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• Two new algorithms for ex-
tracting ECG-derived respira-
tion (EDR) using single-lead 
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apnea detection algorithm.

• Improving automatic ECG-
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Abstract

Background and objective: One of the important applications of non-invasive respiration monitoring using ECG signal is the detection of obstruc-
tive sleep apnea (OSA). ECG-derived respiratory (EDR) signals, contribute to useful information about apnea occurrence. In this paper, two EDR 
extraction methods are proposed, and their application in automatic OSA detection using single-lead ECG is investigated.
Methods: EDR signals are extracted based on new respiration-related features in ECG beats morphology, such as ECG variance (EDRV ar ) and 
phase space reconstruction area (EDRPSR). After evaluating the EDRs by comparing them to a reference respiratory signal, they are used in 
an automatic OSA detection application. Fantasia and Apnea-ECG database from PhysioNet are used for EDRs assessments and OSA detection, 
respectively. The final performance of our OSA detection is tested on an independent test data which is also compared with results of other 
techniques in the literature.
Results: The extracted EDRs, EDRV ar and EDRPSR show correlations of 72% and 70% with reference respiration, which outperform the 
other state-of-the-art EDR methods. After feature extraction from EDRs and RR intervals series, the combination of RR and EDRPSR feature 
sets achieved 100% accuracy in subject-based apnea detection on independent test data, and also minute-based apnea detection is done with 
accuracy, sensitivity and specificity of 90.9%, 89.6% and 91.8%, which is better than other automatic algorithms in the literature.
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Conclusions: Our OSA detection system using EDRs features yields better independent test results compared with other state-of-the-art automatic 
apnea detection methods. The results indicate that ECG-based OSA detection system can classify OSA events with high accuracy and suggest a 
promising, non-invasive and efficient method for apnea detection.
© 2018 AGBM. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Sleep-related breathing disorders (SRBDs) are originated 
from repetitive interruption of respiration which usually pro-
duce sleep arousals, hypoxia, or both. There are different syn-
dromes for SRBD: three of them are obstructive sleep apnea 
(OSA), central sleep apnea (CSA) and mixed apnea with both 
obstructive and central syndromes [1]. OSA is caused by the 
collapse of the airway which is a 10-second or larger pause in 
respiration activity along with continuing ventilatory effort. Ob-
structive hypopneas also make decreases in ventilation, but not 
complete cessation of it and cause a fall in oxygen saturation 
or arousal. OSA is diagnosed when a patient has an apnea-
hypopnea index (AHI; number of apneas and hypopneas per 
hour of sleep) larger than 5 and shows symptoms such as day-
time sleepiness. CSA is determined by repeated cessation of 
respiration during sleep resulting from the loss of ventilatory 
drive that causes a 10-second or larger pause in ventilation with 
no respiratory effort [2]. Mixed sleep apnea is the combination 
of both CSA and OSA events. Among the three different forms 
of sleep apnea (obstructive, central, or mixed), OSA is the most 
common [3].

Polysomnography (PSG) test is the traditional OSA detec-
tion method which requires an all-night analysis in a clinic 
environment with medical supervision. PSG as the reference 
standard for diagnosing OSA is a complex diagnostic sleep 
test that includes at least electroencephalogram (EEG), elec-
tromyogram (EMG), electrooculogram (EOG), electrocardio-
gram (ECG), breathing/respiratory effort, airflow and oxygen 
saturation (SaO2) recording. PSG is difficult, time-consuming 
and, at times, out of reach or even impractical [4]. Hence, a sim-
ple screening method, which provides a reliable diagnosis of 
sleep apnea without referring to PSG is of interest.

Abnormal heart activities or high heart rate variability 
(HRV) can provide evidence of OSA occurrence [5]. Heart 
rate (HR) is based on the time between two consecutive R-
peaks, known as the RR interval. In addition, ECG recording 
signals convey respiration information that can be derived from 
ECG which are called ECG-derived respiration (EDR) [6], and 
using these indirect extracted respiration information can also 
be useful in OSA diagnosis. Thus, ECG-based screening sys-
tems are promising in noninvasive OSA diagnosis. Few studies 
have addressed sleep apnea detection from ECG until the Phy-
sioNet/Computers in Cardiology Challenge 2000. PhysioNet 
and the Coordinators of the 2000 Computers in Cardiology 
(CinC) Conference jointly organized this competition to prove 
the efficacy of ECG-based methods for sleep apnea detection 
using a large and representative set of data [7]. PhysioNet is 
an online library of biomedical signals and open-source soft-
ware, and its sponsor is US National Institutes of Health’s 
National Centre for Research Resources [8]. Competitors were 
invited to two challenges: 1) classifying the recordings in the 
test set with sleep apnea and the normal recordings, 2) labeling 
each minute in all 35 test recordings as an apnea or non-apnea 
minute [7]. Accordingly, the steady stream of research articles 
were published which indicates that there is a connection be-
tween sleep apnea and ECG signal. In those researches either, 
rule-based or learning algorithms are used for apnea detec-
tion.

