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Extraction and Automatic Grouping of Joint and
Individual Sources in Multisubject fMRI Data

Using Higher Order Cumulants
Mansooreh Pakravan and Mohammad Bagher Shamsollahi , Senior Member, IEEE

Abstract—The joint analysis of multiple data sets to ex-
tract their interdependency information has wide applica-
tions in biomedical and health informatics. In this paper,
we propose an algorithm to extract joint and individual
sources of multisubject data sets by using a deflation-based
procedure, which is referred to as joint/individual thin in-
dependent component analysis (JI-ThICA). The proposed
algorithm is based on two cost functions utilizing higher
order cumulants to extract joint and individual sources.
Joint sources are discriminated by fusing signals of all sub-
jects, whereas individual sources are extracted separately
for each subject. Furthermore, JI-ThICA algorithm estimates
the number of joint sources by applying a simple and effi-
cient strategy to determine the type of sources (joint or
individual). The algorithm also categorizes similar sources
automatically across data sets through an optimization pro-
cess. The proposed algorithm is evaluated by analyzing sim-
ulated functional magnetic resonance imaging (fMRI) mul-
tisubject data sets, and its performance is compared with
existing alternatives. We investigate clean and noisy fMRI
signals and consider two source models. Our results re-
veal that the proposed algorithm outperforms its alterna-
tives in terms of the mean joint signal to interference ratio.
We also apply the proposed algorithm on a public-available
real fMRI multisubject data set, which was acquired during
naturalistic auditory experience. The extracted results are in
accordance with the previous studies on naturalistic audio
listening and results of a recent study investigated this data
set, which demonstrates that the JI-ThICA algorithm can be
applied to extract reliable and meaningful information from
multisubject fMRI data.

Index Terms—Brain Signals, functional magnetic reso-
nance imaging (fMRI), joint and individual source extrac-
tion, multi-subject data analysis, thin independent compo-
nent analysis (Thin ICA).

I. INTRODUCTION

A. Background and Motivation

IN BIOMEDICAL signal processing, joint analysis of multi-
ple datasets such as multi-subject and multi-modal datasets

introduces new degrees of freedom in analyzing datasets, and
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has wide applications in biomedical and health informatics, e.g.,
medical diagnosis and eHealth [1]. In traditional techniques,
data of each subject is separately analyzed, and then its results
are subsequently integrated with results of other subjects. How-
ever, recent researches have demonstrated that this approach
is suboptimal, because it does not allow the direct interactions
among information of multiple subjects. It seems that perfor-
mance gain of joint analysis is significant, if datasets contain
joint information about a specific process. Furthermore, data-
driven fusion of multiple datasets provides better understanding
of complex processes such as brain signals. Interestingly,
diverse multi-subject and multi-modal datasets are nowadays
available thanks to advances in brain-signal acquisition systems.

The main challenges in fusion of multiple datasets are the
extraction of useful and relevant information and the method
of fusing datasets. This is because underlying process depends
on large number of unknown variables. It has been shown that
various blind source separation (BSS) techniques [2] are useful
for data-driven fusion of multiple datasets [1].

In [3], the general BSS sub-problems have been categorized
into four classes, based on the number of analyzed datasets and
dependency of sources. The first class is single dataset unidimen-
sional (SDU), which analyzes a single dataset whose sources
are uncorrelated (independent). For example, the components
extracted with principal component analysis (PCA) method,
sources of independent component analysis (ICA) and second
order blind identification (SOBI) methods [2] have SDU model.
The second class is multiple dataset unidimensional (MDU),
which analyzes more than one dataset. In this class, sources in
each dataset are uncorrelated (independent), and each source
has exactly one corresponding correlated (dependent) source in
other datasets. The source model in canonical correlation anal-
ysis (CCA) [4] and [5], common feature analysis method [6],
generalized joint diagonalization of cumulant matrices [7], joint
analysis of multiple datasets by cross cumulant tensor block di-
agonalization [8], group information guided ICA (GIG-ICA)
[9] and independent vector analysis (IVA) [10], [11], [12] are
categorized in the MDU class.

The third class is single dataset multidimensional (SDM),
which analyzes a single dataset with one or more group of
sources, where sources of each group are dependent. The source
model of multidimensional independent component analysis
(MICA) [13] and independent subspace analysis (ISA) [14] are
in the SDM class. Finally, the fourth class is multiple dataset
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Fig. 1. Four source models with their source correlation pattern. For
MDM model only two special cases are presented. Each colorful line
indicates a source, and lines with similar colors mean joint (dependent
or correlated) sources. Black and white squares in the source correlation
matrices mean non-zero and zero correlation, respectively.

multidimensional (MDM), which deals with more than one
dataset, where sources in all datasets are organized into a num-
ber of groups. Sources in each group are dependent and it is
possible that some of groups are joint across all, some or just
one of datasets. The source model of multi-dataset independent
subspace analysis (MISA) [15] and joint independent subspace
analysis (JISA) [16] are examples of the MDM source model.

It is worth mentioning that the SDU model is a special case
of MDU, SDM, and MDM, while MDU and SDM models are
special cases of MDM [3].

Fig. 1 shows the explained source models with their source
correlation pattern for SDU, MDU, SDM and MDM models.
Note that only two special cases are shown for MDM source
model. In Fig. 1, dependent signals have the same color. In
addition, in the shown source correlation matrices, black and
white squares mean non-zero and zero, respectively.

Real brain datasets, e.g., brain signal of a number of subjects
in the same experiment, are not exactly similar in all regions
across subjects. This is partly due to the fact that there are some
active processes in brain of each subject that are independent
of the experiment effect. On the other hand the anatomical and
functional landmarks of individual subjects change within and
across subjects even after spatial normalization. Thus, to im-
prove the accuracy of the dataset model, a number of indepen-
dent (individual) sources should be considered per datasets [17],
[18] according to MDM model. Hence, we can have a model in
which each dataset is categorized into two parts, namely joint
sources and individual sources, where the joint sources in the

first part have exactly one equivalent (similar) source across
datasets, the same as the MDU model, while the sources in
the second part are independent. Intuitively, the joint sources
help to discover potential relationships between the members
of a dataset, while the individual sources can help to investi-
gate unique information in each member of the dataset. This
model is a special case of MDM. In this paper, we refer to this
source model as joint/individual MDM (JI-MDM). In Fig. 1,
the JI-MDM source model is shown as the second special case
for MDM model. It is worth mentioning that the source model
of recorded datasets in many biomedical and health informat-
ics applications is JI-MDM, thus, designing efficient algorithms
for JI-MDM source model is of utmost importance, which is the
main contribution of this paper.

It should be noted that in this paper, each dataset is brain
signals of one subject and multi-dataset means data of multiple
subjects in the same experiment.

B. Related Works

Recently, in [17] and [18], the JI-MDM source model has been
investigated. In [17], the so called joint and individual variation
explained (JIVE) method has been introduced to simultaneously
extract both joint and individual sources across the members of
a multi-dataset. The JIVE method represents an extension of
PCA and extracts joint variations between datasets. In [18], two
algorithms, namely COBE and COBEC, have been proposed
to extract common orthogonal basis in JI-MDM source model.
The COBE and COBEC algorithms deal with unknown and
known number of common components, respectively, where
both algorithms incorporate dimensionality reduction and blind
source separation techniques. Moreover, in [18] another method,
referred to as common nonnegative features extraction (CNFE),
has been introduced, in which low-rank approximation-based
(semi) nonnegative matrix factorization model is employed for
nonnegative latent sources. It should be noted that the JIVE,
COBEC and CNFE are generally referred to as linked BSS in
which these methods are combined with a BSS method and have
a direct connection to group PCA and group ICA [18].

