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This paper presents a methodology to extract a number of quantifier features to characterize volumetric 

behavior of trajectories in phase space. These features quantify expanding and contracting behaviors and 

complexity that can be used in nonlinear and chaotic signals classification or clustering problems. One of 

the features is directly extracted from the distance matrix and seven features are extracted from a matrix 

that is subsequently obtained from the distance matrix. To illustrate the proposed quantifiers, Mackey–

Glass time series and Lorenz system were employed and feature evaluation was performed. It is shown 

that the proposed quantifier features are robust to different initializations and can quantify volumetric 

behavior characteristics. In addition, the ability of these features to differentiate between signals with 

different parameters is compared with some common nonlinear features such as fractal dimensions and 

recurrence quantification analysis features. 
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1. Introduction 

There are two separate, but interacting lines of development

characterizing chaos and nonlinear theory. The first line focuses

on ordinary nonlinear differences and differential equations that

may have chaotic behavior meaning the system is available. In the

second line, the system is not available and relies heavily on the

computational study of chaotic system outputs and includes meth-

ods for investigating potential chaotic behavior in observed time

series. 

Describing global and local behavior of trajectories can lead to

a better understanding of attractor properties. These properties of

attractor can give us valuable information about systems and their

behavior. For example, Lyapunov exponents that are extracted from

trajectory can indicate dissipation of the system [1] . In this paper,

eight features based on local and global behaviors of trajectory in

phase space are proposed in terms of volumetric and complexity.

Lyapunov exponents provide rate of local separation in each di-

mension of space, while the proposed method can provide a single

value of expansion rate for the whole trajectory globally. Moreover,

the rates of expansion and contraction will be achieved separately.
∗ Corresponding author. 
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ractal dimensions focus on occupying space capacity in detail [2] ,

hereas the proposed method presents a feature that provides

ccupied space globally. The complexity feature in the proposed

ethod presents a new meaning of complexity that has a differ-

nt meaning from approximate [3] and sample [4] entropies. This

eaning has a relationship with the variations in expansion and

ontraction speed. Some of the proposed features have indepen-

ent meanings and some other features have meanings in compar-

son to other features. These features quantify some properties of

he trajectories obtained from nonlinear and chaotic signals. There-

ore, they can be employed in classification problems in applica-

ions such as biomedical signal processing, finance, electronics, etc,

n which the observed signals are nonlinear or chaotic. 

The rest of the paper is organized as follows. Section 2 re-

iews some related works. The proposed method is described in

ection 3 . Section 4 is devoted to evaluate and discuss the pro-

osed method by comparing two nonlinear systems with different

arameters. Finally, our conclusions are stated in Section 5 . 

. Related work 

In many studies, trajectory in phase space is reconstructed from

ime series and features or properties are extracted. These features

haracterize the behavior of trajectories or attractors that help to

dentify or classify systems and trace their changes. For example,
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Fig. 1. Trajectory in phase space. In-ward and out-ward sequences of x t are shown. 

T i, j is distance between x i and x j . 
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here are entropy-based features [5] such as approximate entropy

ApEn) [3] , which is a technique to quantify the amount of reg-

larity and unpredictability of fluctuations over time-series data

6] , and sample entropy (SampEn), which is a modification of ap-

roximate entropy, used extensively for assessing complexity of a

hysiological time-series signal, thereby diagnosing diseased state

4] . Lyapunov exponent is a quantifier that characterizes the rate of

eparation of infinitesimally close trajectories [1,7] . The character-

stics of some features are focused on measuring the space-filling

apacity of patterns that illustrate how a fractal scales differently

rom the space it is embedded in [8] , namely Fractal dimension

2] such as Higuchi [9] . Katz feature [10] characterizes stretching

nd distribution of trajectory in phase space by comparing the re-

ationship between the length of trajectory and diagonals. In some

ases, quantification of behavior of signals or systems is done by

 transform such as Discrete Fourier Transform (DTF) [11] , Discrete

avelet Transform(DWT) [12] , and Singular Value Decomposition

SVD) [13] . These transforms are relatively general and can be used

n a variety of applications. Local Fractional z-Transforms [14] , Lo-

al Fractional Continuous Wavelet Transform [15] and Local Frac-

ional Discrete Wavelet Transform [16] are examples of more spe-

ific transforms applied on signals that are defined on cantor sets.

