICA), a GraDe-based method (GraDe-GL) 
and also with Modified GraphJADE (as described in Sec. IV.). 
Based on the final results, the efficiency of the proposed 
method is shown in both the BSS and GL steps. 

Notation: We use boldface lowercase letters for vectors, 
boldface capital letters for matrices, and capital calligraphic 
letters for sets. The notations , , ,  and 

 stand for mathematical expectation, transpose, Moore-
Penrose pseudo-inverse of a matrix, inner product of two 
vectors, and the -norm of a matrix or vector, respectively.  

The rest of the paper is organized as follows. In Sec. II, 
brief background materials in GSP and BSS are provided. In 
Sec III, the GraphJADE and GraDe methods are introduced 
briefly. Sec. IV introduces the proposed method in detail. In 
Sec. V, the numerical results are analyzed. Finally, Sec. VI 
concludes the paper. Sec. VII provides the Appendix. Also, 
the theoretical and experimental convergence analysis are 
provided in Sec. VIII (i.e., the supplementary material). 
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II. GSP AND BSS BACKGROUND 
In this section, some brief background materials in GSP and 
BSS are provided as follows:  

GSP Background. In an undirected and weighted graph 
,  stands for the set of  vertices,  denotes the 

set of edges and  is the symmetric adjacency matrix, 
which contains the non-negative weights of connection 
between vertices. The diagonal elements of  are zero 
because we have no self-loops. The set  is the set of valid 
adjacency matrices of the weighted and undirected graphs, 
which is defined as: 

 (1) 

A graph signal  is a mapping function that 
assigns real values of the signal  to the vertices of .  

BSS Background. Since our proposed method, like a large 
group of BSS algorithms, needs a pre-whitening step, without 
loss of generality, we assume that  denotes the pre-
whitened version of the observed signals , which is a 
linear mixture of the latent mutually independent components 

, and  is an orthogonal 
matrix, where . We also assume that components of  
have zero mean and unit variance. We aim to estimate  based 
on some statistical assumptions (such as non-Gaussianity of 
the estimated sources) and some graph-based information 
about the latent graph signal components. The final estimated 

unmixing matrix  can be inferenced by , 
where  is the sample covariance matrix of  [14]. 

III. GRAPHJADE AND GRADE 
In the GraphJADE objective function, graph decorrelation 
information is considered along with the JADE criterion as: 

 

(2) 

where  is a balancing parameter. The second term is 
the JADE objective function, in which the values are 
the fourth order cumulants calculated as described in [14]. The 
first term is related to the graph dependencies of the sources. 
In this term,  is the total number of time lags (i.e., matrix 
powers of ). Also, the , which we call , 
is the graph autocorrelation matrix of the  and the adjacency 
matrix of the th source (i.e., ) defined as: 

 (3) 

As can be seen in (2), each source can have its own underlying 
graph (i.e., adjacency matrix). On the other hand, in the GraDe 
objective function, only the graph dependency information is 
used for the separation process, and all sources have one 
identical underlying graph (i.e., ). Precisely, the 
GraDe objective function can be stated as: 

 (4) 

where , which we call , is the graph 
autocorrelation matrix having a slightly different definition to 

 and can be written as: 

 (5) 

The objective functions of GraphJADE (2) and GraDe (4) are 
maximized with orthogonality constraint on the matrix  as: 

 (6) 

where  is the identity matrix. Note that the matrix  
can be obtained using Joint Diagonalization (JD) of the 
matrices /  and for the 
GraphJADE/GraDe methods. The method proposed in [18] is 
used to implement JD based on the Givens rotations. 

IV. GRAPHJADE-GL 
Our proposed method consists of two iterative steps, namely 
the BSS and GL steps. We co-optimize these two steps in an 
alternating optimization procedure with the details as:  

BSS step: In our work, in the BSS step, we modify the 
objective function of the GraphJADE (2) [14, 15]. The 
objective function of the proposed GraphJADE-GL method, in 
the BSS step, is as follows: 

 

(7) 

where the second term is similar to (2) and  is the graph 
autocorrelation matrix corresponding to the  (i.e., 
the th window of , where  and 

 denotes the number of windows)  and the adjacency 
matrix of the th source (i.e., ) calculated as: 

 (8) 

If the graphs  are a priori known, we call (7) the 
Modified GraphJADE (M-GraphJADE) objective function. 