The aforementioned algorithms are also applicable for the
MDU source model, if there is no individual sources. Thus, it
is worth to compare their performance with those algorithms
designed for the MDU problem, such as IVA, and Group
ICA [19]. In [20] and [21] some of algorithms which are
applicable for MDU source model have been reviewed and their
applications for biomedical data analysis have been explained.
It is worth mentioning that the novelty of our algorithm
compared with the algorithms introduced in [20] and [21] is
that our algorithm is applicable for both JI-MDM and MDU
source models, whereas algorithms in [20] and [21] can be used
only for MDU source model.

In [22], Group ICA algorithm has been applied to analyze
simulated fMRI dataset under conditions of spatial, temporal,
and amplitude variability. In [23], a graph-theoretical analysis
has been applied on IVA algorithm to analyze its ability in cap-
turing group variability of simulated fMRI. In both [22] and [23],
the same toolbox, referred to as SimTB [24], has been utilized
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to generate fMRI datasets. In this paper, we will use the SimTB
toolbox to generate simulated multi-subject fMRI dataset.

In [25], the thin ICA algorithm has been proposed by using
a proxy non-Gaussianity measure as cost function. The pro-
posed algorithm in [25] is applicable for SDU source model in
which a single dataset with independent sources is analyzed. In
this paper, we modify the cost function of [25] and present a
new algorithm to extract both joint and individual sources of a
multi-subject dataset with the JI-MDM source model. Thus, the
novelty of our algorithm compared with [25] is that it extracts
both joint and individual sources of multi-subject datasets in a
single optimization problem, whereas [25] has been designed
to analyze single-subject datasets with SDU model in which
sources are independent.

C. Contribution and Paper Organization

The main contribution of this paper is to present a new algo-
rithm to analyze multi-subject datasets with either JI-MDM or
MDU source models. The proposed algorithm is based on two
cost functions to extract joint and individual sources, where joint
sources are obtained by fusing signals of all subjects, whereas
individual sources are extracted separately for each subject. This
algorithm estimates the number of joint sources by applying a
simple and efficient strategy to determine the type of sources
(joint or individual). Furthermore, it groups similar sources au-
tomatically across datasets through an optimization process in
order to solve permutation indeterminacy across datasets. It is
worth mentioning that in SDU and SDM problems, the permu-
tation indeterminacy is related to the order of group sources
arrangement and is generally unimportant, but sometimes in
MDU and MDM problems, the order of extracted sources in
each dataset is important. In other words, it is desirable to as-
sign the same source index to joint sources across dataset and
solve permutation indeterminacy across datasets.

As mentioned, we compare our algorithm with the existing al-
ternatives, which have been recently introduced for the JI-MDM
dataset analysis, [17] and [18]. To do so, we generate clean and
noisy fMRI datasets by using SimTB toolbox [24], where in
noisy fMRI datasets small variations are applied in the location,
rotation and spread of joint sources across subjects, and then a
white Gaussian noise is added to the observations. Our results
reveal that the proposed algorithm has a better performance in
terms of the estimated number of correct join sources (estimated
C1) and mean joint signal to interference ratio (jSIR) for noisy
observations.

The novelty of our algorithm compared with its alternatives
([17] and [18]) is that it extracts simultaneously joint and indi-
vidual sources in a single optimization problem by exploiting
higher order cumulants. It is worth mentioning that the algo-
rithm introduced in [17] (JIVE) extracts the sources dominated
by variances rather than correlations or higher order cumulants.
As a consequence, JIVE may fail to extract the joint sources
with high correlations, especially when the joint sources are rel-
atively weak but are consistently present in all the datasets. In
addition, our numerical results demonstrate significant advan-
tages of the proposed algorithm in comparison with CNFE [18],
where it extracts correctly joint and individual sources of both

clean and noisy fMRI observations, whereas CNFE fails to ex-
tract joint sources of noisy fMRI observations. This is because
in CNFE joint sources are determined by minimizing the error of
a factorization problem based on alternating least square (ALS)
method, which its performance is degraded with Gaussian noise.
However, in our algorithm joint sources are discriminated based
on higher order cumulants, which suppress Gaussian noise.

Furthermore, as the proposed algorithm can be used for MDU
dataset model, we compare our algorithm with Group ICA [19],
GIG-ICA [9], and the IVA algorithm introduced in [26] (as three
methods for MDU dataset model). Our results show that the
proposed algorithm outperforms Group ICA and GIG-ICA for
both clean and noisy observations. In addition, our algorithm
outperforms the IVA algorithm for clean observations, while
it has approximately the same performance as IVA for noisy
observations.

Finally, we apply our algorithm on a public-available multi-
subject fMRI dataset obtained from the Study Forrest project
[27]. This dataset contains fMRI data of 20 subjects acquired
during naturalistic auditory experience. The obtained results of
the JI-ThICA algorithm for this dataset are in accordance with
the previous studies on naturalistic audio listening [28], [29] as
well as results of a recent study investigated this dataset [30],
which demonstrates the capability of the proposed JI-ThICA to
extract reliable and meaningful information from multi-subject
fMRI dataset.

The rest of the paper is organized as follows. In Section II,
the signal model and our notations are presented. The proposed
algorithm is explained in Section III. In Section IV, numerical
results are presented. Finally, Section V is devoted to conclude
the paper and present the future works of our study.

II. SIGNAL MODEL

In our JI-MDM model, C1 independent components are con-
sidered for each dataset, which are joint sources across datasets,
(i.e., these sources are dependent across all datasets, the same
as the MDU model). In addition, C2 individual components are
considered in each dataset, which are analyzed separately, and
C is the total number of sources in each dataset (C = C1 + C2).
Furthermore, K, V , and N are the number of datasets, the num-
ber of voxels within a slice of fMRI image (or the number of
time points in a EEG signal), and the number of observation
time points in a BOLD signal (or the number of channels in a
EEG signal), respectively. It should be noted that the vectorized
version of the fMRI source images (or volumes) are processed
in the algorithm.

Based on these notations, the introduced source models in
Fig. 1 can be interpreted as follows. The JI-MDM is reduced to
SDU and MDU for the cases of (K = 1) and (K > 1 and C2 =
0), respectively. Furthermore, if K > 1 and C1 = 0, JI-MDM
represents K separate and independent SDU source models.

Let X(k) denote the observation signal of kth subject, given
by

X(k) = A(k)S(k) , k = 1, ...,K. (1)
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where A(k) ∈ RN ×C is the mixing matrix; S(k) = [s(k)
1

T
,

s(k)
2

T
, ..., s(k)

C

T
]T is the source matrix; s(k)

c ∈ R1×V for 1 ≤
c ≤ C is c’th source component. Here, the superscripts and
subscripts denote the indices of datasets and sources, respec-
tively.

In this paper, we assume that the components of S(k) are mu-
tually independent, locally stationary and normalized to zero
mean and unit variance, and the mixing matrices A(k) ; k =
1, ...,K are full-column rank.

