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Common similarity measures of time domain signals such as cross-correlation and Symbolic Aggregate 
approximation (SAX) are not appropriate for nonlinear signal analysis. This is because of the high 
sensitivity of nonlinear systems to initial points. Therefore, a similarity measure for nonlinear signal 
analysis must be invariant to initial points and quantify the similarity by considering the main dynamics 
of signals. The statistical behavior of local extrema (SBLE) method was previously proposed to address 
this problem. The SBLE similarity index uses quantized amplitudes of local extrema to quantify the 
dynamical similarity of signals by considering patterns of sequential local extrema. By adding time 
information of local extrema as well as fuzzifying quantized values, this work proposes a new similarity 
index for nonlinear and long-term signal analysis, which extends the SBLE method. These new features 
provide more information about signals and reduce noise sensitivity by fuzzifying them. A number of 
practical tests were performed to demonstrate the ability of the method in nonlinear signal clustering and 
classification on synthetic data. In addition, epileptic seizure detection based on electroencephalography 
(EEG) signal processing was done by the proposed similarity to feature the potentials of the method as a 
real-world application tool.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Signal classification and time series mining have attracted an 
increasing interest due to their wide applications in industry, 
medicine, biology, finance, etc. There are a number of general ap-
proaches in signal classification. In a common approach, first, fea-
tures are extracted from signals or their representations and then 
a decision-making system such as Artificial Neural Network, Fuzzy 
system or any classifier classifies the signals. Examples of signal 
representations include Discrete Fourier Transform (DFT) [1], Dis-
crete Wavelet Transform (DWT) [2], Singular Value Decomposition 
(SVD) [3] and symbolic techniques like Symbolic Aggregate ap-
proXimation (SAX) [4]. Similarity indexes and Distance measures 
are different approaches for time series classification and min-
ing. In these techniques, signals or their representations are used 
in a main formula to quantify similarity or dissimilarity between 
the two signals and classify them. Dynamical similarity index [5], 
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Fuzzy similarity index [6], Statistical behavior of local extrema 
(SBLE) [7] and SAX are examples of this approach.

SAX has become a major similarity index in time series min-
ing. SAX discretizes signals, reduces dimensionality of data and 
its distance has a lower bound to the Euclidean distance [8]. SAX 
has been used in mobile data management [9], financial invest-
ment [10] shape discovery [11], biomedical signal processing [12]
and many other applications. There are some extensions to the 
SAX method. The ESAX representation overcomes some of the SAX 
limitations by tripling the dimensions of the original SAX [13]. 
ESSVS changes SAX distance to cosine distance [8] and SAX-TD 
improves SAX by considering trends in segments and changing dis-
tance measure [14].

However, there is a major difficulty in using SAX and its ex-
tensions in the context of nonlinear signal analysis. The difficulty 
refers to the nature of the SAX method, which was designed to 
measure similarity of signals in time domain like cross-correlation. 
However, in nonlinear and especially chaotic signal analysis, dy-
namics of systems and signals play the major role. Nonlinear and 
chaotic systems are highly sensitive to initial points, and their sig-
nals with different initial points and the same parameters (same 
dynamics) may appear uncorrelated. Therefore, a similarity index 
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for nonlinear signal analysis must compare signals by considering 
their dynamics, not the appearance of the signals. SBLE similarity 
index which was introduced by the authors is a symbolic tech-
nique to compare dynamics of signals based on statistical analysis 
of symbolized local extrema and aims to develop a symbolic tech-
nique for nonlinear analysis [7], [15]. The SBLE method uses local 
extrema points amplitude that are discretized into some intervals 
to make a string of symbols. Then the distribution of some pre-
defined patterns construct a feature vector. The cosine distance 
calculates the similarity of two feature vectors. However, there are 
some problems in use of SBLE in real world-applications: 1) The 
method uses local extrema with crisp boundary of amplitude that 
cause high sensitivity to noise. 2) The information of main fre-
quency is missed because time distance of local extrema has no 
role in the method. 3) The boundary positions of amplitude are 
unknown.

By considering these problems, this paper proposes a similarity 
index for nonlinear signal mining and classification by extending 
SBLE similarity index. The method uses local extrema of amplitude 
values instead of fixed segmentation of time domain and average 
value (e.g. SAX). Also, fuzzy boundary is used to avoid the prob-
lem of crisp boundary, and statistical behavior of sequence of local 
extrema occurrence in time and amplitude is used to characterize 
dynamics of signals.

A similarity index for nonlinear signal analysis needs to have 
two main characteristics: sensitivity to changing dynamics (chang-
ing of parameters) and insensitivity to initial points. Therefore, to 
demonstrate the ability of the method some chaotic systems such 
as Lorenz and Mackey Glass are used. Furthermore, the clustering 
and classification task on nonlinear signals are performed by using 
the proposed similarity index. To evaluate the proposed method as 
a tool in real-world applications, EEG signal classification is done, 
and the results are presented.