ecurrence quantification analysis (RQA) [17] characterizes recur-

ence and returning behavior of a trajectory by using Recurrence

lot (RP) [18] . All of these features characterize properties of be-

avior of trajectories in phase space and each is used in many ap-

lications in physics, finance or engineering [19–26] . 
ig. 2. An example of calculating matrix T ∗ . x n , x n +1 , x n +2 , x n +3 and x n +4 are stated in one

ach pair of states. Matrix T 1 is achieved by removing the main diagonal of matrix T . Thi
. Method 

This paper proposes a method to extract features from phase

pace of nonlinear systems. In this study, we focus on finding prop-

rties of trajectories that can present “volumetric behavior” of se-

uence of state vectors. Volumetric behavior characterizes occu-

ied space and changes in occupied space of trajectory in space.

irst, we introduce the concept of phase space availability Section

.1), and then we present a method to extract appropriate features

Section 2.2). This section is followed by describing these features

Section 2.3). 

.1. Trajectories in phase space 

Dynamical systems are usually represented in three types:

- phase space 2- time series 3- time-evolution law. In a d-

imensional phase space of a dynamic system at a fixed time t, the

tate of the system can be specified by d variables. These variables

orm vector 
−→ 

x (t) : 

 

x (t) = (x 1 (t) , x 2 (t ) , . . . , x d (t )) T (1)

For continuous-time systems, the evolution time is given by a

et of differential equations. In fact, the evolution time law allows

s to determine the state of the system at time t from the state at

ll previous times. 

 

x 

. (t) = 

d( 
−→ 

x (t)) 

dt 
= F ( 

−→ 

x ) , F : R 

d � R 

d (2)

The vector 
−→ 

x (t) defines a trajectory in d-dimensional phase

pace. 

In an experimental setting, we do not often have access to all

 states of phase space and a single discrete time measurement is

vailable. In this case, phase space has to be reconstructed from

ime series x (t) = { x 1 , x 2 , ? , x N } [27] . Takens method [28] is fre-

uently used for reconstructing phase space from time series x ( t )

sing two parameters embedding dimension μ and delay τ : 

 

x i (t) = (x i , x i + τ , . . . , x i +(μ−1) τ ) , i = [1 N − (μ − 1) τ ] (3)

The false nearest-neighbors algorithm [29] and the mutual in-

ormation [30] can be used for choosing appropriate dimension μ
nd delay τ parameters, respectively. 

In next subsection, we propose a method to quantify volumetric

ehavior of trajectory. 
-dimensional space. T is distance matrix that is provided by calculating distance of 

s matrix is converted to T ∗ by using Eq. (8 ). 
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Fig. 3. Samples of different volumetric behavior of trajectory in phase space. Red circle is start time. 

 

 

 

 

 

 

 

 

 

w

 

d  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

a  
3.2. Volumetric behavior of trajectory 

The proposed method is based on volumetric behavior of tra-

jectory and extracts features that can reveal a number of charac-

teristics of trajectory in phase space. 

3.2.1. Definitions 

Suppose trajectory L is constructed from N state vectors: 

L = 

−→ 

x 1 , 
−→ 

x 2 , . . . , 
−→ 

x N . (4)

Before extracting features, we need to define matrix T and T ∗
which include information about the relationship between state

vectors. Distance matrix T is given by Eq. (5) which presents dis-

tance between all vector states of trajectory: 

T i , j = Distance ( 
−→ 

x i , 
−→ 

x j ) , i, j = [1 N] 

T = 

⎡ 

⎢ ⎢ ⎣ 

0 T 1 , 2 . . . T 1 ,N 
T 2 , 1 0 . . . T 2 ,N 

. . . 
. . . 

. . . 
. . . 

