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Abstract: Brain connectivity estimation is a useful method 
to study brain functions and diagnose neuroscience disor-
ders. Effective connectivity is a subdivision of brain con-
nectivity which discusses the causal relationship between 
different parts of the brain. In this study, a dual Kalman-
based method is used for effective connectivity estimation. 
Because of connectivity changes in autism, the method is 
applied to autistic signals for effective connectivity esti-
mation. For method validation, the dual Kalman based 
method is compared with other connectivity estimation 
methods by estimation error and the dual Kalman-based 
method gives acceptable results with less estimation errors. 
Then, connectivities between active brain regions of autis-
tic and normal children in the resting state are estimated 
and compared. In this simulation, the brain is divided 
into eight regions and the connectivity between regions 
and within them is calculated. It can be concluded from 
the results that in the resting state condition the effective 
connectivity of active regions is decreased between regions 
and is increased within each region in autistic children. In 
another result, by averaging the connectivity between the 
extracted active sources of each region, the connectivity 
between the left and right of the central part is more than 
that in other regions and the connectivity in the occipital 
part is less than that in others.

Keywords: autism; dual Kalman filter; effective connectiv-
ity; multivariate autoregressive model; source localization 
methods.

Introduction

The brain is one of the most important and complicated 
parts of the human body. The dynamic functions of the 
brain are nonlinear such as their chaotic and synchronized 
manner and understanding its functions is essential [1] for 
brain function analysis. Studying brain function can be 
very valuable and useful for the diagnosis and analysis of 
neuroscience disorders (like autism). Studying brain con-
nectivity is an important field of brain function realiza-
tion [2] which is about the interactions between different 
regions [1, 3, 4]. Three different types of connectivity were 
introduced in previous related papers [1, 3–5]. Anatomi-
cal or structural connectivity discusses the physical and 
structural interactions between synapses and neural units 
[6, 7]. Temporal correlation and statistical dependency 
between brain regions is defined as functional connectiv-
ity which can be introduced in time or frequency domains 
[8, 9]. The connectivity or relation of one brain region to 
another part of the brain is called effective connectivity, 
which is defined as a causal relationship between activi-
ties of two regions. This type of connectivity describes 
the effect of one source on another source or the activity 
of each source is caused by activities of other sources [7, 
9–11].

Effective connectivity is internally generating a phe-
nomenon of brain region activity which can be estimated 
by electroencephalography (EEG) or functional magnetic 
resonance imaging (fMRI) information. Effective brain con-
nectivity can be calculated using fMRI data and structural 
equation modeling method. In some other papers, effec-
tive connectivity was estimated by functional connectivity 
with fMRI data [12, 13]. But fMRI data has low time reso-
lution. In this study, EEG signals are used because of its 
high temporal resolution. The methods for estimating this 
connectivity are divided into data-based and model-based 
methods. The data-based methods are based on the data 
[14]. Directed information is one of these methods which is 
used for linear and nonlinear causality estimation. Trans-
fer entropy (TE), correlation integral (CI) and their deri-
vations are other examples of these measures [2, 10, 15, 
16]. The model-based methods for effective connectivity 
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estimation are based on fitting a model on signals and 
the connectivity is calculated by estimating model para-
meters. Granger causality (GC) is one of the model-based 
methods for connectivity estimation which is based on the 
supposition that each cause precedes its effects. The GC 
method is used especially in the absence of a priori data 
of brain abnormal patterns [1, 17–20]. The other method 
which needs a model for connectivity estimation is the 
dynamic causal model (DCM) which quantifies neural con-
nectivity by assuming a bilinear state space model. This 
method is used for nonlinear relation estimation and by 
physiological model consideration of neuronal dynamics. 
In this method, various model parameters are optimized 
by considering certain prior knowledge [1, 21–23]. The 
multivariate autoregressive (MVAR) model is used in some 
papers for connectivity estimations. In these methods, an 
MVAR model is fitted to data for temporal dependency 
estimations and the model parameters can be calculated 
using different methods [24–26]. The Yule-Walker and the 
modified Yule-Walker methods are basic and traditional 
simple methods for MVAR model parameter calculations 
[27–29]. Levinson recursion, the Burg-type Nuttall-Strand 
method, the Vieira-Morf method and the Newton-Raph-
son gradient search method are some important and 
traditional methods in this field [30]. The Bayesian esti-
mation method was used by Penny and Roberts for MVAR 
parameter estimation [31]. The ordinary extended Kalman 
filter is used to estimate the MVAR parameters [32]. Neu-
maier and Schneider proposed least square estimate and 
eigenmodes for MVAR estimation [33–35]. For connectivity 
validations, some connectivity measures and features are 
extracted from GC and linear MVAR models like directed 
transfer function (DTF), partial directed coherence (PDC), 
direct directed transfer function (dDTF) and so on which 
have been proposed in related papers. These measures are 
used in the frequency domain for direction and strength 
estimation of multiple coupled interactions.