The rest of this paper is organized as follows: Section 2 intro-
duces the proposed similarity index. Section 3 presents the results 
of the method in analyzing and classifying nonlinear signals. Fi-
nally, section 4 concludes the paper.

2. Material and method

The proposed method uses time and amplitude information of 
local extrema to characterize dynamics of signals. The method con-
sists of five steps to measure similarity of signals: finding local 
extrema, finding optimum amplitude and difference time intervals, 
fuzzifying values by using membership functions, extracting se-
quential information, and measuring similarity. Fig. 1 shows these 
five steps.

Finding local extrema is the first step of calculating the pro-
posed similarity index (Fig. 1-b). Local extrema have information 
about amplitude and global frequency of signals and are consid-
ered as down-sampled versions of signals. Finding local extrema 
is highly sensitive to noise, especially to high-frequency noises. 
Thereby, an efficient noise removal approach is needed in practice 
to decrease computation time. After finding local extrema ampli-
tudes and time distances (time difference of each two sequential 
local extrema), these points must be divided into some intervals.

2.1. Amplitude and time distance segmentation

The method proposes an approach to find optimum time and 
amplitude intervals to maximize accessible information from lo-
cal extrema. To maximize accessible information of amplitude and 
time of local extrema, the entropy of these values must be max-
imized. Equation (1) is used as an entropy measure and must be 
maximized.
Entropy = 1

n

n∑
i=1

pilog(pi) (1)

where pi is the probability of occurrence of i-th local extremum 
in one of the amplitude and time distance intervals. To maximize 
entropy value, probability of each local extrema must be the same. 
If the distribution probability of values considered as uniform dis-
tribution, the number of local extrema in each interval must be 
the same. Therefore, histograms of amplitude and time distance of 
local extrema are divided into M + 1 and N + 1 segments, respec-
tively, as all of those have the same area (Fig. 1-c to f). M and N
boundaries of these intervals that maximize extractable informa-
tion are used in fuzzifying amplitude and time distance values. In 
this study, M and N are selected empirically.

2.2. Fuzzifying amplitude and time distance

The SBLE, SAX and its extension methods divide amplitude into 
intervals by crisp values. Using crisp boundaries causes a high sen-
sitivity to noise and small changes also may affect the efficiency of 
similar approaches. Therefore, fuzzy boundaries of amplitude and 
time distance of local extrema are used in the proposed method. 
M and N boundaries of M +1 and N +1 intervals of amplitude and 
time distance that are selected from previous step are used to de-
fine membership functions (mf) of fuzzifier. Types of membership 
functions can be selected by considering the distribution of values. 
This means that to maximize extracted information, membership 
functions can be selected as histogram of values similar to estima-
tion of probability distribution. Fig. 1-g and h show an example 
of fuzzifying values by using triangular membership functions by 
Eqs. (2)–(4).

mf F i(x)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if Li−2+Li−1
2 > x,where L0 = L1 − L2−L1

2
2x−Li−1−Li−2

Li−Li−2
, if Li−2+Li−1

2 ≤ x <
Li+Li−1

2

1 − 2x−Li−Li−1
Li+1−Li−1

, if Li+Li−1
2 ≤ x <

Li+1+Li
2

0, if Li+Li+1
2 ≤ x,where Ll+1 = Ll + Ll−Ll−1

2

(2)

mf F 1(x) =
{

1, if x < L1 − L2−L1
2

1 − 2x−3L1+L2
2L2−2L1

, if L1 − L2−L1
2 ≤ x ≤ L1+L2

2

(3)

mf Fl+1(x) =
{

2x−Ll−1−Ll
2Ll−2Ll−1

, if Ll−Ll−1
2 ≤ x < Ll + Ll+Ll−1

2

1, if x ≥ Ll + Ll−Ll−1
2

(4)

mf F 1(x) is the first membership function, mf Fl+1(x) is the last 
membership function and mf F i(x) is the i-th membership function 
where i = {2, 3, ...., l}. F refers to amplitude (A) or time distance 
(T), Li refers to i-th boundary of M or N respect to A or T, l is M
or N and x is amplitude or time distance values of local extrema.

After defining the membership function, all local extrema are 
fuzzified and construct a membership matrix mf mi for i-th local 
extremum. Element (o, p) of mf mi refers to belonging i-th local 
extremum to mf Ao and mf T p . mf mi is defined by Eq. (5).

mf mi =
⎡
⎢⎣

LEi A1,T 1 . . . LEi A1,T (N+1)

...
. . .

...