Respiration activity causes some morphological changes in 
the ECG signal due to some mechanisms, such as: i) changes 
in volume of the lung during inspiration and expiration cycles 
that leads to fluctuation in electric impedance of thorax, and ii)
changes in the heart vector position with respect to ECG elec-
trodes [9]. According to these morphological changes caused 
by respiration effects on recorded ECG signal, respiratory infor-
mation or EDR signal can be extracted from ECG using some 
signal processing techniques.

Most of ECG-based OSA detection algorithms in the liter-
ature have used different ECG-derived parameters related to 
respiration (EDR signals) and HRV signal to extract time do-
main, frequency domain and other nonlinear features. They 
have used these features as inputs of the black-box decision 
making process and classifiers. The top-three algorithms par-
ticipated in PhysioNet/CinC Challenge 2000 used time and 
frequency domain features of HRV or EDR signals that could 
classify all 30 test subjects correctly and were the top-scoring 
algorithms (up to 89.4% accuracy) in the minute-by-minute ap-
nea detection [10–12]. Apart from the winner that used visual 
classification procedure [10], the other two participants auto-
matically detected apnea events. In addition, each method used 
different EDR extraction algorithms based on morphology of 
ECG beats, because changes in respiration activity affect the 
ECG morphology [7]. EDR signals are generated by measure-
ments of the T-wave amplitude [10], S-wave amplitude [11] or 
R amplitude [12]. In another study, a variety of features are ex-
tracted from HRV and the EDR signal obtained by sampling 
the area enclosed by QRS waves (EDRArea), and the perfor-
mance of classifiers, such as linear and quadratic discriminants 
were compared [13]. In [14], minute-by-minute apnea detection 
is provided using features derived from R-peak amplitude se-
ries as an EDR sample series (EDRRamp). Some other studies 
used wavelet-based features from EDRRamp or EDRArea and 
HRV for automatic recognition of patients with OSA [15,16]. 
Time and frequency domain features were obtained from RR 
intervals and EDR based on QRS area in [17] and minute-by-
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minute classification was achieved with an Extreme Learning 
Machine (ELM). In [18], Permutation Entropy (PE) and cep-
strum coefficients of HRV and a set of band powers obtained 
from the EDRRamp are the features for minute-by-minute ap-
nea detection. Recently, in [5], the temporal dependency of 
RR time series and EDRArea signal by a discriminative hid-
den Markov model is used for recognition of patients with 
OSA. In another recent research [19], the coefficients of the 
Hermite expansion QRS complex of the ECG signal along 
with three features, based on RR intervals, are used for ap-
nea detection. All the methods mentioned above, have used the 
whole database represented by PhysioNet/CinC Challenge for 
the evaluation.

This work concentrates on automatic OSA detection using 
single-lead ECG. Distortion in EDRs (surrogate respiration de-
rived from ECG) and RR intervals (inverse of heart rate) are re-
ported highly related to the occurrence of apnea events. We pro-
posed two new EDR extraction methods and used features ex-
tracted from them for automatic OSA detection. First, the per-
formance of EDRs are evaluated in terms of cross-correlation 
with a reference respiration signal and are compared with two 
EDRs in the literature. Then, features are extracted from EDRs 
and RR interval series, and a variety of classifier techniques are 
used to assess apnea detection. In addition, the efficacy of pro-
posed automatic apnea detection approach is compared with the 
ones from the literature.

This paper is organized as follows. In Section 2 methods, 
learning strategy, data and evaluation criteria are described. 
In Section 3 the experimental results are reported. Section 4
discusses the results, and finally Section 5 concludes the pa-
per.

2. Method

In this section, our developed automatic OSA detection al-
gorithm is described (Fig. 1). In this system, single-lead ECG 
recordings are divided into 1-minute segments. Since the phys-
iological processes that link changes in the ECG to OSA events 
are not fully known, we use supervised learning approach. This 
is one type of machine learning algorithm that uses a transfor-
mation of training dataset (features) to classify test dataset into 
different categories. The aim of this study is to classify each 
1-minute ECG segments into apnea or normal segments which 
is called segment or minute-by-minute classification. After de-
tection of apnea events, the overall AHI, number of apneas per 
hour in each recording, is estimated in order to discriminate 
the ECG recording of a subject as an apnea or a normal one. 
This is called recording or subject-based classification. Fea-
tures are extracted from a corrected version of EDR and RR 
series. Two new EDR estimation methods are also introduced 
and their agreement with reference respiration signal are evalu-
ated before using them as surrogate respiration signals in OSA 
detection. In this work, RR interval or EDR time series are a 
sequence of data points indexed in R-peak times, and their es-
timated signals will be the interpolated version of these time 
series.
Fig. 1. Schematic representation of automatic OSA detection.

2.1. Preprocessing and RR series extraction

In the preprocessing step, each one minute ECG segment 
is first filtered in order to remove the 60 Hz supply interfer-
ence noise, then the median filters approach (described in [20]) 
is used for removal of ECG baseline wander. Furthermore, all 
R-peaks are found via the Pan–Tompkins algorithm [21]. RR in-
terval series are generated by calculating interval time between 
successive R-peak points. RR series need to be corrected be-
cause of poor signal quality and errors of R-peak detections 
algorithm. An automatic preprocessing step, described in [13], 
is used to correct RR-interval sequence errors due to spurious 
R-peak detections or missed R-peaks.