The method which is used in this study is the dual 
Kalman-based method [36]. In this method, firstly a 
source localization method is applied to EEG data. Then 
the MVAR model with unknown parameters is fitted to 
extracted sources or active sources over time. For the cal-
culation of unknown model parameters, the dual Kalman 
filter is used to estimate the model parameters from 
observations (in our work EEG signals). In this method, 
estimation of MVAR model parameters is used for effec-
tive connectivity calculation. The dual Kalman filter has 
been used in other works for connectivity calculations. 
Omidvarnia et al. used it for estimating EEG sensor con-
nectivity in newborns. In the dual Kalman-based method, 
the algorithm is applied to the source space because of 

volume conduction effects on sensor spaces [37]. Study-
ing source space is more accurate and valuable because 
of entering volume conductor and tissue conductance in 
equations. The dual Kalman-based method has two major 
advantages. The first one is the parallel estimation of state 
and parameters in the MVAR model. So during connectiv-
ity estimations, the source activities (states) are updated 
and dynamic source localization is done. Therefore, this 
method is more accurate than the static source localiza-
tion methods. The second advantage is its independ-
ence to any predefined condition such as physiological 
or anatomical knowledge. In the dual Kalman-based 
method, active sources are localized by source localiza-
tion methods [36].

Autism is one of the complicated, neurodevelopmen-
tal and heterogeneous disorders which is characterized by 
abnormal and restricted language, emotional and social 
communicational functions and their qualitative impair-
ment in environmental behavior and inflexibility. Subjects 
with autism have many features in their social and com-
municational behaviors, of which inability to speak, less 
attention to their environment, weak emotional display 
and disability to show appropriate facial reaction are the 
most significant features of autistic children. From another 
view, the biological and functional basis of autism is not 
well understood and connectivity estimation of the brain 
in autistic children can be useful in this field. Autism dis-
order mostly begins in early childhood or adolescence and 
58% of adults with autism have epilepsy or seizure expe-
rience during their life [38–41]. According to the reports 
from research for autism (Center for Diseases Control and 
Prevention; CDC 2009), the rate of autism is increasing. 
Blaxill reports that the rate of autism has increased from 
less than three in 10,000 children in 1970 to more than 30 
per 10,000 in 1990 in the United States. According to the 
CDC report in 2012, it has risen to one out of 88 children 
(one per 54 in male children) [39, 42].