LEi A(M+1),T 1 . . . LEi A(M+1),T (N+1)

⎤
⎥⎦ ,

LEi(Ao, T p) = mf Ao(Amp(LEi)) ∗ mf T p(T D(LEi)) (5)

where Amp(LEi) is amplitude of i-th local extremum and T D(LEi)
is its time distance to the next local extremum. In addition, in the 
entire proposed method, T-norm product is used as T-norm fuzzy 
logic.
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Fig. 1. a) Lorenz system sample signal. b) Step 1, finding local extrema. c), d), e) and f) Step 2, extracting histogram of amplitude of local extrema and difference time of 
local extrema, dividing the area under the histogram into M + 1 and N + 1 segment respectively. g) and h) Step 3, fuzzifying amplitude and time distance of local extrema 
by using the intervals that are found in step 3. Step 4, constructing V signal

S from one to S sequence of local extrema. Step 5, calculating the similarity of two signals by using 
cosine distance.
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Table 1
Lorenz, Mackey Glass, Tent map and Logistic map system equation and parameters. For each system, a parameter 
considered as the main parameter (p for Lorenz, a for Mackey Glass, μ for Tent map and r for Logistic map) with 
six different values, and other parameters are fixed.

Name Equation Parameter values

Lorenz [17]
dX

dt
= p(X − Y )

dY

dt
= X Z + r X − Y

dZ

dt
= XY − b Z

p = {6, 8.5, 11, 13.5, 16, 18.5}
r = 28
b = 8/3

Mackey Glass [18] X(i + 1) = X(i) + aX(i−r)
1+X(i−r)c − b X(i) a = {5, 5.5, 6, 6.5, 7, 7.5}

b = 0.1
c = 10
r = 17

Tent map [19] xn+1 =
⎧⎨
⎩

μxn, if xn < 1
2

μ(1 − xn), if xn > 1
2

μ = {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}

Logistic map [19] xn+1 = r(1 − xn) r = {3.5, 3.6, 3.7, 3.8, 3.8, 3.9, 4}
2.3. Patterns extraction and constructing V signal
S vector

After the step 3, signal is transferred to n −1 sequences of mf m
matrices, where n is the number of local extrema. Next step is to 
extract dynamical characteristics by using statistical distribution of 
the defined patterns. Each pattern quantifies belonging number of 
s sequential local extrema to possible amplitude and time distance 
intervals using Eq. (6).

V (a1,b1)1,...,(as,bs)s

= 1

n − s
[

n−s∑
i=1

mf mi(a1,b1) ∗ ... ∗ mf mi+s(as,bs)] 1
n−s (6)

And the numbers of possible patterns for the number of s se-
quences is:

�(s) = ((M + 1).(N + 1))s (7)

Vector V signal
S is constructed by extracting all patterns values 

for s = 1, 2, ..., S (Eq. (8)).

V signal
S = {V (1,1), ..., V (M+1,N+1), V (1,1),(1,1), V (1,1),(1,2), ...,

V (M+1,N+1),(M+1,N+1), ...} (8)

This vector has dynamical information of sequential local ex-
trema and will be used in similarity measurement.

2.4. Measuring similarity

Distance between two V S signals is considered as the similarity 
measure. Using a bounded distance measure causes more compa-
rability between similarity values in different studies. Therefore, 
cosine distance that is bounded between zero and one is used as 
the similarity measure to quantify dynamical similarity of two sig-
nals by using their V S vectors (Eq. (9)).

Similarity(V 1
S , V 2

S ) = 〈V 1
S , V 2

S 〉
‖V 1

S ‖.‖V 2
S ‖ (9)

where ‖V ‖is norm of V and 〈V 1
S , V 2

S 〉 is inner product of V 1
S

and V 2.
S
3. Method evaluation and discussion

Four approaches are employed to evaluate the efficiency of 
the proposed similarity index in nonlinear applications. The first 
approach evaluates the efficiency of the method as an invariant 
measure practically. The second and third approaches evaluate the 
similarity index as a clustering and classification tool of nonlin-
ear signals. In the fourth approach, the method is used as a tool 
for EEG signal processing to detect epileptic seizures. In all of 
the experiments, the values of M , N and S are selected empiri-
cally.

3.1. Invariant measurement

An initial point invariant measure in nonlinear and chaotic sig-
nal analysis has to satisfy two main characteristics [16]:

1. Measure must not change by changing initial points.
2. Measure must change by changing parameters of the system.

An efficient similarity measure for nonlinear signal analysis 
must have these two properties that means:

1. Similarity value of signals with the same dynamics (the same 
system parameters) and different initial points must be maxi-
mum.

2. Similarity value of signals with different dynamics (different 
system parameters) must be less than similarity value of sig-
nals with the same dynamics.