Moreover, cumulants and cross-cumulants are used to extract
latent sources, where the second, third and fourth cumulants of
real zero-mean stochastic random variables yi are calculated as
follows [2]:

cum [yi ] = E{yi} = 0; (2a)

cum [yi, yj ] = E{yi, yj}; (2b)

cum [yi, yj , yk ] = E{yi, yj , yk}; (2c)

cum [yi, yj , yk , yl ] = E{yi, yj , yk , yl} − E{yi, yj}E{yk , yl}
− E{yi, yk}E{yj , yl} − E{yi, yl}E{yj , yk}; (2d)

where the operator E{.} is the expected value. It is worth not-
ing that the cross-cumulant of mutually statistically independent
(MSI) random variables is zero [2], i.e.,

cum [y1 , y2 , ..., yK ] = 0, if y1 , y2 , ..., yK are MSI. (3)

Furthermore, if two random variables are related by a linear
transform, y = Ax, then their cumulants are related multi-
linearly as follows [2]

cum [yi, yj , ..., yk] =
∑

p,q ,...,r

Ai,pAj,q ...Ak,r cum [xi, xj , ..., xk].

(4)

For MDU and JI-MDM source models, cum
[
S(k1 ) , S(k2 )

]
,

cum
[
S(k1 ) , S(k2 ) , S(k3 )

]
and cum

[
S(k1 ) , S(k2 ) , S(k3 ) , S(k4 )

]

are all superdiagonal tensors in RC×C , RC×C×C , and
RC×C×C×C , respectively, which are given by

(
cum

[
S(k1 ) , S(k2 )

])

(c,c)
=

1
V

V∑

v=1

cum
[
s(k1 )

c (v), s(k2 )
c (v)

]

(5)
(
cum

[
S(k1 ) , S(k2 ) , S(k3 )

])

(c,c,c)

=
1
V

V∑

v=1

cum
[
s(k1 )

c (v), s(k2 )
c (v), s(k3 )

c (v)
]

(6)

(
cum

[
S(k1 ) , S(k2 ) , S(k3 ) , S(k4 )

])

(c,c,c,c)

=
1
V

V∑

v=1

cum
[
s(k1 )

c (v), s(k2 )
c (v), s(k3 )

c (v), s(k4 )
c (v)

]

(7)

where s
(k)
c (v) is the (c, v)th element of S(k) . Furthermore, for

JI-MDM model, we have

cum
[
s(k1 )

c (v), ..., s(ki )
c (v)

]
�= 0 if (k1 = ... = ki) or (c ∈ J )

cum
[
s(k1 )

c (v), ..., s(ki )
c (v)

]
= 0 if (∃ki1 �= ki2 ) and (c ∈ I)

(8)

where J and I are the set of joint and individual sources,
respectively, i = 2, 3, 4 and i1 , i2 = 1, ..., 4.

III. PROPOSED ALGORITHM

In the proposed algorithm, joint and individual sources across
multiple datasets are extracted by employing a deflation frame-
work [2]. In this algorithm, sources of each dataset are extracted
one-by-one, and two cost functions, namely joint thin ICA (J-
ThICA) and individual thin ICA (I-ThICA), are employed to
extract joint and individual sources, respectively.

The proposed algorithm has two main steps. The first step is
preprocessing to prepare the observations for the analysis, and
the second one is maximizing a cost function to find the optimum
source component in a deflation based framework. In the two
following subsections, the aforementioned steps are described,
then, in subsection III-C a method is proposed to determine the
type of extracted sources, joint or individual.

A. Preprocessing

In order to extract independent components, first we apply
PCA to reduce the dimension of the observations to C principle
components (W (k)

pca ). The PCA also helps to reduce the com-
putational complexity and artifacts in observations. It should
be noted that any other dimensional reduction algorithms can
be used here; however, the selected procedure should give the
desired information of the signals.

After dimensional reduction, a pre-whitening system
(W (k)

w = RX (k )
−1/2) is employed to obtain the preprocessed

observations matrices Z(k) [2], where RX (k ) is the correlation
matrix of X(k) .

The number of principle components C (joint and individual
sources, C1 + C2) can be estimated by using the model or-
der selection approaches based on information-theoretic criteria
such as Akaike information criterion (AIC) [31] and Bayesian
information criterion (BIC) [32]. In this paper, we use BIC to
estimate C in each subject. Furthermore, we assume that the
number of independent sources are the same across datasets.
After estimating C in each dataset, we choose the estimated
number with maximum repetition (using a voting approach). It
is worth mentioning that there are also other methods for joint
estimation of C [33], which can be used alternatively.

B. Optimizing Cost Function

In the following, two cost functions are presented to extract
joint and individual sources.

Cost function for individual sources (I-ThICA): We have
selected higher order cumulants and cross-cumulants as the
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base of our cost functions, because, the sources distributions
do not affect the local convergence of higher order cumu-
lants for sources with non-zero cumulant [34]. To this aim,
we need non-Gaussianity in independence-based decomposi-
tions. Since gaussian sources have zero-valued higher-order cu-
mulants, maximizing the cost functions based on higher-order
cumulants leads to non-Gaussianity.

We inspire our cost function from the thin ICA [25], in which
the cost function is a proxy non-Gaussianity measure obtained
by combining higher order cumulant matrices. The Thin ICA
has a multivariate contrast function for the estimation of inde-
pendent sources from a linear mixture.

The thin ICA processes each dataset individually, and its cost
function for kth dataset is given by [25]

ΨΦ(y(k)
c (v)) =

∑

η∈Φ

wη

∣∣∣cum
[
y(k)

c (v − υ1), y(k)
c (v − υ2), ..., y(k)

c (v − υη )
]∣∣∣

2
,

(9)

where the operator |.|2 is squared norm, Φ is a set containing
the order of used cumulants, wη > 0 denotes the weight of
η’th order cumulant, v = 1, ..., V is the pixel or voxel number,
y

(k)
c (v) = u(k)

c Z(k)(v) is the estimation of the source, in which
u(k)

c is the estimation of c’th raw of the inverse of mixing matrix,
and Z(k)(v) ∈ RC×1 is the observation in v’th voxel. Note that
y

(k)
c (v − υm ) for m = 1, ..., η is υm delayed version of y

(k)
c (v).

Hereafter, ΨΦ

(
y

(k)
c (v)

)
is referred to as individual thin ICA

(I-ThICA).
In [25], in order to maximize I-ThICA, the cost function has

been optimized with respect to the first source in cum[.] operator
while keeping fixed the other sources (even if some of the other
sources is equal to the first source). Furthermore, it has been
shown that in a deflation procedure, the solution which extracts
one of the independent sources is a local maximum of the thin
ICA contrast function (Theorem 1 in [25]).

In this paper, we optimize I-ThICA with respect to u(k)
c

and accordingly estimate the desired source (y(k)
c

∗
(v) =

u(k)
c

∗
Z(k)(v), where u(k)

c

∗
is the optimum value of u(k)

c ).
Cost function for joint sources (J-ThICA): In this case, we

modify I-ThICA to utilize the information of similar sources
in other datasets. The proposed cost function to extract the cth
source of k1 th dataset is formulated as follows

ΥΦ(y(k1 )
c (v)) =

∑

η∈Φ

wη

∣∣∣cum
[
y(k1 )

c (v − υ1), y(k2 )
c (v − υ2), ..., y

(kη )
c (v − υη)

]∣∣∣
2

(10)

where kj ∈ {1, ...,K}/{k1} for j = 2, ..., η. In the following,
this cost function is referred to as joint thin ICA (J-ThICA).
In each iteration of maximizing J-ThICA cost function, η − 1
datasets are selected randomly from {1, ...,K}/{k1}, which are
indexed as k2 , ..., kη datasets.