The relationship between autism and effective con-
nectivity has been studied and analyzed in some papers. 
According to previous works, there is an abnormal con-
nectivity pattern in the brain of autistic children in specific 
regions. Most of the related papers deliberated that the 
effective connectivity is increased in the local regions and 
is decreased in long distance in autism [43–48]. According 
to Wass et al., the connectivity is increased in frontal and 
short neural paths and is decreased in long distance and 
posterior to anterior or temporal regions [45]. According to 
Coben et al. there is more coherence in frontal regions and 
less coherence in the bilateral posterior temporal regions 
when comparing autistic subjects with normal children. 
In another paper by Coben et  al. GC is used for effective 
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connectivity estimation from EEG signals. Their study is on 
the prefrontal cortex (PFC), anterior cingulate and bilat-
eral inferior parietal regions and the results are undercon-
nectivity between regions which are in long distance from 
each other [49]. The relation between autism and effective 
connectivity during the emotional processing task was 
studied by Wicker et al. with fMRI and structural equation 
modeling. The first result of this study was that the effect 
of amygdala (AMG) activation on the dorsomedial prefron-
tal cortex (DMPFC) is absent and the effect of DMPFC on 
the dorsolateral prefrontal cortex (dLPFC) is observed in 
autism. Secondly, the influence of dLPFC on the ventral 
part of the PFC and ventrolateral prefrontal cortex (vLPFC) 
on superior temporal sulcus (STS) is weak in autism. 
Thirdly, the strong influence of LPFC on the fusiform gyrus 
is observed in autism [50]. According to the study by Grezes 
et al., abnormal inter-regional cerebral effective connectiv-
ity is observed in viewing fearful gestures. In this work, the 
abnormality is observed in the right temporal parietal junc-
tion (TPJ), gyrus, AMG and middle parts of STS. According 
to Grezes et al.’s study, there is no difference in effective 
connectivity between occipital and AMG, STS and AMG, 
fusiform gyrus and AMG. On the other hand, there is a 
weaker connectivity of AMG on fusiform gyrus and primary 
motor cortex in autism during the emotional task [40]. 
Minshew and Williams discovered from EEG signals that in 
autism the frontal coherence is increased and anterior to 
posterior temporal coherence is reduced [51]. Wataru Sato 
et al. used dynamic causal modeling on fMRI data during 
the dynamic facial expression task to estimate regional 
brain activity and effective connectivity. According to their 
results, the activity of autistic children in visual parts of 
the brain like middle temporal gyrus (MTG), fusiform 
gyrus, AMG, medial PFC and inferior frontal gyrus (IFG) is 
reduced. The effective connectivity between primary visual 
cortex-MTG-IFG is weaker in autism in comparison with 
the control group during the dynamic emotional facial 
expression task [39]. According to Shih et al.’s study, the 
effective connectivity by structural equation model (SEM) 
on fMRI data in imitation showed a significant reduction in 
the connectivity between inferior partial lobe (IPL) on IFG 
and an increased connectivity in dLPFC on IFG is observed 
in the autistic group [41].

In this study, the dual Kalman-based method which 
is proposed in the previous study [36] is applied to autis-
tic signals to estimate connectivity between active brain 
sources and the results are compared with the connectiv-
ity of normal children. In the dual Kalman-based method, 
firstly a source localization method is applied to EEG 
signals and active sources are extracted. Then, the MVAR 
model is fitted to active sources and the state space is 

formed by adding the relation of EEG signals and active 
regions (by the leadfield matrix). So the dual Kalman 
model is applied to the model to estimate two unknown 
parameters (the source activation and the relation 
between them). In other words, in this method, the dual 
Kalman filter is used for estimating the relation between 
active sources and the connectivity is calculated from the 
estimated relationship. In [36], the method is applied to 
generated signals with known connectivity and the accu-
racy of the method is analyzed for different conditions. 
But in this paper, the method is applied to real autistic and 
control signals. As evident from the previous paragraph, 
in autism the connectivity is changed and the connectiv-
ity between brain regions of autistic and normal children 
is different. The dual Kalman filter method which is dis-
cussed in previous paragraphs has acceptable estimation 
because of the parallel estimation with source activation 
and it does not require any predefined information about 
source positions. Therefore, applying the dual Kalman-
based method to autistic and normal EEG signals can 
help us to learn about autism disorder and the compari-
son between brain connectivity of them can assist us in 
finding out more details about autism.

An overview of the dual Kalman-based method and 
its structure is provided in the section “Materials and 
methods”. The section “Simulations and method valida-
tions” discusses the two phases of simulation. The first 
phase is the estimation of model parameters with different 
methods and comparison of estimation error of the dual 
Kalman-based method estimated parameters with other 
methods. In the second phase of simulations, the connec-
tivity of active sources in autistic and normal subjects is 
compared by calculating their dDTF. Lastly, the results of 
the simulation and the connectivity comparison between 
autistic and normal subjects are discussed in the section 
“Model implementation and results”.