As can be seen in (7), in the GraphJADE-GL, unlike the 
GraphJADE, the average graph dependencies are exploited. 
Also, for considering only the graph dependencies, similar to 
the GraDe, we set  in (7) and call BSS step of the GraDe-
GL method resulting to the following objective function: 

 (9) 

where  is calculated as: 

 (10) 

Remark 1: In GraDe-GL, each latent component can have its 
own graph (i.e., ), but in GraDe, one graph 
(i.e., )  is shared among all graph signal sources.  
Remark 2: We have replaced  in the GraphJADE objective 
(2) with the average of  over  
windows of the th component. Therefore, unlike GraphJADE 
and GraDe,  captions average graph 
dependencies over windowed parts of the th source.  

In the BSS step, similar to the GraphJADE, assuming the 
graphs (i.e.,  in GraphJADE-GL/GraDe-GL) are 
estimated in the previous GL step, estimation of  can be done 
using JD [18] of matrices  and . 
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GL step: To learn the graphs describing the structures of 
the latent sources, we assume windowed parts of the latent 
sources are diffused on these graphs using independent 
identically distributed (i.i.d.) graph signals with certain 
distributions (a piece-wise stationary assumption). We 
consider two statistical processes for generation of the 
windowed parts of the sources [19]: Graph Moving Average 
(GMA) and Graph Auto-Regressive (GAR). We use the first 
order of these graph processes, that is, GMA(1):

 and GAR(1): where 
 is an i.i.d. graph signal having a certain 

distribution for generating the th window of the th latent 
source (i.e., ). 
Also, and are a coefficient and the adjacency matrix of 
the underlying graph corresponding to the generation of  
[19], respectively. These explanations are summarized as: 

 (11) 

 (12) 

Equations (11) and (12) are the specific forms of filtering the 
graph signal  using graph filters  and  [19], 
respectively. Using these equations and stationarity of 
GMA/GAR processes, it can be shown [20] that the sample 
covariance matrix the graph filter 

 ( ), and eventually the adjacency matrix  can 
have identical eigenvectors. Therefore, in order to recover 
these graphs, we need only learn their eigenvalues [19, 20]. To 
this end, we use a well-known cost function, introduced in 
[20], for , separately, as:  

 (13) 

where  is the matrix of the eigenvectors of , the 
eigenvalues of  are stored in  and  is a 
diagonal matrix of the eigenvalues .  Note that for 
preventing the trivial all-zero solution, additional constraints 
in  can be exploited, such as  [20], , 
etc. However, based on our experimental results, exploiting 
these kinds of additional constraints lowers the convergence 
speed severely and, therefore, we didn't use any of them, and 
no trivial solutions were observed regarding our chosen free 
parameters. We can solve (13) more efficiently and just for the 
strictly vectorized upper triangular part (i.e., without 
considering zero diagonal elements) of the . We call 
these vectors , and define the set  for them as: 

 (14) 

Also, with defining the th element of  and the th column of 
the  as  and , respectively, the equality constraint in 
(13) can be rewritten using the vectorize operator (i.e., ) 
and the relation as: 

 (15) 

We define  and  as the half vectorize and half 
non-diagonal vectorize operators. Also, we define  as the 
duplication matrix [21], and  as a matrix such 
that  for a zero diagonal matrix  

(such as an adjacency matrix), respectively. Now using the 
equations  [21], 

 and , we can rewrite (15) as: 
 (16) 

So, using  operator, we can rewrite as: 
  (17) 

Therefore, (13) can be rewritten in a more efficient manner as: 
 (18) 

To solve (18), we use Alternating Direction Method of 
Multipliers (ADMM) [22]. This problem can be split as: 

 (19) 

where  is an auxiliary variable. Then, the Augmented 
Lagrangian and iterative scheme of (19) can be written as: 

 
(20) 

 (21) 

 (22) 

 (23) 

where and  are the Lagrange multipliers (dual variables), 
 is the iteration index, and  is the increase constant. Note 

that to update , we use the definition of the proximity 
operators [23]. The update steps of the primal variables  
and  are as follows (the details can be found in Appendix): 

 (24) 

 (25) 

 (26) 

where  denotes the Euclidean projection of  onto the 
set . Our proposed method is summarized in Algorithm 1. 