2.2. EDR extraction

In this section, our new EDR extraction methods are de-
scribed. These methods are based on tracking variation patterns 
in ECG morphology caused by respiration activity.

2.2.1. EDR I
Our first EDR extraction method is based on a statistical 

feature that is introduced as a respiration-related feature. The 
variance of ECG signal amplitudes in each inter-beat RR inter-
val is calculated. After variance computation in each interval 
of two successive R-peaks, EDR series are constructed by as-
signing variance values to each former R-peaks, and other EDR 
values in times between each R intervals can be estimated by 
applying the spline interpolation (Fig. 2). EDR series also need 
to be corrected. Suspect EDR samples are found by applying a 
median filter of width five to the sequence. The output provides 
a robust estimate of the expected value for each EDR, then EDR 
samples with variations larger than 2 times from output of me-
dian filter are replaced by the output of the median filter. We 
use EDRV ar notation for this EDR extraction method.

2.2.2. EDR II
Our second EDR extraction method is based on a phase 

space reconstruction (PSR) feature. In a time series, such as 
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Fig. 2. EDR extraction based on beat-to-beat variance variation induced by respiration activity.
the ECG signal, it is sometimes difficult to search for small 
changes in patterns in the time series itself, but searching in 
a higher dimensional transformation of the time series can be 
helpful. The reconstructed phase space is an example of such 
transformation [22]. In EDR extraction approach we need to 
track morphological changes in ECG caused by respiration ef-
fects, and this morphological changes can be hidden or small in 
time domain. Therefore, searching in reconstructed phase space 
of ECG can be a probable solution for EDR estimation.

In the PSR technique, the original QRS wave and its de-
layed version are plotted to get the trajectory of the dynamic 
system. This gives a phase-space loop which can have respira-
tion information. In one study, area under major portrait radius 
(MPR) curve derived from PSR loop has been introduced as 
a respiration-related feature for EDR extraction [23]. In this 
paper, phase space of ECG beats have been reconstructed the 
same way in [23], but a new feature from PSR is proposed as a 
respiration-related feature to generate EDR series.

The method to obtain PSR can be briefly described as fol-
lows: phase space reconstruction expands a time series x(t), 
t = 0...T into a series of vectors x(t), t = 0...(T − (dm − 1))τ

x(t) = [
x(t) x(t + τ) · · · x(t + (dm − 1)τ )

]
(1)

where x(t) is one point of the trajectory in the phase space 
at time t , τ is a constant time delay between the points of 
the time series, and dm is the embedding dimension. Plotting 
x(t) in multiple dimensions depicts the phase space loop of 
the time series. Different choices of τ and dm make differ-
ent reconstructed trajectories. Here we use a two-dimensional 
phase space diagram (dm = 2) to reconstruct the phase space 
of the windowed QRS complex, and the time delay is set to 
8 ms which is close to the best choice τ established for ECG 
signals [24]. To capture the windowed QRS complexes for re-
construction of phase space, 40 ms before and 40 ms after each 
R-peak are selected. Although a fixed window around R peaks 
does not lead to capture the whole QRS complex duration, we 
used this fixed window since there is no need to exact segmen-
tation of QRS complexes. The reason is that respiration cycle 
length (reciprocal of respiration rate) is larger than cardiac cy-
cle (reciprocal of heart rate). Then changes in window samples 
around R peaks can reliably reflect changes in respiration ef-
fects on ECG. Therefore, we can ignore QRS duration variation 
during all ECG beats, since it does not affect the overall results.

An example of QRS transformation to a two-dimensional 
PSR plot can be seen in Fig. 3. This figure shows many con-
secutive QRS waves affected by respiration activity and corre-
sponding PSR of QRS waves. We hypothesize that respiration 
activity can change the area of the polygon specified by QRS 
phase space trajectory; therefore, the area of windowed QRS 
phase space trajectory is introduced as a respiration-related fea-
ture to construct EDR series at the R-peak times. Estimation 
of EDR signal from EDR series is done similar to the first 
EDR by spline interpolation. The suspected samples of this 
EDR are also corrected similarly to EDRV ar correction. We 
use EDRPSR notation for this EDR extraction method.

For comparison, one of the well known EDR extraction 
method in the literature that also has been used in apnea detec-
tion studies, area of QRS complex (EDRArea), is implemented. 
This EDR signal is derived by computation of the area en-
closed by consecutive QRS waves [13,17,15,16,5]. In addition, 
the EDR proposed by [23] (EDRMPR) is also implemented to 
compare with our PSR-based EDR.