To evaluate the proposed similarity index as an invariant mea-
sure, the signals of some common chaotic systems are used (Ta-
ble 1). Signals with random initial points in six different presented 
parameters are generated ten times for each of the systems in Ta-
ble 1, and the proposed similarity measure for all pairs of signals 
were obtained for each system. Fig. 2 shows signal of systems with 
various parameters before normalization (Eq. (10)).

x(n)Normalized = x(n) − 1
N

∑N
i=1 x(n)

{ 1
N

∑N
i=1[x(n) − 1

N

∑N
i=1 x(n)]} 1

2

(10)

where x(n) is a signal and x(n)Normalized is its normalized version. 
Fig. 3 shows the box plot of similarity values of signals of the same 
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Fig. 2. The sample signals for each system with random initial points and six different parameter values.
system with different parameters and random initial points. As de-
scribed, similarity measure of signals with the same parameter 
value must have maximum value (≈ 1) as it can be seen in Fig. 3. 
Furthermore, all similarity values for signals with different param-
eters are less than those of the same parameters and by increasing 
the difference between the two parameters, similarity measures 
are decreased.

To quantify invariant measuring evaluation, Kruskal–Wallis test 
[20] is employed. Kruskal–Wallis test is a nonparametric version 
of classical one-way analysis of variance (ANOVA). Kruskal–Wallis 
test can be used to determine if there are statistically significant 
differences between two or more groups of variable. Therefore, it 
is expected that the p-value of Kruskal–Wallis test of similarity 
values of signals with the same parameter, and themselves to be 
one and p-value of Kruskal–Wallis test of similarity values of sig-
nals with the same parameter and similarity values of signals with 
different parameters must be close to zero.

Table 2 reports the p-values of Kruskal–Wallis test. The (i,j) ele-
ment of each sub-table presents p-values of Kruskal–Wallis test of 
similarity values of signals with the same parameter (i-th param-
eter value), and similarity values of signals with i-th parameter 
value and j-th parameter value. The values of 1 on the diagonal 
and very small values of the other elements show the ability of 
the proposed similarity measure as an invariant measure practi-
cally.

3.1.1. Sensitivity to noise
Using local extrema in a symbolic representation may accentu-

ate the effect of noise and increase computation time. To inves-
tigate the effect of noise on the proposed similarity index as an 
invariant measure, the same four systems are used. White noise 
with variable power is added to the signals and the similarity be-
tween the signals with the same and different parameters, and 
random initial points are calculated. Fig. 4 shows the variation of 
these similarity measures with changing the signal to noise ratio 
(SNR) (Eq. (11)).

S N R = 10log
1
N

∑N
i=1(S(i))2

1
N

∑N
i=1(noise(i))2

(11)

where S is clean zero-mean signal and noise is zero-mean noise 
signal.

In Fig. 4, the area between maximum and minimum of similar-
ity values are colored. Narrowness and having no overlap of blue 
and red areas indicate invariant measurement. By increasing the 
power of noise that reduces SNR the areas become wider and over-
lap is increasing. The similarities are separable almost in S N R > 10



H. Niknazar et al. / Physics Letters A 382 (2018) 288–299 293
Fig. 3. The box plot of values of similarity between the same and different parameters. i-th row shows similarity of 10 signals with i-th parameter and signals with all six 
parameters. For each figure x is the six different parameter values of the horizontal axis.
for continuous systems and S N R > 5 for maps. Furthermore, the 
similarity in Logistic map is separable even in S N R = 0.

In continuous systems (Lorenz and Mackey Glass) with high 
SNR the extracted information by the method is related to local 
extrema that are small pieces of signal and other points have no 
information. However, in low SNR values, local extrema that are af-
fected from the noise impact on the extracted information. Because 
of the bigger number of these local extrema than the number of 
main local extrema, the main information is lost in the noise infor-
mation, and all signals will be similar and dynamics will be noise 
dynamics. Nevertheless, in discrete signals such as Tent and Logis-
tic maps, the number of main local extrema is almost equal to the 
number of samples, so, the effect of noise is less than that of con-
tinuous systems.

Adding noise to signals, especially continuous signals, such as 
the Lorenz causes an increased number of local extrema and sub-
sequently computation time (CT). Fig. 5 shows the computation 
time for extracting V signal
s from 20 signals with the same parame-

ter and random initial points in different SNR.
In two continuous systems (Mackay Glass and Lorenz), adding 

noise leads to increase the number of local extrema and CT. Never-
theless, in signals of discrete maps (Logistic and Tent), the number 
of local extrema is close to the number of samples, so, adding the 
noise does not effect on CT.

3.2. Nonlinear signal classification and clustering

The proposed similarity measure can be used in nonlinear sig-
nal clustering and classification applications. In this subsection, the 
similarity index is used to classify and cluster 15 chaotic system 
signals that are described in Appendix A. For each system and pa-
rameter, signals are generated ten times with random initial points 
and are used to evaluate the method.
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Table 2
p-Values of Kruskal–Wallis test between the same parameter similarity values and 
not the same parameter similarity values. Each row i value is the p-values of 
Kruskal–Wallis test between the same parameter similarity values (i-th parame-
ter value), and similarity values of signals with i-th parameter value and column 
number parameter value.