T N, 1 . . . . . . 0 

⎤ 

⎥ ⎥ ⎦ 

(5)

Matrix T is the basis of recurrence plots method [17] . Recur-

rence plots method uses the Heaviside function �(x)and matrix

R i, j is obtained as: 

R i, j (ε) = �(ε − T i, j ) , i, j = [1 N] (6)
here ε is distance threshold. 

Matrix T is the source of “Occupied Space (OS)” feature that is

escribed in Section 2.2.2 and used to construct matrix T ∗. Before

his construction, three definitions are needed: 

• Moving forward through time: sequence of occurrence times of

state vector. As in Fig. 1 , order of state vectors in time is dis-

played by subscripts. 

• In-ward and out-ward sequences of state vector 
−→ 

x t : if by mov-

ing forward through time, subscript of state vector gets closer

to t, we have an in-ward sequence of state vector 
−→ 

x t , Con-

versely, if by moving forward through time, subscript of state

vectors gets away from t, we have an out-ward sequence of

state vector 
−→ 

x t ( Fig 1 ). For example, sequence { 
−→ 

x t−2 , 
−→ 

x t−1 ,−→ 

x t } is an in-ward sequence and sequence {
−→ 

x t ,
−→ 

x t+1 , 
−→ 

x t+2 }

is an out-ward sequence. 

• Getting closer to (or getting away from) the state vector 
−→ 

x t :

in an out-ward sequence of state vector if moving forward

through time, (or in an in-ward sequence moving backward

through time,) causes reduction (or increase) of distance be-

tween state vectors and state vector 
−→ 

x t ( T in Fig. 1 ) we have

getting closer to (or away from) the state vector 
−→ 

x t . 

In the proposed method in Section 2.2.2, eight features will be

resented to characterize global behavior of getting closer to and

way from state vectors that is the meaning of volumetric behav-



H. Niknazar et al. / Chaos, Solitons and Fractals 103 (2017) 294–306 297 

Table 1 

Value of eight features of the method that are extracted from Fig. 3 trajectories. 

no. states OS ACS AES AC AE SDCS SDES Complexity 

a 90 1.27311 0.03374 0.03378 0.01687 0.01687 0.01692 0.01689 0.01691 

b 900 1.27324 0.00348 0.00348 0.00174 0.00174 0.00169 0.00169 0.00169 

c 900 0.76973 0.01074 0.01027 0.00565 0.00487 0.00805 0.0 080 0 0.00803 

d 90 0.77053 0.1037 0.09849 0.05452 0.04671 0.07772 0.07716 0.07745 

e 90 0.77053 0.09849 0.1037 0.04671 0.05452 0.07716 0.07772 0.07745 

f 900 1.00923 0.00623 0.00554 0.00312 0.00277 0.01783 0.00531 0.01158 

g 90 1.04832 0.51986 0.54121 0.26272 0.2677 0.36711 0.36354 0.36535 

h 900 1.05748 0.51099 0.50583 0.25433 0.25407 0.37294 0.37351 0.37323 

i 90 7.70528 0.10370 0.09849 0.05452 0.04671 0.07772 0.07716 0.07745 

Table 2 

Value of eight features of the method that are extracted from Fig. 4 trajectories. 

no. states OS ACS AES AC AE SDCS SDES Complexity 

a 50 ≈ 0 2.01288 2.01288 0.47722 0.47387 ≈ 0 ≈ 0 ≈ 0 

b 50 0.3332 0.05942 0.05942 0.02941 0.02941 0.006 0.006 0.006 

c 50 0.33986 0.04041 0.07661 0.01980 0.03907 0.02691 0.03034 0.02866 

d 50 0.50 0 0 2 2 0.98 0.98 0 0 0 

e 50 0.35316 0.81154 0.84567 0.42132 0.40663 0.61938 0.6384 0.628535 
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Fig. 4. Samples of different volumetric behavior of trajectory in one-dimensional phase space. 
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or. To extract these features, matrix T ∗ is defined. Matrix T ∗ is

onstructed from T in two steps: in the first step, the elements

bove the main diagonal are shifted to left and matrix T 1 of size

 ∗ (N − 1) is built. This is because of removing zero elements of

he main diagonal ( Eq. (7) ). 