Joint/individual thin ICA (JI-ThICA): In order to solve the
JI-MDM problem, we need to extract both joint and individ-
ual sources of the dataset with one algorithm. To this aim, we
propose the following algorithm for the cth source in the k1 th
dataset (k1 = 1, ...,K and c = 1, ..., C).

u(k1 )
c

∗
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmax
u(k 1 )

c

ΥΦ(y(k1 )
c (v)), if (c ∈ J )

s.t. :
∣∣∣u(k1 )

c

∣∣∣
2

= 1

argmax
u(k 1 )

c

ΨΦ(y(k1 )
c (v)), if (c ∈ I)

s.t. :
∣∣∣u(k1 )

c

∣∣∣
2

= 1

(11)

In this algorithm, we need to know the type of source c, joint (J )
or individual (I). In subsection III-C, we propose a method to
determine the type of sources. Furthermore, the cost functions
ΨΦ(y(k1 )

c (v)) and ΥΦ(y(k1 )
c (v)) must have different nonzero

values for real sources to correctly extract them [25]. It means
that there are two permutation sets α and δ of the indexes
{1, ..., C} in such a way that the following inequalities are sat-
isfied

ΥΦ(y(k1 )
δ1

∗
(v)) > ΥΦ(y(k1 )

δ2

∗
(v)) > ... > ΥΦ(y(k1 )

δC

∗
(v)),

k1 = 1, ...,K
(12)

ΨΦ(y(k1 )
α1

∗
(v)) > ΨΦ(y(k1 )

α2

∗
(v)) > ... > ΨΦ(y(k1 )

αC

∗
(v)),

k1 = 1, ...,K.
(13)

In order to maximize these cost functions and extract desired
sources, we use [25, Th. 1]. For I-ThICA, the theorem in [25] is
directly applied, however, we need to modify it for the case of
J-ThICA. In the following, the modified theorem is presented,
which shows that at the global maximum of J-ThICA cost func-
tion, the output vector is the desired output.

Theorem 1: Considering the extracting vector u(k1 )
c ∈ R1×C

and the output source y
(k1 )
c (v) for c = 1, ..., C and k1 =

1, ...,K, at the global maximum of ΥΦ(y(k1 )
c (v)) subject to

|u(k1 )
c |2 = 1, y

(k1 )∗
c (v) represents the desired source s

(k1 )
c (v),

i.e., y
(k1 )∗
c (v) = s

(k1 )
c (v).

Proof: If we define G(k) = (U (k)W
(k)
w W

(k)
pca)A(k) and

g
(k)
c1 ,c2 = [G(k) ]c1 ,c2 , we have y

(k1 )
c (v) =

∑C
i=1 gc,i

(k1 )s
(k1 )
i (v).

Then, by using (4), we have

∣∣∣cum
[
y(k1 )

c (v − υ1), y(k2 )
c (v − υ2), ..., y

(kη )
c (v − υη )

]∣∣∣
2

=

∣∣∣∣∣

C∑

i1 =1

C∑

i2 =1

...

C∑

iη =1

g
(k1 )
c,i1

g
(k2 )
c,i2

...g
(kη )
c,iη

· cum
[
s

(k1 )
i1

(v − υ1), ..., s
(kη )
iη

(v − υη )
] ∣∣∣∣∣

2

(14)
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Then, by using Cauchy-Schwarzs inequality and (3), the follow-
ing relation is obtained
∣∣∣cum

[
y(k1 )

c (v − υ1), y(k2 )
c (v − υ2), ..., y

(kη )
c (v − υη )

]∣∣∣
2

≤
C∑

i1 =1

∣∣∣g(k1 )
c,i1

∣∣∣
2
.

⎛

⎝
C∑

i1 =1

η∏

j=2

∣∣∣g(kj )
c,i1

∣∣∣
2

⎞

⎠

·
∣∣∣cum

[
s

(k1 )
i1

(v − υ1), ..., s
(kη )
i1

(v − υη )
]∣∣∣

2
(15)

Since the rows of G(k) are normalized, we have
⎛

⎝
C∑

i1 =1

η∏

j=2

∣∣∣g(kj )
c,i1

∣∣∣
2

⎞

⎠ ≤
η∏

j=2

(
C∑

i1 =1

∣∣∣g(kj )
c,i1

∣∣∣
2
)

= 1 (16)

Thus, (15) can be rewritten as
∣∣∣cum

[
y(k1 )

c (v − υ1), y(k2 )
c (v − υ2), ..., y

(kη )
c (v − υη )

]∣∣∣
2

≤
C∑

i1 =1

∣∣∣g(k1 )
c,i1

∣∣∣
2 ∣∣∣cum

[
s

(k1 )
i1

(v − υ1), ..., s
(kη )
i1

(v − υη )
]∣∣∣

2

(17)

Using (17) in the J-ThICA cost function, we have

ΥΦ

(
y(k1 )

c (v)
)

=

∑

η∈Φ

wη

∣∣∣cum
[
y(k1 )

c (v−υ1), y(k2 )
c (v−υ2), ..., y

(kη )
c (v−υη )

]∣∣∣
2

≤
∑

η∈Φ

wη

C∑

i1 =1

∣∣∣g(k1 )
c,i1

∣∣∣
2 ∣∣∣cum

[
s

(k1 )
i1

(v−υ1), ..., s
(kη )
i1

(v−υη )
]∣∣∣

2

≤
C∑

i1 =1

∣∣∣g[k1 ]
c,i1

∣∣∣
2
ΥΦ(s(k1 )

i1
(v − υ1)). (18)

From the ordering condition in (12), we have ΥΦ(s(k1 )
δ1

(v −
υ1)) > ΥΦ(s(k1 )

δj
(v − υ1)) ∀j = 2, ..., C. Furthermore, for the

case of correct extraction, the term U (k)W
(k)
w W

(k)
pca is inverse

of the mixing matrix, A(k) , which giving rise to G(k) = IC×C .
Under these conditions, the J-ThICA cost function is upper
bounded by ΥΦ(y(k1 )

c (v − υ1)) < ΥΦ(s(k1 )
δ1

(v − υ1)), which

means that ΥΦ(y(k1 )
c (v − υ1)) extracts the desired independent

component for υ1 = 0 in its global maximum, i.e. y
(k1 )
δ1

∗
(v) =

s
(k1 )
δ1

(v). �
In the following, we solve the optimization problem in (11).

For simplicity, the J-ThICA cost function is rewritten as

ΥΦ(y(k1 )
c (v)) =

∑

η∈Φ

wη

∣∣∣cum
[
y(k1 )

c (v−υ1), y(k2 )
c (v−υ2), ..., y

(kη )
c (v−υη)

]∣∣∣
2

= u(k1 )
c M̃ (k1 )

v ,c u(k1 )T

c , (19)

in which

M̃ (k1 )
v ,c =

∑

η∈Φ

wη C̃(k1 )
v ,c (η)

(
C̃(k1 )

v ,c (η)
)T

, (20)

where

C̃(k1 )
v ,c (η)

= cum
[
Z(k1 )(v − υ1), y(k2 )

c (v − υ2), ..., y
(kη )
c (v − υη )

]
.