Materials and methods
In the dual Kalman-based method, this filter is used to estimate the 
causal relations between active brain sources from which effective 
connectivity can be calculated. So this method firstly needs a source 
localization method for extracting active brain sources during the 
time samples, and secondly, needs a model to fit active source on 
it for parameter estimation. Lastly, the method parameters are esti-
mated with the dual Kalman filter from its observations (EEG sig-
nals). The flowchart and steps of the dual Kalman-based methods are 
shown in Figure 1.

In the first step, static or dynamic source localization is applied 
to EEG signals which are recorded from sensors and active brain 
regions are extracted from them. Source localization methods try 
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to estimate the active source locations and activities using EEG sig-
nals which is called the EEG inverse problem. But before solving the 
inverse problem of EEG, EEG forward problem should be calculated 
using numerical finite element (FEM) or boundary element (BEM) 
methods and the relation between each source activation and EEG 
signals should be calculated (leadfield matrix calculation). The 
standard low resolution analysis (sLORETA) is one of the source 
localization methods which gives good and acceptable localization 
error in comparison with other methods [52, 53]. The explicit solution 
to this minimization problem in sLORETA is:

	 � = ⋅k kJ T V � (1)

where �kJ  is the estimated source activation matrix, Vk is the EEG sig-
nal at sample k and T is defined as follows:

	 α += +[ ]T TT G H HGG H H � (2)

where G is the leadfield matrix, []+ is the pseudoinverse of matrix 
and in our method α is calculated using the Tikhonov regularization 
method and is set to 0.1 [54].

	 = − 11 /1 1T TH I � (3)

The output of this part is the position of the limited number of 
active sources of the brain [52, 53].

The active sources which have bigger values in the estimated 
matrix are extracted during the time samples. For this purpose, the 
source localization method is applied to each sample of the EEG 
signal and the sources which are more active during the time are 
extracted as active sources and are used in the second subsection 
“Model implementation and results”.

In the second part, the linear dynamic MVAR model is used 
for active sources modeling and the MVAR model is fitted to active 
sources which are extracted from the previous section. This model is 
defined as Eq. 4:

	 η−= +1  k k k kJ F J � (4)

where Jk is the kth sample of the source vector with (n × 1) 
and ηk  is the state noise. In another equation, EEG signals are 
related to active sources by the leadfield matrix and can be written 
as Eq. 5:

	 ε= +  k k kV GJ � (5)

where εk is the measurement noise at the kth sample.
So, the above two equations (Eq. 4 and Eq. 5) form a discrete 

linear state space equation.

	 η

ε
+ = +
= +
1k k k k

k k k

J F J
V GJ

�
(6)

where εk, ηk are the additive measurement and state noise, respec-
tively. In Eq. 6, if both Fk and G are known, the extended Kalman 
filter is used for state estimation and Jk can be calculated from the 
observed EEG signal Vk. But if the relationship between states or Fk 
is unknown, Jk and Fk are calculated by the dual Kalman filter which 
can estimate both of them simultaneously with two parallel ordinary 
Kalman filters.

Generally, the dual Kalman filter is used for modeling, estima-
tion and prediction tasks. In this paper and in the third part of the 
dual Kalman-based method, the modeling task is used and the para-
meters of the model are estimated from the signals or observations. 
In the dual Kalman method, states and model parameters are calcu-
lated from signals in parallel with each other.

Two ordinary Kalman filters are used in the dual Kalman filter 
for the simultaneous estimation of states and the relation between 
them. In the first Kalman filter, the model parameter �kF  is assumed to 
be known and the state vector is calculated, while another Kalman 
filter (called weight KF) is used for model parameter calculation 
by  assuming that the current state �kJ  is known. This process is 
done simultaneously and is schematically shown in Figure 2. So by 
estimating F by the dual Kalman filter, effective connectivity can 
be extracted. More details about this algorithm are explained in a 
previous paper [36].