 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

T 1 , 2 . . . T 1 , (N−1) T 1 ,N 

T 2 , 1 
. . . . . . T 2 ,N 

. . . 
. . . 

. . . 
. . . 

T (N−1) , 1 . . . . . . T (N−1) ,N 

T N, 1 . . . . . . T N, (N−1) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(7) 

In the next step, by using Eq. (8) matrix T ∗ is achieved. Each

ow of this matrix represents distance difference between a state

oint and other consecutive state points, so by extracting statis-

ical characteristics of matrix T ∗ volumetric behavior can be pre-

ented. Row j of matrix T ∗ represents distance difference between

ach two sequential state vectors and j th state vector of trajectory.

f i ≤ j + 1 in T ( i, j) 
∗ sequence of difference follows “getting closer

o the state vector” and if i > j + 1 sequence of difference follows
getting away to the state vector”. 

 

∗
i, j = T 1 i, j 

− T 1 i, j+1 
, i = [1 N] , j = [1 N − 2] (8)

Fig. 2 shows an example of two steps of constructing T ∗ matrix

rom a one-dimensional trajectory. In the next sub-section by using

atrix T and T ∗, eight features will be extracted to characterize

olumetric behavior of trajectory. 

.2.2. Extracting features from matrix T and T ∗
Elements of matrix T contain information about distance of

tate vectors. Average of T i,j can be used to characterize occupied

pace by trajectory. Thus, “occupied space (OS)” feature is defined

s Eq. (9) : 

S = 

1 

N 

2 

N ∑ 

i =1 

N ∑ 

j=1 

T i, j (9) 

lso T ∗ contains information about the behavior of trajectory. Row

 of matrix T ∗ is arised from the relationship between all state

ectors and vector i and is constructed from some positive and

egative numbers. Positive numbers are arised from the sequence

f T i, j − T i, j+1 where T i,j >T i, j+1 , so in this sequence, trajectory is
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Fig. 5. X time series of Lorenz model with different parameters. 
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Fig. 6. Embedded trajectories in phase space that are extracted from X time series of Lorenz model with different parameters. 
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getting closer to x i state vector. Conversely, negative numbers are

arised from T i, j < T i, j+1 and in this sequence, trajectory is going

away from x i state vector. Average value of the positive (or nega-

tive) numbers characterizes average speed of trajectory contraction

(or expansion) toward x i state vector. Therefore, two features “av-

erage of expanding speed (AES)” and “average of contracting speed

(ACS)” are defined as follows: 

ACS = 

| 1 
p 

∑ 

i, j T 

∗| 
OS 

(i, j| T 

∗
i, j > 0) , ( p=number of positive T 

∗
i, j ) (10)

AES = 

| 1 
n 

∑ 

i, j T 

∗| 
OS 

(i, j| T 

∗
i, j < 0) , ( n=number of negative T 

∗
i, j ) (11)
 S  
To present expanding or contracting behavior of trajectory, two

eatures of average expanding “AE” and average contracting “AC”

re defined as Eqs. (12) and ( 13 ), respectively: 

C = 

| 1 
N ∗(N −2) 

∑ 

i, j T 

∗| 
OS 

(i, j| T 

∗
i, j > 0) (12)

E = 

| 1 
N ∗(N −2) 

∑ 

i, j T 

∗| 
OS 

(i, j| T 

∗
i, j < 0) (13)

Variation of positive and negative numbers of matrix T ∗ can

haracterize volume behavior variation of trajectory. Hence, “stan-

ard deviation of expanding speed (SDES)” and “standard deviation

f contracting speed (SDCS)” features are defined as Eqs. (14) and

 15 ): 

DCS = 

std(T 

∗
i, j 

) 
(i, j| T 

∗
i, j > 0) (14)
OS 
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Fig. 7. Box plot of the eight features of the proposed method that are extracted from trajectories of Lorenz model with ten different random initializations. 
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Fig. 8. Time series of Mackey–Glass model with different parameters. 
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Fig. 10. Box plot of the eight features of the proposed method that are extracted from trajectories of Mackey–Glass model with ten time random initialization. 
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Fig. 11. Box plot of some common nonlinear features: fractal dimensions, RQA features, Largest Lyapunov Exponent (LLE), Approximate and Sample entropy for Lorenz signal 

with different parameters and random initial points. 
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where std ( x ) is standard deviation of x . 