(21)

In (20), we observe that M̃
(k1 )
v ,c is independent of u(k1 )

c , thus,

the maximum of ΥΦ(y(k1 )
c ) is computed by obtaining the cor-

responding eigenvector of the dominant eigenvalue of M̃
(k1 )
v ,c ∈

RC×C , where the obtained eigenvector is the optimum value of
u(k1 )

c .
In [25], the maximum of the I-ThICA function has been ob-

tained by computing the eigenvector associated to the dominant
eigenvalue of M

(k)
v ,c =

∑
η∈Φ wηC

(k)
v ,c (η)(C(k)

v ,c (η))T in which

C
(k)
v ,c (η) = cum[Z(k)(v − υ1), y

(k)
c (v − υ2), ..., y

(k)
c (v − υη )].

It is worth mentioning that since sometimes observation pro-

cess is large term non-stationary, we compute u(k1 )
c

∗
in each

voxel v. But we can write the I-ThICA and J-ThICA cost func-
tions in batch mode for υm = 0, ∀m = 1, .., η. For example for
J-ThICA cost function, we have

C̃(k1 )
c (η) = cum

[
Z(k1 ) ,y(k2 )

c , ...,y(kη )
c

]
. (22)

The proposed JI-ThICA algorithm is presented in
Algorithm 1, which is based on deflation procedure. Note that
the algorithm is written in batch model (simultaneously for all
voxels not for an individual voxel v).

In Algorithm 1, the operator PIM(.) means power itera-
tion method which computes the eigenvector associated to the
dominant eigenvalue of its input matrix. There are some itera-
tive standard eigenvalue and eigenvector finding methods. We
use power iteration method [35] to obtain the corresponding
eigenvector of the largest eigenvalue. Since M̃

(k1 )
c and M

(k)
c

are symmetric matrices, the power iteration method generally
converges twice as rapidly as an asymmetric matrix.

The maximization of I-ThICA and J-ThICA are performed
in an iterative procedure, where the iteration stops if 1 −
|u(k1 )

(c) u(k1 )
co l d

T |2 ≤ ε0 , (e.g., ε0 = 10−4). We call this iteration
as inner iteration. We also use an outer iteration procedure
for JI-ThICA algorithm such that in each iteration all optimum
sources of all datasets are extracted. The outer iteration is exe-
cuted MaxIter times.

C. Determining the Type of Sources

In each step of JI-ThICA algorithm, we can determine
whether the extracted independent source is joint across datasets

or not. To do so, we compute ΥΦ(y(k)
c

∗
) (which is a measure of

cross-cumulant) in each inner iteration of extracting c’th source
in k’th dataset. The main reason that cross-cumulants can be
used in joint and individual sources discrimination stems from
the fundamental property of cumulants, which says that the
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cross-cumulant of MSI random variables is zero, (3). Thus, the
value of ΥΦ(y(k1 )

c

∗
) is expected to be high and low for joint and

individual sources, respectively. Consequently, we can select a
threshold (σth ) to decide about the type of source (line 13 in
Algorithm 1).

In each outer iteration, the type of extracted source might
change, depending on the updated y(k1 )

c . This approach will en-
able us to resolve the permutation indeterminacy across datasets
and to group the dependent sources automatically across sub-
jects. Interestingly, this method does not require to know the
number of joint and individual sources, because, it automati-
cally determines their type.

It is worth noting that in deflation based methods, after
extracting a desired independent component (y(k)∗

c ∈ R1×V ),
its contribution can be subtracted from the observation ma-
trix (Z(k)) by linear regression. By doing so, each row
of the new observation matrix (Znew

(k)(n, :) = z(k)
new ,n ∈

R1×V ∀n = 1, ..., C) is obtained as follows [2]:

z(k)
new ,n = z(k)

n −
(
z(k)

n (y(k)∗
c )T

)(
y(k)∗

c (y(k)∗
c )T

)−1
y(k)

c ,

(23)

Fig. 2. Flowchart of the proposed algorithm to analyze multi-subject
fMRI data, where the nth raw of observation matrix X (k ) ; k = 1, ..., K is
the vectorized version of fMRI image in time n for kth subject.

where y(k)∗
c and z(k)

new ,n ∀n = 1, ..., C are uncorrelated, thus, by
processing Znew

(k) in the next step of the deflation procedure,
we extract another independent component.

Fig. 2 shows the flowchart of the proposed algorithm to ana-
lyze multi-subject fMRI data.

IV. NUMERICAL RESULTS

A. Performance Measures

We evaluate the performance of the proposed algorithm
by computing the Signal-to-Interference Ratio (SIR) [18]
as follows

SIR(s,y∗) = 10 log10

( ∑V
v=1 s2(v)

∑V
v=1(s(v) − y∗(v))2

)
, (24)

where s and y∗ are normalized real and estimated sources with
zero mean and unit variance, respectively. The joint SIR (jSIR)
measure is obtained by computing the mean value of SIR mea-
sure of K datasets. Clearly, based on the above definition, in
our performance evaluation higher jSIR is desired.

B. Results on Simulated fMRI Data

To evaluate our algorithm, we generate a synthesized fMRI
multi-subject dataset with the SimTB toolbox [24] to determine
the capabilities and limitations of JI-ThICA algorithm1. This
toolbox can simulate 27 spatially independent brain source, as
shown in Fig. 3. In our study, the simulated fMRI images with
64 × 64 pixels are generated. By using SimTb toolbox, we have
assigned the same synthesized spatial map across all subjects for
joint sources and different spatial maps for individual sources.
Furthermore, we have used time courses generated with SimTB
toolbox as mixing matrix. For more details about the synthesized
fMRI signals interested readers are referred to see [24].

We apply spatial ICA to analyze fMRI data, which is based on
the assumption that a weighted linear combination of C spatial
independent source images compose each fMRI image over
time. Here, we assume that C is equal to the number of principal
components in PCA, which is unknown.

1This toolbox is available at http://mialab.mrn.org/software/simtb/ [Ac-
cessed: 2017-03-20]



PAKRAVAN AND SHAMSOLLAHI: EXTRACTION AND AUTOMATIC GROUPING OF JOINT AND INDIVIDUAL SOURCES IN MULTISUBJECT FMRI DATA 751

Fig. 3. Configuration of default sources in SimTb toolbox [24].

In order to estimate the number of principal components, we
use BIC method with the maximum likelihood ICA algorithm
[36] for each subject and select the number with maximum
repetition as the number of principle components (C).

In the following, K denotes the number of subjects, N is the
number of observation time points, and C1 and C2 are the num-
ber of joint and individual sources, respectively. Note that C1
and C2 are unknown and the algorithm should find the correct
C1 and C2 . In the I-ThICA and J-ThICA cost functions, we con-
sider Φ = {2, 3, 4}, w2 = 0.5, w3 = 0.75, w4 = 1 and υm = 0
for all m = 1, .., η. In addition, for the cases of K = 2 and
K = 3 we set (k3 = k1 , k4 = k2), and (k4 = k1), respectively.