2.3. Feature extraction

After generating RR and EDR time series for 1-minute ECG 
segments, a set of features that could be possibly useful in apnea 
event classification are extracted. This set of features are de-
scribed by a feature vector that represents information derived 
from each 1-minute segment. 50 and 35 features are extracted 
from RR and each EDR series, respectively. The following fea-
tures extracted from RR intervals are the most effective set of 
RR-based features for apnea detection [25–27,13,28,5]. The RR 
and EDR features are as follows:

• average and standard deviation of RR-interval series;
• RR-interval series correlation calculation and using the first 

five correlation coefficients;
• the number of two neighboring RR-interval points that the 

first RR-interval point is 50 ms or more, larger than the 
second RR-interval point (variant 1);
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Fig. 3. (a) Consecutive QRS waves, (b) QRS waves phase space reconstruction.
• the number of two neighboring RR-intervals points that the 
second RR-interval point is 50 ms or more, larger than the 
first RR-interval point (variant 2);

• two above variant 1 and variant 2 divided by the total num-
ber of RR-interval points define another two features;

• the standard deviation of the differences between neighbor-
ing RR-intervals points;

• the square root of the average of the squares of differences 
between RR-intervals points;

• the Allan factor A(T ) evaluated at a time scale T of 5, 
10, 15, 20, and 25 s in which A(T ) = E

{[Ni+1(T ) −
Ni(T )]2

}
/2E {Ni+1(T )}, Ni(T ) is the number of detected 

QRS points that are in a window of length T stretching 
from iT to (i +1)T and E is the expectation operator [29];

• power spectral density (PSD) of the RR-intervals [30]; 
256-point FFT is taken and after averaging four neighbor-
ing frequency bins, first 32 features are used;

• mean EDR amplitude series;
• standard deviation of the EDR amplitude series;
• the PSD of the EDR signal; 256-point FFT is taken and 

after averaging four neighboring frequency bins, first 32 
features are used;

• average of the standard deviations of EDR quartiles.

The PSD-based features from RR intervals and EDR series are 
extracted in the same manner as [13].

2.4. Classification

In this study, different classifiers are used. Classification 
tackles the problem of assigning an unknown input feature vec-
tor to one of a predefined and learned set of classes [31]. Five 
different classifiers, Linear and Quadratic Discriminant (LD 
and QD) models, K-Nearest Neighbors classifiers (k-NN), Sup-
port Vector Machine (SVM), and Artificial Neural Network 
(ANN), are used to assess the performance of the proposed 
sleep apnea detection method. The basic rule of the k-NN al-
gorithm is assigning the input vector to the class that the most 
of the k nearest samples in the training set belong to. If data 
are assumed to be distributed as a multivariate Gaussian, lin-
ear discriminant function classifier divides the feature space by 
hyperplanes, so it would be a proper model when the prob-
lem is linearly separable. For non-linearly separable problems, 
a quadratic discrimination model might be useful. SVM is a 
linear classifier in high dimensional spaces and can also be ap-
plicable in the non-linear problems using kernel SVM. ANN 
is a non-linear statistical tool to find complex relationships be-
tween inputs and outputs samples by adapting to the data using 
a training phase [31]. In the current study, ANN is implemented 
by two-layer feed-forward with the log-sigmoid transfer func-
tion (logsig) for hidden layers and linear transfer function for 
the output layer. The number of neurons in the hidden layer 
has been tested to achieve a good performance. Training the 
network is done by minimizing the mean squared error (MSE) 
using scaled conjugate gradient algorithm, and the percentage 
of training and validation data during training phase are set to 
70% and 30%. Performance of the k-NN classifier with euclid-
ian distance is tested for different k, and the best results are 
reported. SVM algorithm is also implemented with different 
kernels that the best results belong to SVM with linear ker-
nel, that is why only these results are reported. We have used 
Statistics Toolbox and Neural Network Toolbox of Matlab for 
implementation of the algorithms.

Apnea segments are observed to be concentrated in time 
rather than randomly distributed, and there is some dependency 
in the apnea times [5,13]. Using this temporal information 
about distribution of apnea occurrence can help improving the 
performance of the classifiers. In the current study, we aver-
age input feature vectors of adjacent segments before feeding 
to classifiers (similar to one of boosting classification perfor-
mance techniques in [13]) and then apply a median filter to the 
output predictions of the classifiers. The optimum number of 
feature vectors to be averaged and the median filter length are 
found by assessing the performance of LD classifier using the 
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Fig. 4. Apnea detection improving via averaging the feature vectors of adjacent segments and median filter.
cross-validation on training dataset. The median filter applied 
to the classification outputs can correct some classification er-
rors (Fig. 4). For further improving the results, feature reduction 
using PCA and LDA and feature selection using sequential for-
ward and sequential backward selection algorithms have also 
been tested, but since no improvement has been made, their re-
sults are not reported.