Each of SDES and SDCS features is limited to either expanding

or contracting behavior separately. By mixing these features, Com-

plexity feature is achieved: 

 omplexity = 

SDC S ∗ p + SDES ∗ n 

(16)

N ∗ (N − 2) 
.3. Feature description and discussion 

With d + 1 state vectors in a d-dimensional space, topology (ex-

ept position and orientation) is achievable by having the distance

etween these vectors, matrix T . On this basis, “occupied space

OS)” feature is defined. This feature characterizes occupied spaces

y state vectors independent of time or sequence of state vectors.

he value of OS feature depends on the number of state vectors

nd distance between state vectors but in two trajectories with the
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Fig. 12. Box plot of some common nonlinear features: fractal dimensions, RQA features, LLE, Approximate and Sample entropy for Mackey–Glass signal with different 

parameters and random initial points. 
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u  

w  
ame topology and different numbers of state vectors. OS feature

alue of these two trajectories is almost the same ( Fig. 3 a and b).

n the same population of state vectors in a d-dimensional convex

olume, if points are located on convex volume, OS has maximum

alue in this d-dimensional convex volume ( Fig. 3 b OS has greater

alue compared with that of Fig. 3 f). 

“AES” against “ACS”, “AE” against “AC” and “SDES” against 

SDCS” features have dualistic relationships. AES and ACE de-

cribe average speed of expanding and contracting. Normalization

f these features to the number of positive and negative elements

n matrix T ∗ gives AE and AC features, respectively. Dualistic rela-

ionship between AE and AC can describe global behavior of ex-

anding or contracting. For example, in Fig. 3 d AC > AE shows tra-

ectory has a global contracting behavior. In other words, AE/AC

atio can be defined as expanding ratio. After extracting global be-

avior of trajectory, AES and ACS present speed of this behavior.

verage speed of expanding and contracting cannot describe global

ehavior. For example if according to AE/AC ratio, the trajectory

as global contracting behavior, it is possible that AES > ACS. This

onflict is caused by inequality of positive and negative element of

atrix T ∗. Trajectories in Fig. 3 c and d look the same, but speed of

oving through time of trajectory in Fig. 3 d is greater than Fig. 3 c,

o AES d is greater than AES c . The trajectory in Fig. 3 c is interpo-

ated by the trajectory in Fig. 3 d by a rate of 10, so AES d / AES c ≈
0. 

Complexity feature is related to variations of speed of expan-

ion and contraction of trajectory. Increasing variations of speed

f expansion and contraction and subsequently increasing value of

omplexity feature means existence of more local behavioral diver-

ity. Two trajectories must have the same number of state vectors

o compare complexity feature. For example, trajectories in Fig. 3 d

f  
nd g and trajectories in Fig. 3 c and h have the same number

f state vectors, but according to Table 1 Complexity h > Complexity c 
nd Complexity g > Complexity d .Moreover, the trajectories in Fig. 3 g

nd h have random behavior so their complexity must be greater

han that of other trajectories. In addition, in the same number of

tate vectors, random behavior has greater value of complexity. 

To remove the effect of range of state vectors values, all features

an be divided by OS feature. That means all features except OS

eature are independent of amplitude range. For example trajectory

n Fig. 3 i is achieved by scaling trajectory in Fig. 3 d ten times and

s Table 1 shows all features of these two trajectories except OS are

qual. Nevertheless, in some applications this normalization may

e harmful and therefore be ignored. 