It should be noted that the number of simulated sources in
SimTB toolbox is limited to 27, thus, K, C1 and C2 are limited as
C1 + C2 × K = 27 . Therefore, there is a limitation to increase
K, C1 and C2 in the JI-MDM source model, however, for the
MDU case (C2 = 0), we can increase C1 up to 27 without any
limitation on K.

In Fig. 4(a), the convergence rate of the JI-ThICA algorithm in
terms of the mean jSIR is shown, where the results are obtained
from 50 Monte Carlo runs under two different initializations
(random and identity matrices), and K = 8, N = 150, C1 = 3
and C2 = 3. Note that in the case of random matrix initialization,
a different random initial matrix is used for each Monte Carlo
run. It can be observed that the algorithm converges after four
iterations and initialization does not affect the convergence rate.
Furthermore, Fig. 4(b) shows the estimated number of joint
sources (C1) in each outer iteration. Here, the same setting as
Fig. 4(a) is considered, and similarly, after four iterations the
mean number of joint sources converges to 3.

In Fig. 4(c) and (d) the performance of the algorithm is ana-
lyzed under different weights settings for order cumulants. From
the figure, we observe that by setting w2 = 1 and w3 = w4 = 0
the worst performance is obtained, while if we set w2 = w3 = 0
and w4 = 1, the performance of the algorithm is significantly
improved. This observation reveals that giving higher weight to
the fourth order cumulant leads to a better performance. Fur-
thermore, by setting w2 = w3 = w4 = 1, the performance of

Fig. 4. The convergence rate for the JI-ThICA algorithm versus differ-
ent outer iterations(a) Mean jSIR and (b) Mean estimated number for
joint sources (K = 8, N = 150, C1 = 3 and C2 = 3). (c) Mean jSIR
and (d) Mean estimated number of joint sources for different weights of
cumulant orders.

the algorithm is further improved. By changing the values of
w2 and w3 (w2 = 0.5 or 0.2, w3 = 0.75 or 0.2) for a fixed
w4 (w4 = 1), we get approximately the same results as for
w2 = w3 = w4 = 1. Thus, it can be deduced that the fourth
order cumulant has the most contribution on the performance
improvement, and using the second and third order cumulants
can slightly improve the performance of the algorithm.

We compare the results of the proposed JI-ThICA algorithm
in extracting joint and individual sources with the algorithms
proposed in [18]2. Since the simulated fMRI sources and obser-
vations are assumed to be positive, here we can use the CNFE
method [18]. Furthermore, as the JIVE algorithm has poor per-
formance with respect to the CNFE alternative [18] and also
has a high run time, we do not report the results of JIVE. In
the COBEC algorithm [18], the number of joint sources are
known, whereas in this section we compare the results of those
methods estimating the number of joint sources, thus, in the
following, only the results of the JI-ThICA and CNFE methods
are compared.

Fig. 5(a) shows the estimated number of joint sources
(C1) versus σth for the experiment considered in Fig. 4 with
MaxIter = 4. Results reveals that the proper interval of σth to
estimate C1 correctly is [10−4 , 10−1].

In [18], a parameter called ε has been introduced for the CNFE
method, which controls the degree of similarity of the extracted
sources. In order to find a proper value for ε, we have tested
different values for ε in the same scenario as the experiment
considered in Fig. 4 (K = 8, N = 150, C1 = 3 and C2 =
3). Fig. 5(b) shows the number of estimated joint sources (C1)
by CNFE versus ε. We observe that for 10−3 < ε ≤ 1 CNFE
estimates joint sources correctly.

2We have downloaded the MATLAB codes of COBE and CNFE algorithms
from http://www.bsp.brain.riken.jp/ zhougx/cifa.html [Accessed: 2017-03-10].
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Fig. 5. Proper intervals of σth and ε to estimate the number of joint
sources (C1 ) correctly (a) in the JI-ThICA algorithm with MaxIter = 4,
and (b) in the CNFE algorithm, where the correct C1 is 3.

Fig. 6. (a) An example for original simulated fMRI sources (K = 8, C1
= 3 and C2 = 3). (b) Estimated sources with JI-ThICA algorithm.

From Fig. 4 we observed that the initialization condition does
not affect the results, thus, in the following experiments identity
initialization matrix is used. In addition, considering the results
in Fig. 5 we set σth = 10−3 and ε = 10−2 in the rest of this
study. Furthermore, in the following the results are obtained by
computing the average of 30 Monte Carlo runs, where each run
is recorded after 4 outer iterations (MaxIter = 4).

In Fig. 6(a), an example of simulated fMRI sources is shown
for K = 8, C1 = 3 and C2 = 3. The results of applying the
JI-ThICA algorithm to extract joint and individual sources of
this example are depicted in Fig. 6(b). We see that our algorithm
aligned joint sources across subjects, and it extracted individual
sources correctly.

In Fig. 7(a), the Mean jSIR of the JI-ThICA and CNFE algo-
rithms are shown versus the number of datasets K (N = 150,
C1 = 3, C2 = 3) for clear observation. The results of CNFE
are depicted for both SOBI and thin ICA. We observe that
by using thin ICA, the performance of CNFE is improved
with respect to the scenarios employing SOBI. In addition,
for K > 3, the JI-ThICA algorithm outperforms CNFE-SOBI,
whereas it has approximately the same performance as CNFE-
ThICA. It is worth mentioning that in the cost function of the
JI-ThICA we use second, third and fourth order cumulants
and cross-cumulants, and for the case of K ≤ 3 fourth order
cross-cumulants is computed by repeating sources (if K = 2
and K = 3, we compute fourth order cross-cumulants by set-
ting {k3 = k1 , k4 = k2}, and {k4 = k1}, respectively), which
leads to performance degradation. However, for higher number
of sources (K > 3) it uses different sources to compute fourth
order cross-cumulants and its performance is improved.

The asterisk symbols in Fig. 7 (as well as Figs. 8 and 10)
indicate the results of a one-sided t-test for the null hypothesis
that the average of the jSIR measure of the JI-ThICA algorithm
is less or equal to the measure of other algorithms. No asterisk
symbol means that the p-value (Pvalue ) of the test is higher than
0.01, one asterisk indicates that 10−4 < Pvalue ≤ 10−2 , two
asterisk shows that 10−6 < Pvalue ≤ 10−4 , and three asterisk
indicates that Pvalue ≤ 10−6 . It should be noted that before us-
ing the t-test, the normality of the data is checked using Shapiro
Wilk test [37]3.

It should be noted that the spatial shape of joint active sources
in real fMRI dataset is not exactly the same, and there is a spatial
variation. Furthermore, the spatial patterns of joint sources may
be affected by aligning brain images of subject on a standardized
space [38]. These modifications are likely to obscure the joint
sources similarity, and degrade the algorithm performance in
terms of joint source discrimination. In Fig. 7(b), the results of
a noisy observation experiment are shown. In this experiment,
the effect of spatial variability of joint sources between subjects
is modeled by applying random small variations in the location,
rotation, and spread of active regions of sources. To this aim, two
joint sources of subjects are translated down by 10% of the image
size, are rotated 10 degrees counter-clockwise and clockwise,
and contracted (enlarged) with 0.8 (1.2) factor, to model the
location, rotation and spread variations, respectively. In addition,
a white Gaussian noise is added to the observations with signal to
noise ratio (SNR) of 3 dB, where SNR = 10(log10

Signal Power
Noise Power ).