2.5. Data

For evaluation of this study, two databases, one for EDR ex-
traction and one for OSA detection evaluation are used. The 
performance of our EDR extraction methods is assessed by 
Fantasia database. Fantasia database is freely available at Phy-
sionet [8], containing 20 simultaneously lead II ECG recording 
as well as respiration signal (sampling rate of 250 Hz) from both 
young (21–34 years) and old (68–85) healthy subjects. The res-
piration signal is thought to be impedance pneumography (IP) 
signal that is widely used to monitor respiration [32]. During 
the measurements, all subjects were in resting state, breathing 
spontaneously, and watching the movie Fantasia (Disney, 1940) 
to maintain wakefulness. From each subject, ten 12-seconds 
segments (in total 2 minutes) with no observation of perceivable 
artifacts in signals are selected manually. To assess the perfor-
mance of OSA detection algorithm, the Apnea-ECG dataset 
generated for PhysioNet/CinC Challenge 2000 [8,33] is used. 
Apnea-ECG includes 70 single-lead (lead II) ECG recordings 
of varying lengths between 7 hours to 10 hours. ECG signals 
are sampled at the rate of 100 Hz and contain minute-by-minute 
apnea annotation (labeled by experts using PSG test). In ad-
dition to minute-based apnea labels, each recording is classi-
fied into to three classes “apnea”, “borderline”, and “normal” 
based on AHI calculation for each recording. Recordings la-
beled as “apnea”, “borderline” and “normal” have AHI > 10, 
5 < AHI < 10 and AHI < 5, respectively. Withheld-set and 
released-set recordings belong to 8 subjects and 9 subjects, re-
spectively.

The database is divided into two sets, each containing 35 
recordings. The first set (released-set) is used as a training set 
for the learning process of classification algorithms. The second 
set (withheld-set) is used as a test set for an independent as-
sessment of classification methods. Both released-set (training 
data) and withheld-set (test data) contain 20 “apnea”, 5 “bor-
derline”, and 10 “normal” recordings with overall 17045 and 
17268 1-minute segments for each set.

2.6. Evaluation of performance

The performances of our EDR extraction algorithms are as-
sessed by comparing the EDR signals to a respiratory signal. 
The similarity between extracted EDRs and reference respi-
ration signal is evaluated by means of the normalized cross-
correlation coefficient (c) [20]. This criterion is determined as 
the largest cross-correlation value over a lag range of one sec-
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Fig. 5. Dataset devision for released-set cross-validation and withheld-set inde-
pendent test.

ond to allow for possible phase delays between EDR and ref-
erence respiration signal. Results of EDR extraction for each 
subject are measured by average c, because ten 12-second ECG 
segments are processed in each subject. The cross-correlation 
coefficient between two signals (EDR signal, r(k); respiration 
signal, y(k)) is defined as follows:

c(n) =
1

N−1

∑N−n
k=1 (r(k) − r(k))(y(k + n) − y(k + n))√

1
(N−1)2

∑N
k=1(r(k) − r(k))2

∑N
k=1(y(k) − y(k))2

(2)

To assess the significant difference between EDR tech-
niques, the Friedman’s test with Tukey honesty significant dif-
ference criterion is applied, where p < 0.05 is considered as 
statistically significant.

The apnea detection algorithm provides two outputs: seg-
ments classification and recording classification. Segment or 
minute-by-minute classification is evaluated in two ways
(Fig. 5):

• released-set (training data) cross-validation (CV); CV with 
35 folds while each fold is the data from one recording.

• withheld-set independent test; training the classifiers with 
the whole released-set data and test them with the whole 
withheld-set as the final evaluation.

After predicting all segments labels, AHI is calculated for 
each recording to provide recording classification. Classifying 
30 non-borderline recordings in the withheld-set was the first 
challenge in PhysioNet/CinC competition to assess distinguish-
ing between normal subjects and subjects with clinically signif-
icant apnea using only ECG recordings. The second challenge 
was classifying 17268 1-minute ECG segments in withheld-set 
as an independent test. The performance of minute-based apnea 
Table 1
Normalized cross-correlation coefficient between the reference respiration sig-
nal and EDRs for 40 subjects.

EDR EDRV ar EDRPSR EDRMPR EDRArea

Mean 0.723 0.703 0.55 0.611
Median 0.73 0.72 0.56 0.624
Std 0.1 0.12 0.12 0.13

Fig. 6. Comparison of EDR signals using box plot representation of cross-
correlation coefficients for all 40 subjects (significant differences (p < 0.05) 
between EDRs are indicated by ∗).

detection is evaluated by accuracy (Acc), sensitivity (Sen) and 
specificity (Spe):

Acc = T P + T N

T P + T N + FP + FN
(3)

Sen = T P

T P + FN
(4)

Spe = T N

T N + FP
(5)

where TP is true positive, FP is false positive, TN is true nega-
tive and FN is false negative.

3. Results

In this section, the results of EDR extraction algorithms and 
their effectiveness in apnea detection are reported.

3.1. EDR extraction

The performance of the proposed EDR techniques,
EDRPSR , EDRV ar and other state-of-the-art single-lead EDR 
algorithms such as EDRArea and EDRMPR are evaluated. Ta-
ble 1 shows the performance of the EDRs extraction techniques 
in term of average, median and std (standard deviation) of the 
cross-correlation coefficient (c) on 40 subjects. Fig. 6 repre-
sents the box plot of c calculated between each EDR and the 
respiration signal for 40 subjects. The statistical test results for 
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Table 2
LD classification accuracy by CV on training data for different numbers of features vectors to be averaged 
and median filter lengths.

Table 3
LD classification sensitivity by cross-validation on training data for different numbers of features vectors to 
be averaged and median filter lengths.
analyzing the difference between each two EDR is shown by ∗
if there is a significant difference (p < 0.05) between EDRs.