Fig. 4 shows five one-dimensional trajectories and the feature

alues of these trajectories are reported in Table 2 . Trajectories

, b and d have the simplest behavior in one-dimensional phase

pace (fixed, linear and periodic behavior, respectively), and com-

lexity feature of these trajectories is almost zero. On the other

and, random behaviors have greater complexity values. Trajectory

 has expanding behavior through the time, so for these trajecto-

ies AE > AC. Trajectory a, b, d and e do not have expanding or con-

racting behavior, so AC = AE. The rest of the features are the same.

. Evaluation and discussion 

Two time series, Mackey–Glass and Lorenz, are utilized to eval-

ate the proposed features. Lorenz equations were proposed by Ed-

ard Norton Lorenz to develop a simplified mathematical model

or atmospheric convection. This model consists of 3 equations as
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Fig. 13. The number of paired t -test between each common nonlinear feature of Lorenz signals with different parameters and random initial points whose p-values are less 

than specific value. 
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Fig. 14. The number of paired t -test between each volumetric feature of Lorenz signals with different parameters and random initial points whose p-values are less than 

specific value. 
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Fig. 15. The number of paired t -test between each common nonlinear feature of Mackey–Glass signals with different parameters and random initial points whose p-values 

are less than specific value. 
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Fig. 16. The number of paired t -test between each volumetric feature of Mackey–Glass signals with different parameters and random initial points whose p-values are less 

than specific value. 
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Fig. 17. P-value of ANOVA test for all volumetric and common nonlinear features for Lorenz signals with different parameters and random initial points. 
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Eq. (17) . 

dX 

dt 
= p(X − Y ) 

dY 

dt 
= X Z + rX − Y (17)

dZ 

dt 
= X Y − bZ 

Where, p, r and b are the parameters of the Lorenz model. 

In this study only X value is used as time series. In simulation

p and b are considered as constant parameters, p = 16 and b = 4 .

We aim at evaluating variations of the proposed features by chang-

ing r values ( Fig. 5 ). The features are extracted from phase space.

We embedded time series X to phase space by using Cao method

with dimension μ = 3 and delay τ = 6 . After embedding in r = 10 ,

the trajectory is attracted to (-6,-6,-6) point ( Fig. 6 a). Therefore, the

behavior of trajectory is compressing. For this trajectory with any

initial point AC feature is greater that AE feature. 

All the eight features are extracted for 40 0 0 sample time series

with r = { 10 , 20 , 30 , 40 , 50 , and 60 } and then different random ini-

tial points for 10 times. Fig. 7 shows box plot of the features of

these trajectories. 

As it can be seen in Fig. 6 , by increasing r value the occupied

space of trajectories increases. This behavior is characterized by in-

creasing OS feature ( Fig. 7 a). Moreover, by increasing r value trajec-

tories behave more complex and attractors become more compli-

cated. In the proposed method, complexity is described as changes

in local volumetric behavior. Therefore, by increasing complexity,

SDES and SDCS features must be increased. Figs. 7 f and g show in-

creasing changes of local behavior (complexity in this context) by

increasing r value. As can be seen, this features set makes the dis-

tinction between trajectories with different r values, although there

are similarities between the trajectories with “r = 40 and 50” and

“r = 50 and r = 60 ” ( Fig. 6 ). 

In this study, a discretized variant of the Mackey–Glass is used

as nonlinear time series that can have chaotic behavior. Discretized

variant of the Mackey–Glass is defined as: 

X (i + 1) = X (i ) + 

aX (i − r) 

1 + X (i − r) c 
− bX ( i ) (18)
here in this study r = 17 , b = 0 . 1 and c = 10 . “a ” was

onsidered as a variable parameter with values of a =
 0 . 35 , 0 . 4 , 0 . 45 , 0 . 5 , 0 . 55 , 0 . 6 , 0 . 65 , 0 . 7 , 0 . 75 } . An example of

ackey-Glass time series with random initialization is shown

n Fig. 8 . 

These time series are very similar in time domain, by embed-

ing with μ = 3 and τ = 12 parameters, their difference is shown

n Fig. 9 . The features set is extracted for 50 0 0 sample time se-

ies with different a values and random initializations 10 times.

ig. 10 shows box plot of features of these trajectories. The features

et is extracted for each time series making a complete distinction

etween time series with different a parameters. 