Lorenz

1 6.90E−34 2.49E−34 2.49E−34 2.49E−34 1.51E−28
3.02E−31 1 1.58E−33 2.49E−34 2.49E−34 1.51E−28
2.49E−34 2.98E−34 1 2.49E−34 2.49E−34 1.51E−28
2.49E−34 2.49E−34 2.49E−34 1 2.49E−34 1.51E−28
2.49E−34 2.49E−34 2.49E−34 2.49E−34 1 1.51E−28
2.014E−20 2.01E−20 2.014E−20 2.01E−20 2.01E−20 1

Mackey Glass

1 1.11E−32 2.49E−34 2.49E−34 2.49E−34 2.49E−34
2.49E−34 1 1.13E−18 2.49E−34 2.49E−34 2.49E−34
2.49E−34 2.49E−34 1 2.49E−34 2.49E−34 2.49E−34
2.49E−34 2.49E−34 2.49E−34 1 2.49E−34 2.49E−34
2.49E−34 2.49E−34 2.49E−34 2.49E−34 1 2.49E−34
2.49E−34 2.49E−34 2.49E−34 2.49E−34 2.49E−34 1

Logistic map

1 2.49E−34 2.49E−34 2.49E−34 2.49E−34 2.49E−34
2.49E−34 1 2.49E−34 2.49E−34 2.49E−34 2.49E−34
2.49E−34 2.49E−34 1 2.01E−33 2.49E−34 2.49E−34
2.49E−34 2.49E−34 1.90E−31 1 2.49E−34 2.49E−34
2.49E−34 2.49E−34 2.49E−34 2.49E−34 1 2.49E−34
2.49E−34 2.49E−34 2.49E−34 2.49E−34 2.49E−34 1

Tent map

1 1.80E−27 3.57E−34 2.49E−34 2.49E−34 2.49E−34
2.52E−7 1 4.05E−6 2.49E−34 2.49E−34 2.49E−34
2.81E−34 6.81E−27 1 2.49E−34 2.49E−34 2.49E−34
2.49E−34 2.49E−34 2.49E−34 1 2.54E−26 2.49E−34
2.49E−34 2.49E−34 2.49E−34 3.23E−33 1 1.01E−31
2.49E−34 2.49E−34 2.49E−34 2.49E−34 4.91E−24 1

3.2.1. Nonlinear signal clustering
According to Appendix A, for each system there are four clus-

ters with 10 samples. Clustering with K-means algorithm is done 
for each system by the following steps:
Table 3
The result of using the proposed similarity measure for unsupervised clustering of 
nonlinear signals.

Name The number 
of clusters, 
samples

Clean 
accuracy

Noisy, 
SNR = 10
accuracy

Autonomous 4D Circ 4, 40 0.818 ± 0.0723 0.817 ± 0.0337
Chua Circ 4, 40 0.898 ± 0.0612 0.754 ± 0.0617
Chua Circ CN 4, 40 0.886 ± 0.0598 0.85 ± 0
Colpitts Osc 4, 40 0.714 ± 0 0.0232 0.85 ± 0
RC Colpitts 4, 40 0.975 ± 0.0343 0.975 ± 0
RC Hysteresis 4, 40 0.707 ± 0.0332 0.675 ± 0.0357
RC Nonlin Circ 4, 40 0.705 ± 0.0737 0.889 ± 0.0676
Simple Chaotic Circ 4, 40 0.516 ± 0 0.8 ± 0
Lorenz 4, 40 1 ± 0 0.975 ± 0
Genhaos 4, 40 1 ± 0 1 ± 0
Henon map 4, 40 1 ± 0 1 ± 0
Logistic map 4, 40 1 ± 0 1 ± 0
PWAM map 4, 40 1 ± 0 1 ± 0
Tent map 4, 40 1 ± 0 1 ± 0
Bernoulli map 4, 40 1 ± 0 1 ± 0

1. Finding the amplitude and time distance intervals by using one 
randomly selected signal.

2. Extracting V signal
S vector for all 40 signals.

3. Selecting four V signal
S vectors as cluster indicators randomly.

4. Measuring the similarities of all other V signal
S vectors to cluster 

indicators.
5. Assigning each V signal

S vector to a cluster where V signal
S is more 

similar to its cluster indicator.
6. Updating cluster indicators by averaging on V signal

A vectors of 
clusters.

7. Repeating step 3 to 5 until cluster indicators do not change.

These steps are performed with M = 3, N = 3 and S = 3 on 40 
signals of each system. Furthermore, to evaluate the sensitivity to 
noise, these steps are repeated for noisy signals where white noise 
with standard deviation of δ = 0.1 is added to the normalized sig-
nals (S N R = 20). Table 3 reports the accuracy of this unsupervised 
clustering.
Fig. 4. The effect of adding noise with different SNR to similarity values. (For interpretation of the references to color in this figure, the reader is referred to the web version 
of this article.)
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Fig. 5. The effect of adding noise with different SNR to computation time of extracting the similarity.
Table 4
The result of using the proposed similarity measure for supervised classification of 
nonlinear signals.