It can be seen in Table 1 and Fig. 6 that the best EDR, 
based on the similarity of time pattern to the reference respi-
ration signal, is EDRV ar which also performs slightly better 
than EDRPSR . Both proposed EDRs are statistically signifi-
cantly better than EDRArea and EDRMPR .

3.2. Apnea detection

First, the results of segment classification are reported, then 
recording classification is evaluated. As mentioned before, the 
optimum number of features vectors to be averaged before 
classification, and the median filter length need to be found. 
We use LD classifier results over the training set using cross-
validation. Table 2 and Table 3 show LD classification accuracy 
and sensitivity for different choices of number of features vec-
tors temporally averaged and median filter length. The features 
are extracted from RR intervals and EDRPSR .

According to Table 2 and Table 3, accuracy and sensitiv-
ity are quite larger when two features extracted from two ad-
jacent segments are averaged and median filter length is set 
to 11. From now, these two parameters are set and would not 
be changed for other classification or other feature sets, since 
we do not want them to be dependent on classifier type or fea-
ture sets.

Results of cross-validation on training data using LD, QD, 
k-NN (N = 5 and 10), ANN classifier (with two hidden layers 
each containing 4 neurons, learning rate 0.3 and 5000 itera-
tions, with notation NN [4, 4], 5000, 0.3) and different feature 
sets are reported in Table 4. The EDRMPR is not assessed for 
apnea detection due to its poor results in EDR extraction eval-
uation according to Table 1. The best results are achieved from 
ANN classification using features extracted from both RR se-
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Table 4
Cross-validation on training data using different classifiers and feature sets.

Table 5
Results of classifiers on withheld-set as an independent test.
ries and EDRPSR with accuracy, sensitivity, and specificity 
of 0.89, 0.85 and 0.91, respectively. All of the results from 
SVM classifier are not reported, but it is expected using RR 
and EDRPSR features yields better results after comparing all 
classifiers results in Table 4; therefore, SVM classifier is only 
tested using RR series and EDRPSR . SVM classification us-
ing cross-validation on training data resulted in accuracy of 
0.86, sensitivity of 0.78 and specificity of 0.90 which is still 
not better than LD classifier. It is noticeable that QD classifier 
with the lowest classification results was not successful in ap-
nea detection. Hence, for the next evaluations, its results are not 
reported. It can be seen that the best results of ANN classifier 
are achieved by features from RR and EDRPSR (acc = 0.896, 
sen = 0.854, spe = 0.919). ANN classifier with higher itera-
tion, (NN[4, 4], 10000, 0.3), is only tested using RR series and 
EDRPSR which resulted in accuracy of 0.893, sensitivity of 
0.846 and specificity of 0.919. In case of ANN number of lay-
ers, we tested limited number of layers to achieve acceptable 
results using cross-validation on training data, and we selected 
the optimal one (NN [4, 4], 5000, 0.3).

Table 5 represents the results of LD, SVM, k-NN (K = 5, 
10) and ANN classification on withheld-set as an indepen-
dent evaluation. The LD classifier with RR and EDRPSR

features yields the best results (acc = 0.89, sen = 0.86 and 
spe = 0.93) among the others (SVM and k-NN) on test data. 
ANN (NN[4, 4], 5000, 0.3) classification of withheld-set data 
using features from RR series and EDRPSR resulted in accu-
racy of 0.909, sensitivity of 0.896 and specificity of 0.918. It is 
worth noting that the classifier performance of the participants 
in PhysioNet/CinC competition were evaluated based on only 
accuracy of apnea detection in the withheld-set data.

As mentioned before, after segment classification of record-
ings, AHI can be calculated. Then recording classification can 
be done by determining a threshold to separate the 30 “normal” 
and “apnea” recordings. Fig. 7a and Fig. 7b show the AHI de-
rived from segment classification of LD and ANN using RR 
series and EDRPSR features for 35 subjects of training data. 
Threshold shown by a dashed line is set to AHI = 5.5. As it 
can be seen, the “normal” and “apnea” subjects are separable 
using a threshold set on AHI. Furthermore, Figs. 8a, 8b and 8c 
show the AHI derived from segment classification of LD, k-NN 
(k = 5) and ANN using RR series and EDRPSR features for 35 
subjects of test data as an independent evaluation of recording 
classification. Threshold shown by a dashed line is also set to 
AHI = 5.5. As it can be seen, the “normal” and “apnea” sub-
jects are not separable in LD classifier with 100% accuracy in 
spite of its good results on segment classification (LD classifiers 
have diagnosed one of normal subject as an apnea subject), but 
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Fig. 7. AHI calculated for 35 subjects in training data from segment classifica-
tion of: (a) LD, (b) ANN.

ANN and k-NN (k = 5) classifiers can classify all 30 “normal” 
and “apnea” subjects in test set correctly.