Figure 1: The steps of the dual Kalman-based method for connectivity estimation between active brain sources.
The method consists of three parts. Firstly, the source localization method is applied to EEG signals and active sources are extracted. 
Then, the state space time-varying model is fitted to extracted active sources and lastly, the dual Kalman filter is applied to the model for 
estimating source activities and the relation between them.
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Simulations and method validations

In this section, the method is applied to EEG signals which are 
recorded from autistic and control subjects. In the first phase of the 
simulation, the brain connectivity is estimated by several methods 
and EEG signals are calculated from estimated connectivities. Then 
estimation errors between calculated and real EEG signals are cal-
culated. In the second phase of simulations, the relations between 
active sources are calculated by the dual Kalman-based method 
and dDTF as a measure of connectivity is calculated for autistic and 

normal signals. The calculated connectivities of both groups are 
compared with each other by dDTF measure.

The signals which are used in our simulations are recorded from 
HRL Laboratories and UCLA Semel Institute for Neuroscience and 
Human Behavior performed on autistic and control children. The 
signal recording device has a sampling frequency of 128 Hz and 19 
recording channels with traditional 1020  standard electrode posi-
tions. The experimental group included 17 males and 10 females with 
age ranging from 4 to 12 years with a mean age of 6.1 years. The range 
and severity of autistic children are the same in the experimental test 
which is done by psychologists. The signals were recorded with eyes 
open and fixed on a spot directly in front of them. In this study, nine 
autistic and 18 control EEG signals are used for connectivity estima-
tions.

In the preprocessing step after EEG acquisition, as a first step, 
for low frequency and baseline drift removal, a high-pass filter with 
a cut-off frequency of 1 Hz is applied to raw EEG. Then, independent 
component analysis (ICA) is applied to the filtered signals for inde-
pendent component extraction. Lastly, the extracted components 
which are not based on brain activity (noise or artifacts) are removed. 
Some theories are used for detecting and rejecting the components 
which have noise or artifact [like electromyogram (EMG) or blinking 
artifact] [56–58]. Then, the resulting signals are normalized to the 
mean squares of them during the time.

In the first phase of simulation, the filtered signal is swept by a 
window with the known length (in this simulations it is 64 samples) 
and the model parameters of the sliding window are estimated using 
several methods (dual Kalman-based and other methods). Then, the 
value of the nth sample is estimated from p delayed samples of sig-
nal (n is the last sample of the sweeping window). In other methods 
which are used for MVAR model estimation, firstly the sensor space 
should be changed to a source space with leadfield matrix inversion 
and then the model parameters are estimated in the source space. 
After parameter estimation, the source activity is calculated from the 
estimated parameters and the estimated EEG signal in each sample is 
calculated from the source activity using Eq. 6. The estimation error 
is defined as the difference between the estimated and real EEG sig-
nals. In our simulation, the length of the window is set to 64 and the 
sweeping window is moved 32 samples in each run. In this part, p is 
calculated from Schwarz’s Bayesian Criterion (BIC) model order of 
selection [59, 60]. After nth EEG sample calculations, the estimated 
sample is compared with a similar real data sample. For comparison, 
the mean square error between the estimated EEG signal and the real 
signal is defined as follows:

	
=

= −∑ 2
estimated real

1

(1MSE( ) (EEG EEG )) ( )
L

l

n n n
L

� (7)

where L is the number of EEG channels, n is the time sample, 
EEGestimated() is the estimated EEG signal in the nth sample which is 
calculated from the estimated model parameters and EEGreal(n) is the 
real EEG value at the nth sample.

In the second phase of simulations, the dual Kalman-based 
method is applied to the filtered, preprocessed and normalized EEG 
signals of autistic and control subjects and the model parameters are 
estimated. Then dDTF measure of connectivity is calculated from the 
estimated parameters for comparing estimated connectivity between 
brain regions of autistic and normal subjects. Because of the different 
active regions in each signal, the brain is divided into eight regions. 
Then, the connectivity of active sources is calculated and the mean 

Figure 2: Parts of the dual Kalman filter.
The dual Kalman filter consists of two Kalman filters which work in 
parallel with each other. The above one is for state estimation and 
the bottom filter is for model parameter calculation.
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value of sources connectivity in each region of the brain is calculated. 
The mean and standard deviation of estimated connectivity measures 
are calculated by applying the dual Kalman-based method to autistic 
and normal signals and the connectivity between eight brain subdivi-
sions is calculated. The mean value of connectivity measures which 
are higher than the predefined threshold is selected to be shown in 
the α band. The α wave is a neural oscillation in 8–13 Hz which origi-
nates from the occipital lobe during wakeful relaxation with closed 
eyes. And DTF, PDC and dDTF are frequency-based measures and the 
brain waves (in this paper α) can be extracted from these measures.