V. NUMERICAL RESULTS AND DISCUSSION 
We separately generate  Independent Components (ICs) 
(in 100 random repetitions) using GMA(1) and GAR(1) 
models. The adjacency matrices are obtained from Erdös-
Rényi (ER) graph random model with  [24]. In order 
to better compare our method with M-GraphJADE  (with 
known graphs), the basics of the generation of the ICs are 
inspired from [14]. However, there are some differences, such 
as the usage of GAR(1), etc. In all simulations, we have 

, , , and . The 
performance criterion in separation task is the Minimum 
Distance (MD) index [25], which can be stated as: 

 (27) 

where  and  are estimated unmixing and true mixing 
matrices, respectively. The set  is the set of all possible 
permutation matrices. The minimum value of MD is zero and 
is obtained in the case that the latent components can be 
recovered by just rescaling and permutation of the estimated 
ones [14]. Also, we use Area Under Curve (AUC) [26] as a 
criterion for graph recovery. We compare our proposed 
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method in separation task with GraDe-GL, non-graph ICA 
methods (ngICAs), as well as with the M-GraphJADE (7), in 
which the graphs are assumed to be known, as gold standard. 
We generate four models of data according to Table I. The 
results of the BSS task in terms of the average  are shown in 
Figure 1, and the results of GL in terms of AUC are presented 
in Table II. Based on the BSS phase results (Fig. 1), in all 
models, the performance of the GraphJADE-GL is fairly near 
the M-GraphJADE because of the excellent performance in 
recovery of the underlying graphs, in almost all data models 
(Table II). All methods have acceptable performances in the 
first model due to satisfying their statistical assumptions about 
the data. In the second model, GraDe-GL has failed to 
separate the graph signal sources effectively due to the near-
identical graph contributions. In the third model, because of 
the Gaussianity of the sources, ngICAs have poor performance 
in the separation task. In the fourth model, ngICAs could not 
achieve good results due to the Gaussianity of the ICs. GraDe-
GL also has poor performance because the values of  in two 
components are identical. But, the proposed GraphJADE-GL 
method has the best performance in the BSS task, very close 
to that of the M-GraphJADE. This great performance is 
confirmed by the excellent performance of the GraphJADE-
GL in the graph recovery task (Table II). Also, on average, the 
GraphJADE-GL performs robustly in the separation task 
against changing the number of nodes . In this way, due to 
relying only on graph dependencies, GraDe-GL seems 
vulnerable against the graph size changes and has a different 
pattern with GraphJADE-GL. For example, in GMA/GAR 
model 1 or 3, due to relatively lower AUC in GL step (see 
Table II), GraDe-GL, unlike GraphJADE-GL that uses also 
the JADE term, has higher MD and also lower robustness.  

Table I: The details of four models for data generation ( : t-student with  
degree of freedom) 

 Model 1 Model 2 Model 3 Model 4 

Distribution of 
the latent sources 

, Uniform, 
Exponential 

and Gaussian 

, Uniform, 
Exponential 

and Gaussian 

All have 
Gaussian 

distribution  

, Gaussian, 
Uniform and 

Gaussian 

-vector [0.04, 0.08, 
0.12,0.16] 

[0.05, 0.06, 
0.07,0.08] 

[0.05, 0.05, 
0.05,0.05] [0.05, 0.05, 0.1,0.1] 

Different s for 
sources? No No Yes No 

Challenging for 
which BSS 
methods? 

- 

GraDe-GL, 
because s 
are almost 
identical. 

ngICAs, 
because of 
gaussianity 
of sources 

All except 
GraphJADE-GL, 
because of both 
Model 2 and 3 

challenges. 
Table II: Mean of AUC for the recovery of the different graph sources over all 
repetitions of each model for the proposed GraphJADE-GL method. 

 GMA, Model # GAR, Model # 
 1 2 3 4 1 2 3 4 

15 0.97 0.99 0.94 0.97 0.97 0.99 0.95 0.98 
20 0.98 0.98 0.96 0.98 0.97 0.99 0.96 0.98 
25 0.97 0.98 0.96 0.98 0.97 0.98 0.96 0.98 

VI. CONCLUSION 
In this paper, we proposed a Blind Source Separation (BSS) 
method, called GraphJADE-GL (GraphJADE with Graph 
Learning), which uses both the structural graph information 
and statistical independence of graph signal sources. Based on 
the numerical results, the proposed method jointly separates 
the sources and learns the underlying graphs related to them 

accurately, and its superiority over the state-of-the-art BSS 
methods and also GraDe-based methods can be admitted. 

 
Figure 1: The average values of  over 100 random repetitions 
in GMA and GAR (top and bottom row, respectively) models 1-4. 

Algorithm 1. GraphJADE-GL (Note that  and  are iteration index) 

Input: Whitened data , , , , ,  

Output: ,  
1: Initialization: ,  

 for  
2: While convergence in  

3:    maximize (7) to update , then obtain  from  
4:     For  

5:         , eigenvalues of ,     
,         

6:         While convergence 

7:            Update , ,  , ,   and   using       
(24), (25), (26), (21), (22), and (23), respectively. 

8:                 

9:         end While, return  
10:     end For 

11:     
12: end While, return  and  

VII. APPENDIX 
The update processes of the and  are as follows: 
*) 

 
 

 

  

*)  

 

*)  
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