In Fig. 7(b) the same behavior as Fig. 7(a) is observed, how-
ever, for the case of noisy observation our algorithm outperforms
both CNFE+SOBE and CNFE+ThICA for K > 3, which indi-
cates that our algorithm is a better choice for noisy observations.

3We have checked the normality of the data in http://scistatcalc.blogspot.
ca/2013/10/shapiro-wilk-test-calculator.html
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Fig. 7. Performance Comparison among CNFE+SOBE, CNFE+ThICA and JI-ThICA algorithms versus the number of datasets (N = 150, C1 =
3, C2 = 3), (a) Mean jSIR (dB) for clean observations, (b) Mean jSIR (dB) for noisy observations, (c) Mean run time for clear observations.

Fig. 8. Performance Comparison among CNFE+SOBE, CNFE+ThICA and JI-ThICA algorithms versus the number of joint sources (N = 150, K
= 7, C2 = 3), (a) Mean jSIR (dB) for clean observations, (b) Mean jSIR (dB) for noisy observations, (c) Mean run time for clear observations.

In Fig. 7(c), the mean run times of CNFE+SOBE,
CNFE+ThICA and JI-ThICA are compared versus the num-
ber of datasets. Note that all experiments are conducted with
an Intel(R) Core(TM) i7- 2.40 GHz computer with 8.0 GB of
RAM. We see that CNFE with thin ICA and SOBI have the
highest and lowest mean run times, respectively. Furthermore,
the run times of algorithms for noisy and clear observations are
approximately identical.

In Fig. 8, the mean jSIR of the JI-ThICA and CNFE al-
gorithms are shown versus the number of joint sources C1
(N = 150, K = 7, C2 = 3) for both clear and noisy observations.
Here, we see the same trend as Fig. 7, and the JI-ThICA method
outperforms the CNFE+SOBE and CNFE+ThICA alternatives.

In order to evaluate the capability of algorithms in estimating
the number of joint sources, in Fig. 9 the mean estimated C1
versus the exact C1 of the experiment considered in Fig. 8 is
depicted. As it can be seen, for clear observations all methods
estimate the joint sources correctly, however, in the case of noisy
observations, the JI-ThICA on average estimates joint sources
correctly, whereas the CNFE+SOBE and CNFE+ThICA meth-
ods can not extract joint sources. Note that in Fig. 9 the results of
CNFE+SOBE and CNFE+ThICA are exactly the same, and as
the curve of CNFE+SOBE is under the curve of CNFE+ThICA,
it is not visible.

It is worth mentioning that in the above experiments chang-
ing either the number of fMRI image pixels or the number of
observation time points does not affect the performance of the

Fig. 9. Estimated number of joint sources (C1 ) for CNFE+SOBE,
CNFE+ThICA and JI-ThICA algorithms versus the number of joint
sources (N = 150, K = 7, C2 = 3), (a) clean observations, (b) noisy
observations.

algorithms. Here, due to the space limitation, we do not report
the results of changing these parameters.

As mentioned, if we set the number of individual sources C2
to zero, the source model in the JI-MDM model will be the
same as the MDU one. Thus, we can compare JI-ThICA with
algorithms proposed for the MDU model.

In Fig. 10, we compare our algorithm with the IVA algorithm
proposed in [26], referred to as IVA-Lap, Group ICA [19] and
GIG-ICA [9] algorithms4 (which are used in GIFT toolbox [39]).

4We have downloaded the MATLAB codes of group ICA and GIG-ICA
algorithms from http://mialab.mrn.org/software/gift/ [Accessed: 2017-07-20]
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Fig. 10. Performance Comparison among Group ICA, GIG-ICA, GroupPCA+IVA-Lap-Dec and JI-ThICA algorithms versus the number of datasets
for clear observations (N = 150, C1 = 27, C2 = 0), (a) Mean jSIR (dB), (b) Mean run time in second.

In IVA-Lap, a second-order uncorrelated multivariate Laplace
distribution is assumed for the source vectors. We have exam-
ined other type of probability density functions for IVA algo-
rithm (e.g., multivariate Gaussian distribution prior and mul-
tivariate power exponential distribution prior [40]), however,
as the Laplace distribution had the best performance, here we
only report the results of Laplace distribution. Furthermore, we
use the decoupled version of IVA-Lap (IVA-Lap-Dec), which
enables each row of the unmixing matrix to be individually op-
timized [41]5. Note that here IVA is initialized with GroupPCA
[26].

In Fig. 10, the mean jSIR and run time of four algorithms
are depicted versus the number of datasets (N = 150, C1 =
27, C2 = 0) for clear and noisy observations. We observe
that for clear observations our algorithm outperforms three
benchmarking algorithms in terms of mean jSIR for K ≥ 4.
For noisy observations, our algorithm outperforms Group-ICA
and GIG-ICA and approximately has the same performance
as GroupPCA+IVA-Lap-Dec. In addition, our algorithm has a
lower run time than GroupPCA+IVA-Lap-Dec for clear obser-
vations. Note that the run times of algorithms for clear and noisy
observations are approximately the same. In Fig. 10, we observe
that the GroupPCA+IVA-Lap-Dec has a higher mean jSIR for
noisy observations with respect to clear observations. This be-
havior stems from the cost function of IVA which is given by
[10]

IIV A =
C∑

c=1

K∑

k=1

H[y[k ]
c ] −

C∑

c=1

MI[yc ] −
K∑

k=1

log |det(W [k ])|

(25)

where yc = [y[1]
c , y

[2]
c , y

[K ]
c ]T , H[y[k ]

c ] and MI[yc ] are entropy
and mutual information of y

[k ]
c and yc , respectively. In the case

of noisy data, the similarities of sources obscure and the term∑C
c=1 MI[yc ] vanishes for joint sources. Hence, the IVA-Lap-

Dec considers joint sources as individual sources. Thus, IIV A is
changed to K individual ICA cost functions, which can extract
individual sources correctly. This is because it needs to esti-
mate a multivariate probability density function (pdf) for joint
sources with a pre-determined characteristics, but for individual

5We have downloaded the MATLAB codes of IVA-Lap-Dec from
http://mlsp.umbc.edu/resources.html [Accessed: 2017-03-20].

sources it is sufficient to know the pdf of each individual source,
which is more straightforward to estimate. In other words, for
IVA cost function, the similarity measure of joint sources is
modeled by a multivariate pdf and there is no separate measure
for detecting the dependence of the joint sources across subjects
[26]. Furthermore, we can conclude that the IVA algorithm is
very sensitive to multivariate probability density function for
joint sources, and choosing a correct and proper multivariate
probability density function has a significant effect on the IVA
performance to extract joint sources.

C. Results on Real fMRI Data

Dataset: In this subsection, we use a high-quality 7-Tesla
fMRI dataset were obtained from the Study Forrest project6

[27], henceforth refereed to as 7T-fMRI dataset. This dataset
contains fMRI data of 20 right-handed participants (aged 2138
years, mean age 26.6 years, 8 females) listening to a two-hour
audio-movie version of the film Forrest Gump. All participants
were reported to have normal hearing without any history of
neurological disorders. The audio-movie was split into 8 seg-
ments and the fMRI data was recorded in two separate sessions.
Each session consisted 4 runs, and in each run one segment of
the audio-movie was presented to the participants.