For defining dDTF as a connectivity measure, the DTF should 
be defined as the causal influence of the brain cortical regions. This 
measure is introduced by supposing the process as MVAR as follows:

	
0

( ) ( ) ( ) with (0)
p

k

k Y t k E t I
=

Λ − = Λ =∑ � (8)

where Y(t) is a vector in time sample, E(t) is a vector of uncorrelated 
white noise with zero-mean, Λ(k) is the model parameter and p is 
the model order. Then, an MVAR model parameter is adequately esti-
mated and it becomes the basis for subsequent spectral analysis. To 
investigate the spectral properties of the examined process, Eq. 8 is 
transformed to the frequency domain MVAR processes

	 ( ) ( ) ( )f Y f E fΛ = � (9)

where

	 2

0

( ) ( )
p

j f tk

k

f k e π− ∆

=

Λ = Λ∑ � (10)

and ∆t is the temporal interval between the two samples. Equation 
(9) can be written as

	 1( ) ( ) ( ) ( ) ( )Y f f E f H f E f−= Λ = � (11)

H(f) is the transfer matrix of the system, whose element Hij 
represents the connection between the jth input and the ith output 
of the system.

The DTF coefficient is defined by

	 2 2|( ) ( )|ij ijf H fθ = � (12)

By normalizing the DTF coefficients for all elements, the other 
and main definition of DTF is:

	
2

2

2

1

 | ( )|
(

| |( )  
) ij

ij N

imm

H f
f

H f
γ

=

=
∑

� (13)

From the transfer matrix, we can calculate power spectra S(f). 
If we denote by V the variance matrix of the noise E(f), the power 
spectrum is defined by

	 ( )( ) ( ) *S f H f VH f= � (14)

where the superscript * denotes the transposition and complex con-
jugate. From S(f), ordinary coherence can be computed as

	
2

2
| ( )|

)
( ) ( )

 
( ij

ij
ii jj

S f
k f

S f S f
= � (15)

Coherence measures express the degree of synchrony (simulta-
neous activation) between areas i and j.

Partial coherence is another estimator of the relationship 
between a pair of signals, describing the interaction between areas 
i and j when the influence due to all N − 2 time series is discounted 
(where N is the number of time series). It is defined by the formula

	
2

2
| |  ( )

( )
( ) ( )

ij
ij

ii jj

M f
f

M f M f
χ = � (16)

where Mij(f) is the determinant of the minor matrix obtained by 
removing the ith row and jth column from the spectral matrix S.

DTF expresses direct and indirect connectivity between two sig-
nals and it is one of the disadvantages of DTF. So dDTF is introduced 
for direct connectivity expression. This criterion is defined by multi-
plying DTF by partial coherence.

	 2 2( )dDTF ( )ij ijf k fχ= � (17)

where 2 ( )ijk f  and 2 ( )ij fχ  are defined in Eqs. 13–17 [1, 61].

Model implementation and results

After simulations and EEG signal preprocessing and filtering, in this 
section, the dual Kalman-based method is applied to the filtered sig-
nal and some results are extracted. The steps of applying the dual 
Kalman-based method to signals for connectivity estimation are 
shown in Figure 3.

In the first phase which is defined in the “Simulations and 
method validations” section, EEG signals are preprocessed and fil-
tered and the source localization method is applied to autistic and 
normal EEGs. After source localization, the MVAR model is fitted to 
active sources which are extracted, the connectivity estimation is 
done using several methods. For comparison, some traditional meth-
ods in MVAR parameter estimations are used. So, firstly the leadfield 
matrix which is calculated from the forward problem is inverted and 
then it is multiplied by the second part of Eq. 6 and the time series of 
source activities is calculated. Then, the traditional MVAR estimating 
methods are applied to the first part of Eq. 6 and the relation between 
sources is estimated. By using the estimated relationship between 
sources in each window, the future value of each source activity and 
EEG signal is calculated. After relation between sources is estimated, 
EEG signal is calculated from the estimated relations and the error 
between the estimated signals and real data is calculated. In this 
phase, the moving window with 64  sample lengths is swept along 
the signal and moves 32 samples in each run. Then, connectivity and 
model parameters are calculated in the window and signal value at 
nth samples (where n is the last sample of the sweeping window) is 
calculated from the estimated model parameters. The real EEG signal 
is compared with the estimated one during the signal.