The number 
of classes

Train-set 
size

Test-set 
size

Accuracy

Clean 60 300 300 0.913
Noisy, SNR = 10 60 300 300 0.883

The results in Table 3 show the ability of the proposed similar-
ity measure in making a distinction between signals with different 
dynamics and as a tool for unsupervised clustering specially for 
discrete maps. As it can be seen, the presence of the noise does 
not make a significant effect on performance of clustering. How-
ever, because of increasing the number of local extrema compu-
tation time will increase. In some case such as “RC Nonlin Circ”, 
the performance in noisy signals is better, which is because of the 
random selection of the first cluster indicators and K-means algo-
rithm.

3.2.2. Nonlinear signal classification
In the next evaluation, the similarity index is used in a su-

pervised classification application. For all of the systems in Ap-
pendix A in four parameters, signals are generated ten times. 
Therefore, there are 600 signals and 60 classes. These signals are 
divided into two sets of 300 samples randomly: train-set and test-
set. V signal

S vector is extracted for all signals with M = 3, N = 3

and S = 3. For all V signal
S vectors of the test-set signals the sim-

ilarities to all V signal
S vectors of the train-set are measured. Then, 

the label of each signal in the test set is considered as the label 
of the most similar signal in train-set similar to k-nearest neighbor 
routine (kNN) with k = 1. The results of classification of clean and 
noisy signals are presented in Table 4.

Similar to clustering evaluation, with a simple procedure, the 
results show the ability of the method for nonlinear signal clas-
sification. Furthermore, adding noise has a small effect on re-
sults.
3.3. Computation time

The propose method consists of five steps. The main part of 
the computation time of the method belongs to the extraction of 
the V signal

S from the time series, as the steps one to three mainly 
consist of logical and addition operands. The computation time of 
extracting the V signal

S from a time series depends on M , N and 
S values. Changing the values of M , N and S mainly affects the 
computation time of the step four of the method. The computa-
tion time of extracting V signal

S , after the three first steps, can be 
considered as Eq. (12).

Computation time
V signal

S
∝

S∑
s=1

(M ∗ N)s (12)

As a experimental test, the computation time of extracting 
V signal

S (the step four of the method) from a sample Lorenz sig-
nal (Fig. 6) with different M , N and S parameters is measured 
in a computer with a core of i7 2.2 GHz CPU and 8 Gigabyte of 
RAM. For each set of parameters computation time is measured 
ten times and average values are presented in Fig. 6.

Fig. 6 shows the huge impact of the S value on the computation 
time.

3.4. Epileptic seizure prediction

Epilepsy is among the most common neurological disturbances, 
showing temporary, reversible, and abnormal electrical activity in 
the brain. It is characterized by occasional, excessive and syn-
chronous discharging of neurons, which can be detected by clinical 
appearances [21]. Since epilepsy is a condition related to the elec-
trical activity of the brain, it can be studied by analyzing electroen-
cephalogram (EEG) signals. Based on some studies of the commu-
nity of neurophysiology researchers, EEG signal is multivariate time 
series that stems from a highly nonlinear and multidimensional 
system when the brain activity is normal [22]. To evaluate the pro-
posed similarity measure as a tool for real-world application, it is 
used to classify EEG signals, which is an important task in epileptic 
seizure detection studies.
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Fig. 6. Average of ten times computation time of extracting V signal
S from a sample Lorenz signal in various M , N and S .

Table 5
Description of five data sets.

Subjects Set A Set B Set C Set D Set E
Five healthy volunteers Five epileptic patients

Patient state Eyes open Eyes closed Pre-ictal Pre-ictal Ictal
Electrode types Surface Surface Intracranial Intracranial Intracranial
Electrode placement International 

10/20 systems
International 
10/20 systems

Within 
epileptogenic zone

Opposite to 
epileptogenic zone

Within 
epileptogenic zone

No. of samples 100 100 100 100 100
Sampling points 4096 4096 4096 4096 4096
3.4.1. Dataset
The EEG data used in this study, which is publicly available, 

were taken from University of Bonn, Germany [23]. The complete 
database contains five sets denoted as A–E, with 100 samples of 
23.6 s duration. The description of five data sets is shown in Ta-
ble 5. The signals were recorded with the same 128-channel ampli-
fier system and digitized at 173.61 samples per second. Sets C and 
D denoted as inter-ictal data are recorded during the patients in 
pre-ictal. Set E, which is called ictal data, contains signals recorded 
during the epileptic seizure. In this study, five cases including all 
of the data sets are presented.

3.4.2. Procedure and result
Five different classification combinations are built by the 

dataset in this subsection as shown in Table 6. This classification 
problem is very common and used in various papers in the field 
of epilepsy diagnosis and seizure detection.

For all signals in each case, V signal
S is extracted with M = 10, 

N = 2 and S = 4 parameters. The K-fold cross validation with 
K = 10 is used to evaluate classification accuracy. After extract-
ing V signal

S for training and testing sets in each fold, similarities of 
every test signal to all train signals have to be computed and the 
Table 6
Description of five cases.