.1. Comparison with other nonlinear features 

There are a number of common nonlinear features that are used

n many different applications. Fractal dimensions, entropies, Lya-

unov exponent and RQA features are the most commonly used

onlinear features. The ability of these features to distinguish be-

ween signals with different parameters and not to distinguish be-

ween chaotic signals with the same parameters and different ini-

ial points are compared with the proposed features. Two chaotic

ignals generators, Mackey–Glass and Lorenz, are used for this

omparison. Figs. 11 and 12 show values of these nonlinear fea-

ures that are extracted from Lorenz and Mackey–Glass signals 10

imes for each parameters with random initial points. 

Analysis of variance (ANOVA) test is employed to quantify abil-

ty of each feature to show the effect of changing parameters and

nitial points. ANOVA test can be used to analyze the differences

mong group means and their associated procedures. In most clas-

ification applications, the range of p-value is important and there

s no significance in comparison with p-values, because only sepa-

ability matters. In these applications p-values under specific num-

ers such as 0.05 are treated the same and mean the null hy-

othesis is rejected. However, in nonlinear and chaos quantification

here are two important issues: 

1. Separability by changing parameters. For example, vertical sep-

arability in boxes in Figs. 7 and 10 –12 . 
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Fig. 18. P-value of ANOVA test for all volumetric and common nonlinear features for Mackey–Glass signals with different parameters and random initial points. 
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2. Inseparability by changing initial points with the same parame-

ters. For example, lower height of each box in Figs. 7 and 10 –12

with less variance is better. 

With these issues, comparison of p-values is significant. Thus,

o compare efficiency of features, p-value of ANOVA test and t -test

an be used. Less p-value means more separability by changing pa-

ameters and fewer changes with different initial points with the

ame parameters. Two approaches are used for comparing p-values

f common features and the method features. First, for each fea-

ure t -test’s p-value of every pair of parameters is achieved and

 ( p ) ( Eq. (19) ) curves are plotted in Fig. 13–16 . 

f (p) = number of p-values of paired t-test that are less than p. 

(19) 

The best feature is the one that has the most area under the

 ( p ) curve. Figs. 13 and 14 show that Complexity, SDES and LLE fea-

ure are the best in Lorenz signal quantification and Figs. 15 and

6 show that OS feature has the best performance as nonlinear

uantification for Mackey–Glass signal. 

In another approach, ANOVA test is applied on all features ex-

racted from two signal sets. Figs. 17 and 18 show the p-value of

ests. As it can be seen all volumetric features have less p-value

han most of the other common nonlinear features. 

. Conclusion 

In this paper, a volumetric behavior method that is an experi-

ental and numerical approach has been proposed to characterize

ehavior of trajectories in phase space. This method extracts eight

eatures from trajectories. The features are extracted from two ma-

rices T and T ∗. These matrixes are easily constructed and features

xtraction is done by simple operations, so the volumetric behavior

ethod has very low complexity to extract the features. 

Expanding and compressing behavior are identified by com-

aring AE and AC features. Also, the complexity of behavior is

haracterized by SDAE and SDAC features. Two nonlinear systems

Lorenz and Mackey–Glass) with variant parameters are evaluated

o present the ability of the method to identify changes of systems.

hese eight features can be used to compare different time series
f nonlinear systems and provide useful information about the tra-

ectory of systems. This method requires to estimate embbeding

imension and time delay to reconstruct the phase space which

ay be challenging for some signals. Nevertheless, the proposed

eatures are robust to initial conditions and sensitive to dynamic

hanges. Moreover, each of these features describes a specific and

eaningful characteristic of trajectory in phase space. 

The method should be employed in different areas of applica-

ions in the future work. As the objective can be different in differ-

nt applications, some features may be more effective in those ap-

lications. In this case, metaheuristic algorithms such as monarch

utterfly optimization (MBO) [31] , earthworm optimization algo-

ithm (EWA) [32] , elephant herding optimization (EHO) [33] and

oth search (MS) [34] algorithm can be used to select a good sub-

et of features. 
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