The methods which are used for model parameter estimation 
and whose estimation results are compared with the dual Kalman-
based method are as follows:

–– Partial correlation estimation: Nuttall-Strand (biased correla-
tion function) [62]

–– Least squares [33]
–– Least squares with eigenmodes [33]
–– Correlation function estimation method [34, 35]

The mean and standard deviation of mean square error during the 
signal at the last sample of moving the window (nth sample) are 
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shown in Table 1. In this simulation, nine autistic signals and 18 con-
trol signals from normal subjects are used and the mean and stand-
ard deviation of estimation errors are calculated.

As shown in Table 1, the dual Kalman-based method gives the 
least and the best estimation error in comparison with other meth-
ods and its result is more accurate than others in both autistic and 
normal signals.

In the second phase of simulations, the connectivity is estimated 
from autistic and normal EEG by the dual Kalman-based method. 
Then, dDTF measure is calculated from estimated connectivity and 
these measures are compared between autistic and normal subjects 
in α EEG band. In this simulation, the mean and standard deviation 
of these measures during all normal and autistic EEG signals are cal-
culated between all brain subdivisions. The graphical plot of dDTF 
which is extracted from normal signal connectivity estimation is 
shown in Figure 4 and that from autistic signals is shown in Figure 5. 
In both plots, the standard divisions of dDTF is written in brackets 
([]). It should be mentioned that, for clarification and the simple com-
parison between the two figures, the values of dDTF which are more 
than 0.1 are shown. The eight subdivisions of brains are abbreviated 
in figures as follows:

–– Right frontal region (RF)
–– Left frontal region (LF)
–– Right central region (RC)
–– Left central region (LC)
–– Right partial region (RP)

–– Left partial region (LP)
–– Right occipital region (RO)
–– Left occipital region (LO)

And for connectivity estimation between sources of each region, the 
connectivities between sources of the same region are estimated and 
the mean of them is calculated. For comparing and isolating between 
the two groups (autistic and control), the t-test algorithm is applied 
to both autistic and control classes and the p-value for each region is 
calculated and is shown in Table 2.

As evident from Figures 4 and 5, the connectivities between 
the left frontal region and central or partial regions are more than 
other region connectivities and are decreased in autism. This is in 
accordance with results of other papers in this field [43–46]. Also, 
the connectivities between the right and left part of the central and 
partial regions are decreased in autism. There are no active sources 
in some regions like the right frontal region. Other connectivities 
which have dDTF lower than 0.1 are not shown in the figures. By 
comparing dDTF of autistic and normal signals, it can be concluded 
that the dDTF between active sources in normal signals is more than 
that in autistic signals. In other words, by estimating the connectiv-
ity with the dual Kalman-based method and applying it to EEG sig-
nals, the connectivity between autistic brain regions is less than the 
normal connectivity. Another result which can be extracted from 
the table is the mean connectivity increment inside each region in 
autistic children.

Figure 3: Flowchart and structure of the dual Kalman-based method.
In this method, firstly the sLORETA method is applied to EEG signals and active sources which are more active during the time are extracted. 
Then, the leadfield matrix and active sources are extracted. The MVAR method is fitted to the extracted sources and by adding the relation 
between sources and EEG signals the state space model is formed. In the state space model, the source activities during the time and their 
relations are unknown which are estimated with the dual Kalman filter.

Table 1: The mean and standard deviation of mean square error between the estimated and real signal at the last sample of the window 
over time.