Cases Sets Description

Case 1 Set A, B versus Set C, D versus Set E Healthy, inter-ictal and ictal
Case 2 Set A versus Set D versus Set E Healthy, inter-ictal and ictal
Case 3 Set A, B, C, D versus Set E Non-seizure and seizure
Case 4 Set C versus Set E Inter-ictal and ictal
Case 5 Set D versus Set E Inter-ictal and ictal

label of the most similar signal for the train set is assigned to each 
test signal.

This procedure may be the simplest way to use the proposed 
similarity measure as classifier and Table 7 reports the accuracy of 
this method in comparison with some recent studies that used the 
same cases.

The result of the method is not the best in comparison with all 
of the other works. Nevertheless, as Table 7 shows; the proposed 
method can achieve acceptable accuracy with simple method-
ology without using any powerful classifier such as ANN and 
SVM.

The proposed method can be employed in other more com-
plex circumstances. For example, V Signal can be considered as 
S
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Table 7
Performance comparison with existing methods that used the same data.

Authors Year Method Accuracy (%)

The classification problem of Case 1 AB/CD/E
Acharya et al. [24] 2012 Wavelet packet decomposition + Gaussian mixture model 99.0
Alam et al. [25] 2013 Empirical mode decomposition + artificial neural network 80.0
Niknazar et al. [26] 2013 RQA in EEG signal and its wavelet-based sub-bands + ECOC 98.67
Riaz et al. [27] 2016 Empirical mode decomposition based temporal and spectral features + SVM 82.5
Das et al. [28] 2016 Dual-tree complex wavelet transform + SVM 96.28

The proposed similarity measure (averag ± standard deviation) 92.2 ± 2.2
The proposed similarity measure + ECOC-SVM (averag ± standard deviation) 98.6 ± 1.3

The classification problem of Case 2 A/D/E
Acharya et al. [29] 2013 Continuous wavelet transform based high order spectrum and textures + SVM 96.0
Kaya et al. [30] 2014 1-D local binary patterns + BayesNet 95.67
Riaz et al. [27] 2016 Empirical mode decomposition based temporal and spectral features + SVM 84.0
Martis et al. [31] 2015 Wavelet packet decomposition based non-linear features + SVM 98.0

The proposed similarity measure (averag ± standard deviation) 90.0 ± 1.6
The proposed similarity measure + ECOC-SVM (averag ± standard deviation) 99.0 ± 1.6

The classification problem of Case 3 ABCD/E
Alam et al. [25] 2013 Empirical mode decomposition + artificial neural network 100
Zhu et al. [32] 2014 Weighted horizontal visibility algorithm + K-nearest neighbor 95.4
Kumar et al. [33] 2014 Fuzzy approximate entropy + SVM 97.38
Riaz et al. [27] 2016 Empirical mode decomposition based temporal and spectral features + SVM 95.6

The proposed similarity measure (averag ± standard deviation) 96.8 ± 1.4
The proposed similarity measure + ECOC-SVM (averag ± standard deviation) 99.2 ± 1.0

The classification problem of Case 4 C/E
Nicolaou et al. [34] 2012 Permutation entropy + SVM 100
Das et al. [28] 2014 Dual-tree complex wavelet transform + SVM 100
Kumar et al. [33] 2014 Fuzzy approximate entropy + SVM 99.60

The proposed similarity measure (averag ± standard deviation) 96 ± 2.1
The proposed similarity measure + ECOC-SVM 100

The classification problem of Case 5 D/E
Alam et al. [25] 2013 Weighted horizontal visibility algorithm + K-nearest neighbor 100
Zhu et al. [32] 2014 Weighted horizontal visibility algorithm + K-nearest neighbor 95.4
Kumar et al. [33] 2013 Fuzzy approximate entropy + SVM 97.38
Riaz et al. [27] 2016 Empirical mode decomposition based temporal and spectral features + SVM 95.6

The proposed similarity measure (averag ± standard deviation) 95.5 ± 1.6
The proposed similarity measure + ECOC-SVM 100
a feature vector of the signals. Therefore, any other classifier 
such as ANN and SVM can be applied on these feature vec-
tors. The SVM classifier was also used to classify signals by us-
ing V Signal

S vectors as features. SVM is a two-class classifier and 
needs a method like error correcting output codes (ECOC) [35]
to be used as a multi-class classifier. The ECOC technique can 
be broken down into two distinct stages, encoding and decod-
ing. Given a set of classes, the coding stage designs a code word 
(a sequence of bits representing each class, where each bit iden-
tifies the membership of the class for a given binary classifier) 
for each class based on different binary problems. The decoding 
stage makes a classification decision for a given test sample based 
on the output code [36]. Table 7 also reports the accuracy of us-
ing V Signal

S vectors with ECOC-SVM classifier. The accuracy of this 
method is 100% in two cases and in the other cases is one of the 
best.