4. Discussion

In this study, our aim is to assess automatic OSA detec-
tion using RR interval series and EDR signal. In the case of 
EDRs evaluation, according to Table 1 and Fig. 6, our two 
proposed EDR extraction algorithms, EDRPSR and EDRV ar , 
outperform the other methods in the literature, EDRArea and 
EDRMPR . Although both proposed EDRs are comparable 
to each other, since no statistical difference was observed 
in their corresponding cross-correlation coefficients, EDRVar

performs slightly better than EDRPSR . In [23], the reliability 
of proposed EDRMPR method has been tested by coherence 
analysis of frequency spectrum on a different database than our 
used database. In [23], a high coherence in frequency domain 
for EDRMPR is reported while this evaluation cannot be linked 
Fig. 8. AHI calculated for 35 subjects in test data from segment classification 
of: (a) LD, (b) k-NN, (c) ANN.

to a high consistency between a long segment of EDR and respi-
ration signal in time domain, because EDR and reference signal 
could be uncorrelated in time domain while extracted respira-
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tory rate can be similar. For this reason, the results of EDRMPR

implemented in this study are poor in time domain evaluation. 
Besides, the database recorded in [23] is limited due to the 
small number of subjects (8 subjects). That is why the results 
of EDRMPR implemented here are not consistent with [23].

EDRs are expected to represent respiration activity infor-
mation. For this reason, evaluating their effectiveness in OSA 
detection can be another way to assess their performance. In 
order to evaluate the performance of the EDR algorithms, in-
spiration and expiration time patterns of EDR can be compared 
to recorded respiratory signal as what we have done in this pa-
per by c measure. The respiratory frequency estimated from 
the EDR can also be compared to that one estimated from a 
simultaneously recorded respiratory signal (reference signal). 
The first evaluation method is more challenging, because EDR 
and reference signal could be different in time domain while the 
extracted respiratory rate is similar.

In the case of OSA detection, features are extracted from all 
three EDRs and RR intervals, and different classifiers and effec-
tiveness of all feature sets are compared. The optimum number 
of features vectors to be averaged (N) and median filter length 
(L) for improving OSA detection are found using LD classifier. 
Since LD classifier has shown quite acceptable performance in 
apnea detection using CV on training data, we decided to use its 
results on training data while sweeping parameters of N and L. 
Due to Table 2 and Table 3, we choose the proper L and N, 
L = 11 and N = 2. Table 4 compares the different classifiers 
and features sets. The percentage of apnea segments in both 
train and test dataset is 37%, then it is expected that an effective 
classifier achieves accuracy above 63%. With this in mind, QD 
classifier shows poor performance for features extracted from 
RR series. The reason can be due to the distribution of features 
of RR series that are linear rather than non-linear separable. The 
QD results on RR series may seem to be inconsistent with reg-
ularized QD results using automatically generated QRS times 
series in [13]. The optimal regularization parameter defined in 
[13] made the class-conditional covariance matrices (for QD) 
to be close to common covariance matrix (covariance matrix 
defined for LD classifier). Therefore in that work, regularized 
QD performance would be close to LD. Also, the RR series of 
training data in some evaluations in [13] are manually corrected 
while here all the corrections of training series were done au-
tomatically. By comparing EDRs ability for apnea detection in 
QD classifier, it can be seen that apnea detection results using 
features set from EDRPSR and EDRV ar are comparable to 
each other and both are better than using EDRArea . Consider-
ing LD classifier in Table 4, results of features extraction from 
RR series and EDRPSR are comparable to each other and both 
are better than the other two EDRs, suggesting that EDRPSR

have apnea detection information as much as RR series. There-
fore, using RR series and EDRPSR performed better than the 
other combination of features. Furthermore, as it could be ex-
pected, using all the feature sets improved the results, but not 
significantly, at the cost of dimension increasing. Both k-NN 
classifiers have resulted in a similar way regarding different 
feature sets. RR series and EDRPSR for k-NN classifiers are 
the best combinations of features compared to other combina-
tions. In general, LD classifier with its optimum feature sets 
achieved acceptable results in apnea detection, and the combi-
nations of EDRPSR and RR can be the potential proper feature 
sets to detect apnea events in test data. Also, feature sets RR and 
EDRPSR are the best combination for ANN classifier. Evalu-
ating the EDRs in terms of apnea detection, it can be seen that 
EDRPSR have performed better than EDRV ar , and EDRV ar

performed better than EDRArea which is consistent with LD 
classification improvement process with feature sets.

After using withheld-set as an independent evaluation in Ta-
ble 5, the effectiveness of EDRs in apnea detection is once again 
proved. Similar to classifiers results on training data, features 
from EDRPSR yield better classification than EDRVar , and 
EDRV ar performed better than EDRArea on the independent 
test set which is the main assessments of apnea detection algo-
rithms in PhysioNet/CinC competition. The best results on test 
dataset are acc = 0.909, sen = 0.896, spe = 0.918, by ANN 
(NN[4, 4], 5000, 0.3) using RR and EDRPSR feature sets.

According to Fig. 8 and Fig. 7 all the 30 non-borderline 
subjects in training data and test data can be separated from 
each other using a threshold on AHI estimated by ANN, which 
means a 100% accuracy in recording classification. We consider 
ANN as our optimum classifier in apnea detection approach. 
Some studies have focused only on this subject-based diagno-
sis to be used in OSA screening methods as an evaluation of 
apnea detection which does not seem to be very challenging if 
segment classification is done with high accuracy, but in this 
work both recording and segment classification are used as an 
evaluation of apnea detection algorithm.