Data acquisition [27]: Participants were instructed to listen to
the audio segments naturally. T2� -weighted echo-planar images
(EPI) were obtained by employing a 7-Tesla Siemens MAGNE-
TOM scanner (with scanning parameters of: repetition time =
2000 ms, echo time = 22 ms, 36 axial slices, slice thickness =
1.4 mm, in-plane resolution = 1.4 × 1.4 mm, field of view =
224 mm). The scanner was equipped with a 32-channel brain
receive coil (Nova Medical, Inc., Wilmington, MA, USA) and a
local circularly polarized head transmit. In order to include the
ventral portions of frontal and occipital cortex, slices were ori-
ented. For each participant 3599 fMRI volumes were recorded
(the number of voxels in each fMRI volume = 145 × 180 × 71).
The number of volumes was different for each run (451, 441,
438, 488, 462, 439, 542, and 338 volumes for runs 18, respec-
tively).

Data processing: In this dataset, fMRI images were skull
removed, motion and distortion corrected. A group-specific EPI

6Public available at: http://studyforrest.org [Accessed: 2017-03-20]
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Fig. 11. Spatial distribution of significant joint source (p < 0.05 FDR corrected).

template was derived and all fMRI data were aligned to the
EPI template [27]. In our analysis, we use data of 18 subjects,
because of problems with images of two subjects (4th and 10th
subjects). We exclude data of 4th subject due to the motions of
participant during the experiment (coughing occasionally), and
the data of 10th subject because its distortion corrected fMRI
data is not available.

We perform additional fMRI preprocessing steps by using
the AFNI (Analysis of Functional Neuro-Images) toolbox [48]
for 18 subjects and 8 runs, separately. The following fMRI
preprocessing steps are applied:

� Slice-timing correction by using heptic interpolation (us-
ing 3dTshift function),

� Band-pass filtering the BOLD signals (using 3dBandpass
function with fbot = 0.001 and ftop = 0.2).

Note that here no spatial smoothing is performed, and the
order model (number of principal and independent components)
is set to 4 based on the investigated scenarios.

We apply the JI-ThICA method on the preprocessed fMRI
data of 18 subjects to extract 4 independent components. As
mentioned, one of the main advantages of JI-ThICA is automatic
grouping of the sources across subjects by utilizing a measure
during optimization process. Thus, the first extracted sources of
all subjects can be considered as the first joint source, which have

high mutual cumulants across subjects. We choose σth = 0.1
and MaxIter = 5 according to the investigated scenarios.

Results: By applying the JI-ThICA algorithm on the 7T-fMRI
dataset, we observe that it can extract one joint and three in-
dividual sources. In Fig. 11, the mean of the first extracted
sources across subjects (p < 0.05 False Discovery Rate (FDR)
corrected [49]) is shown for each run using Nilearn toolbox
[50]. We observe that the active regions are approximately the
same in all 8 runs. It is expect that the activated regions are
related to the experiment task, which will be validated in the
following.

We refer to the voxels with maximum activity at each active
regions as focus point. Table I (the second column) shows the
output of whereami function in AFNI for the focus points of
active regions in the extracted joint source. The approximate
region of these focus points are shown in the first run of Fig. 11
with numbered and colorful arrows. Note that in Table I only
the active regions in right hemisphere are reported.

As summarized in Table I, the extracted brain regions in
our analysis is compatible with inter-subject correlation maps
during naturalistic audio listening in the other studies such as
[28] and [29].

It is worth mentioning that in [30] the 7T-fMRI dataset has
been analyzed by applying decoding power-spectral profiles
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TABLE I
THE FUNCTION OF SOME OF ACTIVE REGIONS IN EXTRACTED JOINT SOURCE IN THE RIGHT HEMISPHERE

and support vector machine (SVM) classifier. In [30], the
Superior Temporal Gyrus (STG) which contains the primary
auditory cortex and the Middle Temporal Gyrus (MTG) have
been extracted from fMRI brain activities of this database.

It is worth mentioning that the extracted individual sources
are uncorrelated and independent across subjects. The corre-
sponding brain voxels of individual sources are not related to
the auditory activity. Here, as individual sources are not related
to the auditory experiment, we do not further investigate them.
Furthermore, as there are no Gold signals for this real fMRI
dataset, here we can not present a quantitative analysis between
our algorithm and its alternatives.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a new algorithm to extract
both joint and individual sources of multi-subject fMRI datasets.
We compared the proposed algorithm, referred to as JI-ThICA,
with existing alternatives, namely CNFE, which has been pro-
posed for JI-MDM dataset model. Furthermore, we compared
our algorithm with Group ICA, GIG-ICA, and GroupPCA+IVA-
Lap-Dec for an MDU source model, as our algorithm is also
applicable for this type of dataset model. We have evaluated the
introduced algorithms by analyzing simulated fMRI signals.
We applied the algorithms on the clean and noisy fMRI signals,
where in the noisy signals we considered small variations in the
location, rotation, and spread of joint sources across subjects,
and added a white Gaussian noise to the observations. Our re-
sults reveal that the proposed algorithm outperforms CNFE in
terms of mean joint SIR. In the case of MDU source model, the
JI-ThICA algorithm outperforms the three benchmarking algo-
rithms for clear observations, and in noisy observations it has
a better performance than GroupICA and GIG-ICA, whereas it
has approximately the same performance as GroupPCA+IVA-
Lap-Dec. Moreover, we have applied our algorithm on a real
fMRI dataset with 18 subjects, which was acquired during nat-
uralistic auditory experience. Our algorithm extract one joint
sources across subject in the auditory cortex of brain, which is
in accordance with the results of previous studies investigated
this dataset.

Our experimental results on the synthesized and real fMRI
signals reveal that employing higher order cumulants (second,
third and especially forth order cumulants) in the cost function
of our algorithm improves its capability to extract common in-
formation of multi-subject datasets. In addition, as higher order
cumulants suppress Gaussian noise, the performance of our al-

gorithm for noisy fMRI observations is significantly better than
CNFE. Therefore, we can deduce that higher order cumulants
are appropriate metrics to extract interdependency and common
information of multi-subjects and multi-modal datasets, which
deserve further investigation in future studies to be applied in
other source models.

The future works of this paper are summarized as follows:
� The proposed method can be extended to extract joint and

individual sources in a general MDM source model. In the
current algorithm, we considered a special case of MDM
(JI-MDM) in which the joint sources are the same in all
subjects. To be more compatible with real conditions, it is
worthy to assume that subjects of dataset are categorized
in a number of subsets, and each subset has a number
of joint sources, which are not necessarily common in
other subsets. Furthermore, it is worthy to assume that the
numbers of individual sources of subjects are not identical.

� In the proposed method, the number of joint sources of
each subject is extracted separately and a voting method
is applied over all subjects. In future, the algorithm can be
extended to jointly estimate the number of joint sources
across subjects in an optimization problem instead of the
voting method.

� In the proposed method, the required threshold (σth ) is
set manually. It is beneficial to extend the algorithm to set
σth automatically.

� A detailed evaluation of the proposed algorithm to ana-
lyze more real datasets and other types of real biomedical
signals such as EEG and ECG is left for a future work.
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