4. Conclusion

In this study, we propose a similarity index based on extract-
ing information from amplitude and time of local extrema. This 
similarity measure can be used in nonlinear signal processing in 
classification and clustering problems. Using fuzzy values in the 
method, the sensitivity to noise was decreased in comparison with 
the other symbolic methods such as SAX and SBLE. We evalu-
ated the method in practical applications by synthetic nonlinear 
signals as a core of clustering and classification system. More-
over, by using EEG data it was shown that the proposed similarity 
measure could be used in real-world application and provided an 
acceptable result, especially when it is mixed to an efficient classi-
fier.
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Appendix A

The equation and parameters of the nonlinear systems that are 
used in this study are presented in Table A.8. Each system has 
some parameters that are set to the fixed values and one variable 
parameter. The initial point in every run is set randomly.
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Table A.8
Name, equation and parameters of 15 nonlinear systems.

Name Equation Parameter values

Autonomous 4D Circ
dX

dt
= α(X + γ Y ) − Z − nx

dY

dt
= β(δ(X + γ Y )) − W − γ ny

dZ

dt
= X

dW

dt
= αY

nx = |X − 1| + X − 1

2ε1

ny = |Y − 1| + Y − 1

2ε2

α = 2
β = {0.15, 0.16, 0.17, 0.18}
γ = 3
δ = 0.27
ε1 = 0.8
ε2 = 0.2

Chua Circ
dX

dt
= −αX + αY − αn

dY

dt
= X − Y + Z

dZ

dt
= −βY

n = aX + 0.5(a − b)(|X + 1| − |X − 1|)

α = {8, 8.5, 9, 9.5}
β = 15
a = −1.3
b = −0.7

Chua Circ CN
dX

dt
= −αX + αY − αn

dY

dt
= X − Y + Z

dZ

dt
= −βY

n = aX + b X3

α = {8.6, 9.05, 9.5, 9.95}
β = 15
a = −1.3
b = 0.07

Colpitts Osc
dX

dt
= Z − βn

dY

dt
= α(−r(Y + γ ) − Z − n)

dZ

dt
= δ(−X + Y + ε) − ρ Z

n =
{

0, if Y ≤ 1

1, if Y > 1

α =
{0.05, 0.126, 0.202, 0.278}
β = 15
a = −1.3
b = −0.7

RC Colpitts
dX

dt
= kk1(X − Z) − X

dY

dt
= 2k2n

dZ

dt
= 2k1(X − Z) − 2k2n

n =
{

Z − Y , if Z − Y ≤ 1

1, if Y > 1

k = {1.75, 1.82, 1.89, 1.96}
k1 = 11
k2 = 0.9

RC Hysteresis
dX

dt
= −X − Y

dY

dt
= (2δ + 2)X + (2δ + 2)Y

+ p ∗ state

state =
{

1, if Y ≤ −1&state = −1

−1, if Y ≥ 1&state = 1

δ = {0.005, 0.013
0.021, 0.029}
p = 1

RC Nonlin Circ
dX

dt
= −2X + Y + n

dY

dt
= X − 2Y + Z

dY

dt
= Y − Z

n = mb Z + 0.5(ma − mb)(|Z + 1| − |Z − 1|)

mb = {150, 198, 246, 294}
ma = −33.03

Simple Chaotic Circ
dX

dt
= Y − n

dY

dt
= −β(X + Y ) + F sin(ωt)

n = b X + 0.5(a − b)(|X + 1| − |X − 1|)

F = {0.25, 0.4, 0.55, 0.7}
β = 1
ω = 0.6
a = −1.27
b = −0.68
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Table A.8 (continued)

Name Equation Parameter values

Lorenz
dX

dt
= σ(Y − X)

dY

dt
= ρ X − Y − X Z

dZ

dt
= XY − β Z

σ = {8, 10.5, 13, 15.5}
β = 8/3
ρ = 28

Genhaos X(n) = c1 X(n − 1) + c2 X(n − 2) + c3 X(n − 3) c1 = {1.5, 2, 2.5, 3}
c2 = 1
c3 = 1

Henon map X(n) = 1 − αX(n − 1)2 + β X(n − 2) α = {1.1, 1.2, 1.3, 1.4}
β = 0.3

Logistic map X(n) = r X(n − 1)(1 − X(n − 1)) r = {3.5, 3.66, 3.82, 3.98}

PWAM map X(n) =
{

B|X(n − 1)|, if |X(n − 1)| ≤ D

−B(|X(n − 1)| − 2D), if |X(n − 1)| > D
B = {1.5, 1.9, 2.3, 2.7}
D = 1

Tent map X(n) = μ(1 − |1 − 2X(n − 1)|) μ = {0.7, 0.78, 0.86, 0.94}

Bernoulli map X(n) = (μX(n − 1)) \ 1 μ = {1.5, 1.63, 1.76, 1.89}
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