These results can be compared to other stat-of-the-art ap-
nea detection algorithms which are applied on the Apnea-ECG 
database. Table 6 compares our results by ANN classifier with 
the best results of apnea detection algorithms reported in the 
literature such as algorithms proposed in [10,12,11,13–19] and 
[5]. There are some other researches focused on apnea detec-
tion from ECG, but their evaluations are not based on the whole 
Apnea-ECG database, and we can not compare our results with 
them because they used a different database or used only a part 
of Apnea-ECG database. Classifiers performance on the test 
data as the main assessments of the competition are only based 
on accuracy (accuracy of segment classification and accuracy of 
recording classification), and sensitivity and specificity criteria 
were not considered for competition participant ranking. That 
is why some of the performance of the algorithms in Table 6
are only reported by accuracy.

According to Table 6, the best results on training data belong 
to De Chazal [13] work in which the classification procedure is 
not automatic, and apnea detection is done visually. Putting vi-
sual (De Chazal et al. [13], Reymond et al. [10] and McNames 
et al. [11]) rather than automatic methods aside, it can be seen 
that there is only one automatic method (De Chazal et al. [13]) 
whose results are better than our approach using CV on train-
ing data, but considering independent test on withheld-set, our 
automatic approach have reached the highest accuracy (91%) 
among the other automatic methods. In addition, accuracy of 
recording classification in our automatic approach is 100% and 
is similar to some of the other automatic methods (De Chazal 
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Table 6
Apnea detection performance comparison on the whole Apnea-ECG database.

Algorithm Method Recording classification Train cross-validation Independent test

Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

Reymond (2000) [10] Auto 29/30 – – – 81 – –
Reymond (2000) [10] Visual 30/30 – – – 92.3 – –
De Chazal (2000) [12] Auto 29/30 88.2 84.1 90 88.9 – –
McNames (2000) [11] Visual 30/30 – – – 92.6 – –
De Chazal (2003) [13] Visual 30/30 92.5 91.4 93.1 90.6 – –
De Chazal (2003) [13] Auto 30/30 91.2 88.5 92.9 90.5 – –
O’Brien (2007) [14] Auto – 88.2 77.6 85.1 – – –
Khandoker (2009) [15] Auto 30/30 – – – – – –
Yildiz (2011) [16] Auto 30/30 – – – – – –
Sadr (2014) [17] Auto – – – – 87.7 81.3 91.7
Garcia (2015) [18] Auto – – – – 84.6 75.1 95.5
Sharma (2016) [19]a Auto – – – – 83.8 79.5 88.4
Song (2016) [5] Auto 29/30 – – – 86.2 82.6 88.4
Our approach Auto 30/30 89.6 85.4 91.9 90.9 89.6 91.8

a 16854 segments from released-set and 15873 segments from withheld-set are used for evaluation while the overall numbers of segments in released and 
withheld-set are 17045 and 17268, respectively.
et al. [13], Khandoker et al. [15], Yildiz et al. [16]) in the Ta-
ble 6. According to recording classification results, it seems that 
single-lead ECG-based apnea detection could be used for OSA 
screening application with similar reliability to PSG tests with 
multi biological signal recordings.

The proposed approach of OSA detection is based on es-
timating new EDRs. The extracted features in this study are 
derived from both RR series and EDRs. The results show that 
both RR and EDR series convey information related to OSA 
occurrence. The accuracy improvement process in withheld-set 
classification shows that EDRPSR and EDRV ar take priority 
than EDRArea in apnea detection, and that proves the sig-
nificance of choosing proper EDR signal in apnea detection 
applications. These results are also consistent with the first eval-
uation of EDRs in terms of cross-correlation, suggesting that 
respiration information in EDRPSR and EDRV ar are more 
significant than information in EDRArea . Selecting the fea-
tures that provide an important contribution in distinguishing 
two classes can be one of the ways to improve the results which 
is left for future work.

5. Conclusion

In this study, we proposed an automatic algorithm for OSA 
detection from a single-lead ECG recording. We hypothesized 
that choosing a proper EDR can improve the accuracy of OSA 
detection, that is why we introduced two new EDR extrac-
tion methods, EDRPSR and EDRV ar . After evaluating them 
in terms of time pattern similarity to a reference respiration sig-
nal (using cross-correlation coefficients) and comparing them to 
other EDR methods, EDRArea and EDRMPR , we used them 
in apnea detection. The cross-correlation coefficients between 
proposed EDRs and reference respiration signal are statistically 
higher than EDRArea and EDRMPR . Furthermore, the accu-
racy of apnea detection in independent test data using EDRPSR

and also EDRV ar shows that these EDRs are more effective 
than EDRArea . In comparison with other work, our ANN clas-
sifier using features from RR and EDRPSR yields the best 
performance on independent test data in terms of accuracy, sen-
sitivity, and specificity of segment classification. Besides, the 
subject or recording classification is done 100% accurate with 
our OSA detection algorithm. This study indicates that OSA 
can be monitored using single-lead ECG with satisfactory accu-
racy, and that makes a portable OSA monitoring system feasible 
since the results are comparable to PSG tests with multi biolog-
ical signal recordings.
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