  Method no. 1   Method no. 2   Method no. 3   Method no. 4   Dual Kalman-based method

Mean and standard 
deviation of autistic signals

  0.0256 ± 0.007576   0.0157 ± 0.006584   0.0348 ± 0.009445   0.1558 ± 0.01698   0.0001587 ± 0.00002544

Mean and standard 
deviation of normal signals

  0.0171 ± 0.00658   0.0115 ± 0.00554   0.0258 ± 0.00445   0.0965 ± 0.00125   0.00009876 ± 0.00001215

All methods are applied to signals and model parameters are estimated in each window. Then, the estimated EEG signal at the last sample 
of the window is calculated with model parameters. The calculated EEG value of the last sample of each window is compared with the real 
signal value by mean square error.
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Discussion
Understanding dynamic functions of the brain and study-
ing connectivity are important and useful subjects in 
diagnosing and analyzing several neurological disorders 
like autism. Effective brain connectivity is one of the con-
nectivity divisions which discusses the causal relation-
ship between the brain regions and interaction of one 
source or region with another. In this paper, the new dual 

Kalman-based method is applied to real signals for effec-
tive connectivity estimation. In the dual Kalman filter-
based method, the source localization and connectivity 
estimation are calculated in parallel with each other and 
the connectivity is not calculated independently. So the 
connectivity estimation with this method is more accu-
rate than the other methods in this field. Furthermore it 
does not need any predefined anatomical or physiological 
knowledge like the dynamic causal modeling methods. 
In the first simulation of this paper, the method ability in 
effective connectivity estimation is compared with other 
methods by estimation error. In this simulation, the con-
nectivities between regions are extracted from the dual 
Kalman-based method and the signals are calculated from 
estimated connectivity. Then, the estimated error is calcu-
lated from the real and estimated signal difference. So the 
method which is used in this paper is more accurate and 
has less estimation error than other methods. As discussed 
already, because of parallel estimations of source or region 
connectivities and their activities, this method gives better 
results than other methods. Then, in the second phase 
of simulations, after method validation with estimation 
error, the effective connectivity is estimated from the EEG 
signals of autistic and control children. This study is done 
in the resting state and the connectivities between regions 
are estimated in this state (unlike other papers in which 
most of them are done in the stimulated state [38–45, 47]). 
And unlike other methods [38–45, 47] it does not need any 
anatomical information to target region localization. From 
the second simulation and by comparing effective con-
nectivity between autistic and control children, the con-
nectivities between active regions are decreased and the 
connectivities within regions are increased in accordance 

Figure 4: The mean and standard deviation (shown in brackets) of 
dDTF measures which are calculated from estimated connectivities 
by applying the dual Kalman-based method to 18 normal signals.
The thickness of the arrows is related to its values. As shown, the 
connectivity between the central part of the brain (between the left 
and right side of the central part) is more than others (0.46 in our 
signals). In another result, the connectivity between the central 
parts and left frontal part of the brain is more than others.

Figure 5: The mean and standard deviation (shown in brackets) of 
dDTF measures which are calculated from estimated connectivities 
by applying the dual Kalman-based method to nine autistic signals.
The thickness of the arrows is related to its values. As shown, the 
connectivity between the left and right side of the central part of the 
brain is decreased in autism (0.26).

Table 2: The mean and standard deviation of estimated connectivity 
between sources which are in the same regions.

Mean and 
standard 
deviation of 
dDTF between 
each region

  Control signals   Autistic signals   p-Value 
between two 

classes

RF   –   –  
LF   0.8252 ± 0.1164   0.9286 ± 0.0948   0.0075
RC   0.7672 ± 0.0752   0.8976 ± 0.1072   0.0001703
LC   0.6432 ± 0.1762   0.9352 ± 0.0851   0.000001735
RP   0.4523 ± 0.2071   0.6012 ± 0.0615   0.000093
LP   0.4782 ± 0.0982   0.5214 ± 0.1108   00236
RO   –   –  
LO   –   –  

The table shows the mean of connectivity inside each region.
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with the results of other papers [38–48]. The regions of the 
left frontal lobe and central or partial regions have more 
connectivity measure value than other regions which 
is coincident with other papers in this field [43–46]. In 
another result, there are not any active sources in the right 
frontal region and the connectivities between the occipital 
region and other regions have less value than the thresh-
old and it does not show in figures.
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